
TOPICS IN COMBINATORIAL ANALYSIS

P . Erdős

In the present paper I will discuss some

combinatorial problems which my colleagues

and I considered in the recent past . I will

restrict myself to finite problems and will

try to discuss as much as possible new pro-

blems . It might of course turn out that the

answer to some of the questions is simple .

A few weeks ago I posed the following

question: Let

G I = n, Ak C G, 1 < k < 2n-1 + n+1 .

Then there are three A's every two of which

intersect but all of them do not intersect .

The empty set, the singleton, and all sets

containing a given element show that this

result *mss best possible .

E . Milner recently found a simple proof

by induction with respect to n . He proved



the result in the following form : Let

IGI = n,Ak C G, IA, > 2,1 < k < 2n'1

then there are three A's every two of which

intersect but all of them do not intersect .

Let now f(I,n) be the smallest integer

such that if

IGI = n,Ak c G,IAk I = 2,1 < k < f(2,n)

there are always three A's every two of wh -_ch

have common element, but all of them do not

have common element .

A well known theorem of Turan implies
n2f (2, n) _ [ r ] + 1 but perhaps for

2,f(k,n) _ ( _ 1) + 1 .

A related question is the following one :

Determine the smallest integer f(n) so that

if IGI = n,Ak a G,l < k < f(n) then there

are three elements x,y,z, and three A's

say A,, Aj , AI so that x, y c Ai , z ~ Aj ,

X, Z E A,, y ~ A _,, Y 5 Z E Ak, x ~ Ak . I have

not succeeded in determining or estimating
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f(n) . Sauer asked how many such sets can be

given if we assume 1Ak1 = 3 . He conjectured

:hat the answer is [( n2 1 ) 2 ] + 1 . The
[(n-l)2] sets xl xi xj , 2 < i < 2 < j < n,

do not have this property . Hajnal and I ob-

served that if A i c G, JAi 1 = 3, 1 < i < Cn2

where C is a sufficiently large constant,

then there are 6 distinct elements a,b,c,x,y,z

so that (abx), (acy), (bcz) are all A's .

We have not succeeded in determining the best

value of C .

2 . Denote by f(k,n) the smallest inte-

ger such that if we split the k-tuples of a

set of f(k,n) elements into two classes

there always is a set of n elements all of

whose k-tuples are in the same class . The fact

that f(?c,n) is finite for every .c and n

is of course Ramsey's theorem . It is known

that (the upper bound is due to Yackel) .

(1) c ln2n/2 < f(2,n) <

	

'-n loglog n/n 1/2 log n

The proof of the lower bound is probabi-



listic and non-constructive . It would be very

desirable to obtain a constructive proof of

the lower bound especially in view of the fol-

lowing circumstances .

C l11`

	

2 c2n(2)

	

2

	

< f(3,n) < 2

The lower bound is obtained by -probabilistic

considerations, and it seems

	

to ob-

tain more by these methods .

For
k > 3 we know that

(
n ) C < c " < 1,

proved

by _Hajnal, 7 a d o and myself,	we -, e __eve that

the upper bound gives the right order of mag- nitude

c 2 f(k-l,n)

	

e, :~(k-l, n)
2

	

1
< f(->,n) < 2 -

Thus the case k = 3 is criac`_al .

The basic elements of an r graph (for

r = 2 we get the ordinary graphs) are its

r-tuples and vertices . d r !'.:,t) denotes an

r graph of n vertices and t r-furies . 1 preved

that every

G (r) (n,c



contains a K(r) (1t, • • • , 2)
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for k < c 2 (log n) 1/r

where K(r)(2, • • • , 2) is defined as follows :

The vertices of K (r) (,,are Xi ( j ) ,

1 < i < 2 ; 1 < j < r, and its kr r-tuples

are {X i1) , Xi 2),
. . .,X~r) },

1

	

2

	

r

< il , • • • , i r < k . I also showed that in a

certain sense this theorem is best possible,

it fails for c 3 (log n) 1/r if c3 = c 3 (c l )
's sufficiently large . For r = 2 these re-

sults are due to Körvari and the Turans •

Define the density of an r graph

G (r) (n ;t) as

t

( r )

Our theorem can also be stated in the

following form . Let n be sufficiently large,

then every r-graph of n vertices and positive

'density contains a large r-graph of density rr
r

I conjecture that there is an absolute constant

c r such that if n is sufficiently large then

every r graph of r vertices and density



> rr + s (i .e ., every G(r)(n ;(r)(rr + e))
r

	

r`

contains a large subgraph of density
r'> r + c r . For r = 2, this and consi-
r

derably more was proved by Stone and myself .

