A CHARACTERIZATION OF FINITELY MONOTONIC ADDITIVE FUNCTIONS

P. ERDÖS AND C. RYAVEC

Let $f(m)$ be a real-valued, number theoretic function. We say that $f(m)$ is additive if $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$. If $f(m)$ satisfies the additional restriction that $f(p)=f\left(p^{2}\right)=f\left(p^{3}\right)=\ldots$, then we say that $f(m)$ is strongly additive. We denote the class of additive functions by \mathscr{A}.

A function $f \in \mathscr{A}$ is called finitely monotonic if there exists an infinite sequence $x_{k} \rightarrow \infty$ and a positive constant λ, so that for each x_{k} there are integers

$$
1 \leqslant a_{1}<a_{2}<\ldots<a_{n} \leqslant x_{k}
$$

satisfying $n \geqslant \lambda x_{k}$ and $f\left(a_{1}\right) \leqslant f\left(a_{2}\right) \leqslant \ldots \leqslant f\left(a_{n}\right)$. In other words, $f(m)$ is said to be finitely monotonic if, infinitely often, $f(m)$ is non-decreasing on a positive proportion of the integers between 1 and x_{k}. Let \mathscr{M} denote the class of finitely monotonic functions.

Approximately 25 years ago, Erdös [3] proved that a monotonic, additive function is a constant multiple of the logarithm. In the same paper Erdös conjectured that even when an additive function is monotonic on a sequence of integers with density 1 , then the conclusion still holds. This was later proved by Kátai [4]. At about the same time Kátai's result appeared, B. J. Birch proved the following theorem, which may be found in [1].

Theorem (Birch). Let $f(m)$ be an additive function, and let $g(m)$ be any monotonic non-decreasing function. Suppose that for every $\varepsilon>0,|f(m)-g(m)|<\varepsilon$ for all but $o(x)$ of the integers $1 \leqslant m \leqslant x$, as $x \rightarrow \infty$. Then $f(m)=c \log m$.

In the present paper, we shall show that if f is finitely monotonic, then f approximates a constant multiple of the logarithm. Thus, we prove the

Theorem. Let $f \in \mathscr{A}$. A necessary and sufficient condition that $f \in \mathscr{M}$ is that there exist a positive constant c and an additive function g so that

$$
\begin{equation*}
f(m)=c \log m+g(m), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{g(p) \neq 0} \frac{1}{p}<\infty . \tag{2}
\end{equation*}
$$

This theorem was first stated as Theorem XII in [3], although without proof. We include all of the details here.

Proof of Theorem (sufficiency). Suppose that $f(m)$ satisfies (1) and (2). Then $g(m)$ must vanish on a sequence of integers of positive density. On this sequence, $f(m)$ is non-decreasing.

[^0]To prove that the conditions (1) and (2) are necessary will be much more difficult. We shall first deduce from Lemma 1 and Lemma 2 that if $f \in \mathscr{M}$, then f has the form

$$
\begin{equation*}
f(m)=c \log m+g(m), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{p} \frac{\left(g^{\prime}(p)\right)^{2}}{p}<\infty \tag{4}
\end{equation*}
$$

and where $g^{\prime}(p)=g(p)$ if $|g(p)| \leqslant 1$ and $g^{\prime}(p)=1$ otherwise. Next, we employ Lemma 3 and Lemma 4 to prove that the condition (4) can be strengthened to the condition (2). This will prove the theorem.

Definition. Let $f \in \mathscr{A}$. Then f is said to be finitely distributed if there exists an infinite sequence $x_{k} \rightarrow \infty$ and positive constants c_{1} and c_{2} so that for each x_{k} there exist integers $1 \leqslant a_{1}<\ldots<a_{n} \leqslant x_{k}$ for which $\left|f\left(a_{i}\right)-f\left(a_{j}\right)\right| \leqslant c_{2}, 1 \leqslant i, j \leqslant n$, and $n \geqslant c_{1} x_{k}$.

It is seen from this definition that finitely distributed functions are distinguished by the fact that, infinitely often, a positive proportion of their values, defined on $\left[1, x_{k}\right]$, lie in a strip of constant width. (The functions $c \log n$, for example, are finitely distributed for each constant c.)

The study of finitely distributed functions was begun by Erdös in [3]. One of the results of his work there is the

Lemma 1 (Erdös). A necessary and sufficient condition that f be finitely distributed is that f satisfy conditions (3) and (4).

Proof of Lemma 1. Erdös' original proof may be found in Theorem V of [3]. Another proof, based on analytic methods is given in [5].

Lemma 2. Suppose that $f \in \mathscr{M}$. Then f satisfies conditions (3) and (4).
Proof of Lemma 2. We suppose that for each $x_{k} \rightarrow \infty$ there are sets of integers $\mathscr{C}_{k}=\mathscr{C}\left(f, x_{k}\right)=\left\{a_{j} \leqslant x_{k}: 1 \leqslant j \leqslant n ; n \geqslant \lambda x_{k}\right\}$ for which

$$
f\left(a_{1}\right) \leqslant f\left(a_{2}\right) \leqslant \ldots \leqslant f\left(a_{n}\right) .
$$

We shall deduce that $f(m)$ is finitely distributed. The conclusion of Lemma 2 will then follow immediately from Lemma 1.

Thus, choose $\varepsilon>0$. Choose primes q and r so that

$$
\prod_{q \leqslant p \leqslant r}\left(1-p^{-1}\right)<\varepsilon,
$$

where the product is over primes p in the indicated range. Also, put

$$
P=\prod_{q \leqslant p \leqslant r} p
$$

Then the number of $a_{i} \in \mathscr{C}_{k}$ for which $\left(a_{i}, P\right)=1$ does not exceed $2 \varepsilon x_{k}$, for all sufficiently large x_{k}.

Define numbers $a_{i}{ }^{\prime}$ by $a_{i}=a_{i}{ }^{\prime} \pi_{i}$, where π_{i} is the largest factor of a_{i} dividing P. It is possible that $a_{i}{ }^{\prime}$ and π_{i} are not relatively prime. But if we choose q so large that

$$
\begin{equation*}
\sum_{q \leqslant n} n^{-2}<\varepsilon, \tag{5}
\end{equation*}
$$

then there are at most εx_{k} of the a_{i} for which $\left(a_{i}{ }^{\prime}, \pi_{i}\right)>1$. Hence, we add the requirement that the prime q satisfies (5). Thus, at least $(\lambda-3 \varepsilon) x_{k}$ of the $a_{i} \in \mathscr{C}_{k}$ satisfy the conditions $a_{i}=a_{i}{ }^{\prime} \pi_{i}, \pi_{i} \mid P, \pi_{i}>1,\left(a_{i}{ }^{\prime}, \pi_{i}\right)=1$. Denote this subset of \mathscr{C}_{k} by \mathscr{D}_{k}.

Now suppose that for infinitely many x_{k} there are two numbers $a_{j}>a_{i}$ of \mathscr{D}_{k} for which $a_{j}^{\prime}=a_{i}^{\prime}$, and that there are at least δx_{k} numbers $a_{l} \in \mathscr{D}_{k}$ which satisfy $a_{j}>a_{l}>a_{i}$ (i.e., $j-i \geqslant \delta x_{k}$), where $\delta>0$ is independent of k. Then f is finitely distributed. To see this, recall that $a_{j}{ }^{\prime}=a_{i}{ }^{\prime}$ means that

$$
\frac{a_{j}}{\pi_{j}}=\frac{a_{i}}{\pi_{i}}
$$

from which it follows that

$$
f\left(a_{j}\right)-f\left(a_{i}\right)=f\left(\pi_{j}\right)-f\left(\pi_{i}\right),
$$

since $\left(\pi_{i}, a_{i}\right)=1$. Moreover, since $a_{j}>a_{l}>a_{i}$, we have

$$
\left|f\left(a_{l}\right)-f\left(a_{i}\right)\right| \leqslant\left|f\left(\pi_{j}\right)-f\left(\pi_{i}\right)\right| ;
$$

and so f is finitely distributed.
Therefore, we assume that between any two numbers a_{j} and a_{i} of \mathscr{D}_{k} such that $a_{j}{ }^{\prime}=a_{i}{ }^{\prime}$, there are $o\left(x_{k}\right)$ numbers a_{l} of \mathscr{D}_{k}, as $x_{k} \rightarrow \infty$. We shall arrive at a contradiction.