Recently I proved the following theorem :

Split the r-tuples r > 3 of a set of n ele-

ments into two classes, Then there are ele-

ments

X1~ -) ,1 < i < cl(log n )1/r-1 l < J < r-1

such that all the r-tuples

(3)

	

(X~1),x~2),x~3), . . .,X(r

l < i s < c l (log n) l/r-l , 1 < s < r

belong to the same class . A simple probabi-

listic argument shows that the theorem fails

for c2(log n)1/r-l if c 2 is sufficiently

large . Also it is easy to see that for no

c < 1 does a G(r)(n,c(r)) necessarily con-

tain a configuration of type (3) . It is not

clear if the theorem can be strengthened,
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e .g ., let r = 3 . Is it true that there are

elements

Xi , Yi , 1 < i < f (n), f(n)/ logtog n-400-

so that all the pairs (X_; , X . , Y~) and
- 1

	

12
(X, , Y

d
.l, Y

d
. ) belong to the same class?

y

	

2
Perhaps this even holds with f(n)

c (log n) 1/r-1

The proof of (3) is quite complicated

and I was assisted by some suggestion of

J . Spencer .

Spencer and I proved the following theo-

rem : Split the r-tuples of a set of n ele-

ments into two classes . Then for every

m < n there is a t < m such that there is

a set of t elements with at least
r+l

	

r-1
2(r) + c 1 m 2 (jog cm	 n )

r tuples of the same class .

Apart from the value of c l and c 2 ,

(4) is best possible . The proof of (4) re-

quires tricky combinatorial and and proba-
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bilities considerations . A slightly weaker

form of (4) will soon appear in our paper in

Networks . For applications to probabilistic

methods in combinatorial analysis, see also

our forthcoming book with J . Spencer,
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3 . Rado and I investigated the following
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question : Define f(r,n) as the smallest in-

teger such that if JAki = n, 1 < k < f(r,n),

then one can always find r A's which have

pairwise the same intersection . We proved

( 1 )

	

(r-l) n+l < f(r,n) < Cr n'

(1)

Both the upper and the lower bound in

have been improved by Abbott by factors

tending to infinity exponentially, but nobody

has yet proved

(2)

	

f(r,n) < Cr .

(2) is open even for r = 3 . (2) would have

many applications in number theory and combi-

natorial analysis and I several times offered

100 dollars for a proof or disproof of (2) .

Denote by g(r,n) the smallest integer

such that if

JGJ = n, Ai

	

G, 1 < i < g(r,n)

then there are always r A's which have

pairwise the same intersection . (1) implies

n-cfn
g(r,n) < 2 r



and (2) would imply

g(r,n) < (2-e r ) n ,

Abbott and I observed that lim g(r,n) 1/n
n=oo

exists and we obtained some rough lower

bounds for g(3,n) .

P . Erdős and R . Rado, Intersection theorems

for systems of sets, J . London Math . Soc .

35(1960), 85-90 . H . L . Abbott, Some remarks

on a combinatorial theorem of Erdös and Rado,

Canad . Math . Bull . 9(1966), 155-160 .
4 . A family of sets [Ak } is said to

have property B if there is a set S which

meets all the Ak but does rot contain any

of them, m(n) is the smallest integer such

that there are m(n) sets (A k }, JAk j

n,l < k < m(n) ; not having property B . It

is known that

(1) 2n (l +
n)-1

< m(n) < n 2 2n+1

m(2) = 3, m(3) = 7, m(4) is not yet known .

(Hanson showed 16 < m(4) < 29) .