Put

$$
\mu=\min _{\pi_{j}, \pi_{i} \in P}\left\{\left|\frac{\pi_{j}}{\pi_{i}}-1\right|: \pi_{j}>\pi_{i}\right\} .
$$

Then $\mu>0$ and independent of x_{k}.
Choose the largest number $a_{j} \in \mathscr{D}_{k}$ for which $a_{j}{ }^{\prime}=a_{i}{ }^{\prime}$ for some $i \neq j$. Denote this largest number by $a_{j_{1}}$. Then let $a_{i_{1}}$ be the smallest number such that $a_{j_{1}}{ }^{\prime}=a_{i_{1}}{ }^{\prime}$. Between $a_{j_{1}}$ and $a_{i_{1}}$ there are at most $o\left(x_{k}\right)$ numbers of \mathscr{D}_{k}. Also,

$$
a_{j_{1}}=a_{i_{1}} \pi_{j_{1}} \pi_{i_{1}}^{-1} \geqslant a_{i_{1}}(1+\mu) .
$$

Next, let $a_{j_{2}}$ be the largest number of \mathscr{D}_{k} less than $a_{i_{1}}$ and for which $a_{j_{2}}{ }^{\prime}=a_{i}$ for some $i \neq j_{2}$. Let $a_{i_{2}}$ be the smallest number for which $a_{j_{2}}{ }^{\prime}=a_{i_{2}}{ }^{\prime}$. As before, $a_{j_{2}} \geqslant a_{i_{2}}(1+\mu)$.

Continuing in this way, we obtain a sequence of numbers

$$
a_{j_{1}}>a_{i_{1}}>a_{j_{2}}>a_{i_{2}}>\ldots>a_{j_{h}}>a_{i_{h}}
$$

where h is chosen so that $(1+\mu)^{h} \geqslant q>(1+\mu)^{h-1}$. With h chosen in this way, there are at most x_{k} / q numbers of \mathscr{D}_{k} less than $a_{i_{n}}$. We note, also, that the number of a_{i} for which $a_{i}{ }^{\prime}$ can equal a given $a_{j}{ }^{\prime}$ is at most the number of distinct π_{i}, a bounded number (certainly less than e^{r}). Finally, note that the number of a_{i} for which $a_{i}{ }^{\prime}$ is never equal to another $a_{j}{ }^{\prime}$, is at most x_{k} / q.

Hence, in the above procedure, we have accounted for a total of at most

$$
(1 / q+3 \varepsilon+o(h)+1 / q) x_{k}+2 h e^{r}
$$

numbers in \mathscr{C}_{k}, which contradicts $\left|\mathscr{C}_{k}\right| \geqslant \lambda x_{k}$, if ε is chosen sufficiently small.
It follows that $f(m)$ is finitely distributed. A direct application of Lemma 1 shows that f must satisfy conditions (3) and (4).

Lemma 3. Suppose that $f \in \mathscr{A}$ is finitely monotonic. Then the strongly additive function f^{*}, defined by $f^{*}\left(p^{r}\right)=f(p)$, is also finitely monotonic.

Proof of Lemma 3. The hypotheses of Lemma 3 state that there exists an infinite sequence $x_{k} \rightarrow \infty$ and a positive constant λ so that for each x_{k} there are integers $1 \leqslant a_{1}<a_{2}<\ldots<a_{n} \leqslant x_{k}$ with $n \geqslant \lambda x_{k}$ and $f\left(a_{1}\right) \leqslant f\left(a_{2}\right) \leqslant \ldots \leqslant f\left(a_{n}\right)$.

Choose $N=N(\lambda)$ so large that

$$
\sum_{\substack{p^{r}>N \\ r \geqslant 2}} p^{-r}<\lambda / 2
$$

With this choice of N, at least $\lambda x_{k} / 2$ of the $a_{i} \leqslant x_{k}$ have no prime power divisor p^{r} $(r \geqslant 2)$ satisfying $p^{r}>N$. Hence, the order of the set $S_{k}=S_{k}(N)$, defined by

$$
S_{k}=\left\{a_{i} \leqslant x_{k}: p^{r} \mid a_{i}, r \geqslant 2 \Rightarrow p^{r} \leqslant N\right\},
$$

is at least $\lambda x_{k} / 2$.
Let \mathscr{D} consist of those integers whose prime power divisors p^{r} satisfy $p^{r} \leqslant N$ (where we now allow the possibility $r=1$), and let D denote the product of all of the integers $d \in \mathscr{D}$. For each $d \in \mathscr{D}$, put

$$
S_{k}^{(d)}=\left\{a_{i} \in S_{k}:\left(a_{i}, D\right)=d\right\}
$$

Then some set $S_{k}^{(d)}$ has order at least $\lambda x_{k} / 2 D$; and for each a_{i} in this set, we see that a_{i} / d is square-free. In addition, if $a_{i}<a_{j}$ are in this set, then $f\left(a_{i} / d\right) \leqslant f\left(a_{j} / d\right)$. It follows that the strongly additive f^{*}, defined by $f^{*}\left(p^{r}\right)=f(p)$, is finitely monotonic.