Define m * (n) as the smallest family of

sets (Ak }, 1 < k < m * (n), which do not have

property B and for which JAk1 = n,

jAi it Aj j < 1 . m* (2) = 3, m* (3) = 7, m* (4)

is unknown . It is known that m* (n) is fi-

nite for every n, and, in fact, Hajnal and

I showed that for large n, m * (n) < lln . As

far as I know it is not even known that

(2)

	

lim
n=-

(m * (n) 1/n

exists . I am sure that the answer is af-

firmative and that the limit is greater than

2 .

Abbott and I have made the following

simple observation : Clearly all the subsets

taken n at a time of a set of 2n-1 ele-

ments do not have property B . On the other

hand if the family (Ak3' 1 < k < t, IAk1 =

n, JAi n A
j

I < 1 does not have property B
t

then j U Ak
1 = X must be very large . To

k=l

	

n

	

1see this, observe that by (1), t

	

2 (1+ n) ,
thus since JAi n A

j I
< 1 , we must have



(3)

	

t(2) < (2) or x > (1+ o(1) )n2n/2 .

P . Erdős and A . Hajnal, On a property of

families of sets, Acta Math . Acad . Sci .

Hungar . 12(1961), 87-123 ; P . Erdős, On a

combinatorial problem II, ibid . 15(1964),

445-447; W. Schmidt, On a problem of Erdős

and Hajnal, ibid .

5 . V . T . Sos and I considered the

following question . Color the edges of a

Kn (complete graph of n vertices) by three

colors so that we get the largest number of

triangles all of whose edges get different

colors . Denote this number by f(n) . It

is easy to see that

lim f(n)/ n = c
( -~ )

exists, but we could not determine c .

f(3) = 1, f(4) _ (4), f(5) = 7 .

f(n) > (1 -+ 0(1)) 5 n3 is easy, and per-

hays this is best possible, or c = 15
J2

Clearly many generalizations

-7.3-

are possible .
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Recently Hajnal and I considered the

following modified problem : Let

Xl , •- •, Xn be the vertices of Kn . Color

the edges by three colors I, IT and III .

Denote by g(n) the largest number of

triangles (Xi , Xj , XI ), i < j < .e so that

(Xi , Xj ) has the color I,(X,, X,) color IT

and (Xi , X,) color III . Perhaps

lim g(n)/
n)

= 1/4
n-+ co

	

( 3

g(n) > ( + o(1))n3 is easy to see, the27
upper bound seems more difficult .

6 . I now discuss two further questions

connected with Ramsey's theorem . It will be

useful to introduce the arrow symbol of Rado

(which we avoided in 2 .) : n -+ (a,b) k means

that if we split the k-tuples of a set of

n-elements into two classes there either

is a set of a elements all whose k-tuples

are in class I or a set of b elements all

whose k-tuples are in class IT . n ~ (a,b)k

means that there is a splitting for which
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the above does not hold, f(k,n) of 2 .
thus satisfies

f(k,n) 4 (n,n) k , f(k,n)-1 { (n,n) kk

n 4 (a,[b]) 3 means that if we split the

triplets of a set of n elements into two

classes there either is a set of a elements

all whose triplets are in class I or a set

of b elements which contain at least t trip-

lets of class II . This symbol was extensively

investigated for infinite cardinals in our

triple paper with Hajnal and Rado .

Hajnal and I recently showed

(1) n

	

(n 1/2
;L2]) 3 , n {+ (c, log n,

	

4 )3 .,

n -+ (c 2 log n, [ 3] ) 3 ,

(1) suggested the following conjecture :

there is an h(t) so that

a(2) n

	

(n t, Lhbt)])3, but

n

	

(c t log n, Eh(t)+11)3

We know that h(4) = 2, h(5) = 4, h(6) = 8,

h(7) > 13 . It is almost certain that
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h(7) = 13 .

By probabilistic arguments we can show

(g(t) is defined in 5 .)

n ~ (c log n, [g(t)+1])3'

Unfortunately, we are very far from

being able to show

n 4 (na'[g(±)])3

We can snow

n-# (na, [t]) 3 , where I _ (1+o(1)) t327 -

All these questions could of course be

investigated for r > 3 too, but we have not

yet had the time to do this . For r = 2 it

is known that

	

n -+ (cnl/t , t+1) 2 .

Bercov and Hobby proved the following

Ramsey type theorem . Let G be a set . Two

disjoint non-empty classes of r-tuples of G

are said to have property P(r ;u,v) if

every u-tuple of G which contains an r-

tuple of class I also contains an r tuple of

class II and every v tuple of G which contains

an r tuple of class II also
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contains an r-tuple of class I . Their theo-

rem asserts that there is a smallest integer

F(r ; u,v) so that for IGI > F(r ; u,v) no

classes of property P(r ; u,v) exist .

Clearly F(r ; u,v) -* (u,v) r , and I thought

that perhaps F(r ; u,v) might be the smallest

integer with this property, in other words

F(r ; u,v) coincides with the Ramsey function .

Abbott, Milner and I showed this for r = 2,

u < 4 v < 4

Milner and I, in fact, observed that if

JGJ > 11 and one has a system P(2 ;4,4) on

G, then there can be no empty quadruple i .e .,

every quadruple contains an edge of class I

and TI, and since 11 -~ (4,a) - our conjecture

follows for r = 2, u

	

4, r = 4 . Perhaps

this situation is true generally . Let m be

the largest integer for which m J (u,v) r .

Then if JGJ = m and there are two classes

of r-tuples of G having property P(r ;u,v),

every v-tuple must contain an r-tuple of



both classes . This, if true, would imply our

conjecture . I can only prove it for r = 2,

u = 3 and every v > 3 . Kleitman just in-

forms me that he showed that F(2,5,5) coin-

cides with the corresponding Ramsey number .

R . D . Bercov and CH . R . Hobby, Permutation

groups on unordered sets, Math . Zeitschrift

115(1970), 165-168 .

To finish this report I state two pro-

blems from combinatorial geometry .

The following question is due to G .

Simmons : Let there be given a set of 2 n

points no three on a line, Xl, • • • , X2n . A

line (Xi ,Xj ) is called a bisector of the

set if n-1 points are on both sides of this

line . Simmons asked : What is the largest

number of bisectors? Denote this maximum by

f(n) . Straus proved f(n) > cn log n, and

Lovast moved f(n) < cn3/2 . Several papers

on these and related subjects will appear in

the near future .

-1 8-
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Straus and I recently asked the following

question : Let there be given n points in the

plane X1,— ` Xn ,

by a path,

line which

paths . We

show that

true, also

k = 2 .

Sylvester

Prove

can prove

k(k+l)

we can

Join k n pairs (Xi , Xj )

that there is a straight

cuts at least k(k+l) of these
k2
2this with and can

is best possible if it is

show it for k = 1 and

asked the following question :

Let there be given n points in the plane no

four on a line . What is the maximum number

of lines which pass through three of our points?

Sylvester showed that there can be 3 (2)-c ln

such lines and a result of Kelly and Moser

implies that the number of such lines is less

than 3(2)-c2n .

More generally let Xl , • • • , Xn be n points

no r+1 of them is on a straight line .

Denote by f(r,n) the largest number of lines

which go through precisely r of the points .

I conjectured f(r,n) = o(n 2 ) but could not
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even prove lim f(r,n)/n = - . Karteszi proved

(1)

	

f(r,n) > c r nlogn

by showing f(r,rn) > n+r f(r,n) .

Croft and I considered the function

f * (r,n) where f* (r,n) denotes the maximum

number of lines which pass through precisely

r of the points X i , we now no longer assume

that no r+1 of the points are on a line . The

example of the lattice points in the plane,

easily shows that

f * (r,n) > c' n2
r

c' < 1 is immediate, and we conjectured that
r

	

(r)
f*(r,n) < e rn2 where E r 4 0 as r -+ - .

W . 0 . J. Moser and L . M . Kelly, On the number

of ordinary lines determined by n-points, Ca-

nad . J. Math . 10(1958), 270-279 .

The paper of Karteszi appeared in Hun-

garian, Kozepiskolai Mat . Lapok 1962 .
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