Henceforth, without loss of generality, we will assume that the finitely monotonic function f, given in the statement of the theorem of this paper, is strongly additive. This assumption is justified by Lemma 3.

Lemma 4. Suppose that f is a strongly additive function which satisfies (3) and (4). Then the finite frequencies $n^{-1} \sum_{m} 1$, where summation is over values of m such that $m \leqslant n, f(m)-c \log m-\alpha(n)<x$, have a limiting distribution function $F(x)$ as $n \rightarrow \infty$, where

$$
\alpha(n)=\sum_{p \leqslant n} \frac{g^{\prime}(p)}{p}
$$

Moreover, $F(x)$ will be continuous if and only if

$$
\sum_{g(p) \neq 0} \frac{1}{p}=\infty
$$

Proof of Lemma 4. The statement of Lemma 4 was first enunciated by Erdös as Theorem II of [3]; and a proof was given there in the case when $|g(p)|$ is bounded. A complete proof of Lemma 4 may be found in Theorem 2 of [2].

Proof of Theorem (Necessity). From Lemma 4, we may find a constant A so that the number of $m \leqslant x_{k}$ for which $-A \leqslant f(m)-c \log m-\alpha\left(x_{k}\right) \leqslant A$ exceeds $(1-\lambda / 4) x_{k}$. Since there are at least λx_{k} elements of $\mathscr{C}_{k}\left(\mathscr{C}_{k}\right.$ is defined in the proof of Lemma 2), there are at least $(\lambda-2(\lambda / 4)) x_{k}=\lambda x_{k} / 2$ elements of \mathscr{C}_{k} which satisfy $\lambda x_{k} / 4 \leqslant a_{i} \leqslant x_{k}$ and $-A \leqslant f\left(a_{i}\right)-c \log a_{i}-\alpha\left(x_{k}\right) \leqslant A$. Denote the set of these a_{i} in \mathscr{C}_{k} by \mathscr{S}_{k}, where $\left|\mathscr{S}_{k}\right| \geqslant \lambda x_{k} / 2$.

Divide the interval $\left[\lambda x_{k} / 4, x_{k}\right.$) into T equal parts, where T is a large, but fixed, positive integer. Then, we have

$$
\begin{aligned}
{\left[\lambda x_{k} / 4, x_{k}\right) } & =\bigcup_{l=0}^{T-1}\left[\delta_{l} x_{k}, \delta_{l+1} x_{k}\right) \\
& =\bigcup_{l=0}^{T-1} I_{l}
\end{aligned}
$$

where

$$
\delta_{l}=\frac{(\lambda / 4)(T-l)+l}{T} .
$$

An interval I_{l} will be called good if it contains at least $\lambda x_{k} / 4 T$ of the numbers of \mathscr{S}_{k}. Clearly, the number of elements of \mathscr{S}_{k}, which do not lie in good intervals, is not more than $T\left(\lambda x_{k} / 4 T\right)=\lambda x_{k} / 4$. Hence, there are at least $\lambda x_{k} / 4$ numbers of \mathscr{S}_{k} in good intervals; and, so, there are at least

$$
\frac{\lambda x_{k} / 4}{(1-\lambda / 4) x_{k} / T}=\frac{\lambda T}{4-\lambda}=v T
$$

good intervals. It follows that on one of these good intervals, say on I_{L}, $0 \leqslant L \leqslant T-1$, the total variation of $f\left(a_{i}\right)-c \log a_{i}-\alpha\left(x_{k}\right)$ does not exceed $2 A / v T$, since f is monotonic on the $a_{i} \in \mathscr{S}_{k}$. Moreover, since I_{L} is a good interval,

$$
\left|\mathscr{S}_{k} \cap I_{L}\right| \geqslant \lambda x_{k} / 4 T .
$$

Therefore, if we let $\sum^{\prime}{ }_{m} 1$ denote the summation over those natural numbers m satisfying

$$
\delta_{L} x_{k}<m \leqslant \delta_{L+1} x_{k},
$$

and

$$
\eta-\frac{2 A}{v T}<f(m)-c \log m-\alpha\left(x_{k}\right)<\eta+\frac{2 A}{v T},
$$

then, for some real number η, we have

$$
\begin{align*}
\left(\delta_{L+1}-\delta_{L}\right)^{-1} x_{k}^{-1} \sum_{m}^{\prime} 1 & =(1-\lambda / 4)^{-1} T x_{k}^{-1} \sum_{m}^{\prime} 1 \\
& \geqslant(1-\lambda / 4)^{-1} T x_{k}^{-1}\left(\lambda x_{k} / 4 T\right) \\
& =v>0 . \tag{6}
\end{align*}
$$

Suppose, now, that $F(x)$ is a continuous function. Let $\sum^{\prime \prime}{ }_{m} 1$ denote the summation over those natural numbers m satisfying

$$
1 \leqslant m \leqslant \delta_{l+1} x_{k}
$$

and

$$
\eta-\frac{2 A}{v T}<f(m)-c \log m-\alpha\left(\delta_{l+1} x_{k}\right)<\eta+\frac{2 A}{v T} .
$$

Then

$$
\delta_{l+1}^{-1} x_{k}^{-1} \sum_{m}^{\prime \prime} 1=F\left(\eta+\frac{2 A}{\nu T}\right)-F\left(\eta+\frac{2 A}{\nu T}\right)+o(1)
$$

as $x_{k} \rightarrow \infty$. Since $\alpha\left(x_{k}\right)-\alpha\left(\delta_{l+1} x_{k}\right)=o(1)$ as $x_{k} \rightarrow \infty$, we see that

$$
\begin{equation*}
\delta_{l+1}\left[F\left(\eta+\frac{2 A}{v T}\right)-F\left(\eta-\frac{2 A}{v T}\right)\right]=x_{k}^{-1} \sum_{m}^{\prime \prime \prime} 1+o(1), \quad x_{k} \rightarrow \infty, \tag{7}
\end{equation*}
$$

where the symbol $\Sigma^{\prime \prime \prime}{ }_{m} 1$ denotes summation over integers m satisfying

$$
1 \leqslant m \leqslant \delta_{l+1} x_{k},
$$

and

$$
\eta-\frac{2 A}{v T}<f(m)-c \log m-\alpha\left(x_{k}\right)<\eta+\frac{2 A}{v T} .
$$

Subtracting equation (7) with $l=L-1$ from equation (7) with $l=L$, and dividing the difference by $\delta_{L+1}-\delta_{L}$, yields

$$
\begin{equation*}
F\left(\eta+\frac{2 A}{v T}\right)-F\left(\eta-\frac{2 A}{v T}\right)=\left(\delta_{L+1}-\delta_{L}\right)^{-1} x_{k}^{-1} \sum_{m}^{\prime} 1+o(1), \quad x_{k} \rightarrow \infty . \tag{8}
\end{equation*}
$$

Combining equations (6) and (8), we obtain

$$
F\left(\eta+\frac{2 A}{v T}\right)-F\left(\eta-\frac{2 A}{v T}\right)+o(1) \geqslant v
$$

as $x_{k} \rightarrow \infty$. Since T can be chosen as large as we like (but fixed with respect to x_{k}) we see that F cannot be continuous. Hence, by Lemma 4,

$$
\sum_{g(p) \neq 0} \frac{1}{p}<\infty
$$

which proves the theorem.

References

1. B. J Birch, " Multiplicative functions with non-decreasing normal order ", 42 (1967), 149-151.
2. P. D. T. A. Elliott, and C. Ryavec, "The distribution of the values of additive arithmetical functions ", Acta Mathematica, 216 (1971), 143-164.
3. P. Erdös, " On the distribution function of additive functions ", Ann. Math., 47 (1946), 1-20.
4. I. Kátai, " A remark on number theoretical functions ", Acta Arithmetica, XIV (1968), 409-415.
5. C. Ryavec, "A characterization of finitely distributed additive functions", J. Number Theory, 2 (1970), 393-403.

University of Colorado.

[^0]: Received 12 May, 1971.

