Extremal Problems in Number Theory

Paul Erdös
Hungarian Academy of Sciences

Abstract

Within the last few years I have written several papers on this subject. To keep this note short I mention only two or three new problems and discuss some of the old problems where some progress has been made. I quote some of the relevani papers. P. Erdös, On unsolved problems, Pubi. Math. Inst. Hung. Acad. 6(1961), 221-254, see also Michigan Matn. Journal (1957). P. Erdös, Some recent advances and current problems in number theory, T. L. Saaty, Lectures on Moderr Math. Vol. 3, 196-244. P. Erdös, Extremal problems in number theory, Theory of numbers, Symposia in Pure Math. VIII (1965), 181-189 (Amer. Math. Soc.). Several problems stated there were parilaily solved by Choi see e.g. S. L. G. Choi, On a combinatorial probiem in number theory, Proc. London Math. Soc. 23(1971), 629-642.

1. Nearly fourty years ago I made the following conjecture:

Let $1 \leq a_{1}<\ldots<a_{k} \leq n ; 1 \leq b_{1}<\ldots<b_{\ell} \leq n$ be two sequences of integers. Assume that the products $a_{i} b_{j}, \quad 1 \leq i \leq k ; 1 \leq j \leq \ell$ are all distinct. Then
(1)

$$
k \ell<c_{1} n^{2} / \log n
$$

Szemerédi recently found a surprisingly simple proof of (1), his paper will appear in the Journal of Number Theory.

It would be interesting to strengthen (1) and determine max $k \boldsymbol{\ell}$. This problem is almost certainly hopeless, but perhaps one can determine
(2)

$$
\lim _{n=\infty} \frac{k \ell \log n}{n^{2}}=c
$$

It is not even quite clear that the limit in (2) exists.
Szemerédi and I proved that to every r there is an s so that in $n>n_{0}(r, s)$ and
(3)

$$
k \ell>\frac{n^{2}}{\log n}(\log \log n)^{s}
$$

then for some $m, m=a_{i} b_{j}$ has more than r solutions.
The following question which just occurs to me can be raised:
Let $A=\left\{a_{1}, \ldots, a_{k}\right\} ; B=\left\{b_{1}, \ldots, b_{\ell}\right\}$ be two sequences of integers in the interval ($1, m$). Denote by $N(A, B ; n)$ the number of those integers m for which $m=a_{i} b_{j}$ has precisely one solution. Determine or estimate max $N(A, B ; n)$ where the maximum is taken over all subsequences A and B of ($1, n$). Perhaps Szemerédi's method will help to solve this problem.
II. A long time ago Turan and 1 made the following conjecture: Let $1 \leq a_{1}<\ldots<a_{k} \leq n$ be a sequence of integers for which the sums $a_{i}+a_{j}, 1 \leq i \leq j<k$ are all distinct. Then
(4) $\max k=n^{\frac{1}{2}}+O(1)$.
(4) seems very deep and I often offered and still offer 250 dollars for a proof or disproof of (4).

Until recently the sharpest result here was due to Lindstrom who
proved $\max k \leq n^{1 / 2}+n^{1 / 4}+1$.
Szemerédi now improved this to $\max k \leq n^{1 / 2}+O\left(n^{1 / 4}\right)$. $\max k \geq$ $(1+0(1)) \quad n^{1 / 2}$ is an easy consequence of a theorem of Singer.
B. Lindstrom, An inequality for B_{2}-sequences, J. Comb. Theory 6(1969), 211-212.
J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43(1938), 377-385.
III. Choi, Szemerédi and I recently proved that to every ℓ there is an $\varepsilon_{\ell}>0$ so that if

$$
1 \leq a_{1}<\ldots<a_{k} \leq n, \quad k>\left(\frac{2}{3}-\varepsilon_{\ell}\right) n, \quad n>n_{0}\left(\varepsilon_{\ell}, \ell\right)
$$

is any sequence of integers there always are $\boldsymbol{\ell}$ a's $a_{\mathbf{i}_{1}}, \ldots, a_{i_{\boldsymbol{i}}}$ so that all the $\binom{\ell}{2}$ sums $a_{j_{1}}+a_{j_{2}}$ are all distinct and are elements of A (i.e., are a's).

The proof is not very difficult. It is easy to see that in this theorem $\frac{2}{3}$ cannot be replaced by any smaller number. We suspect that $\varepsilon_{3}=\frac{1}{24}$, or more precisely: If $k>\frac{5 n}{8}+c$ then there are three
$a^{\prime} s a_{\mathbf{1}_{1}}, a_{\mathbf{i}_{2}}, a_{\mathbf{i}_{3}}$ so that all the three sums $a_{\mathbf{i}_{1}}+a_{\mathbf{i}_{2}}, a_{\mathbf{i}_{1}}+a_{\mathbf{i}_{3}}$, $a_{i_{2}}+a_{i_{3}}$ are also a's (the three sums are trivially distinct). It
is easy to see that for $k=\frac{5 n}{8}$ this does not hold
Further we proved: If $k>\frac{n}{2}+n^{1-\varepsilon_{\ell}}$, there are $\boldsymbol{\ell}$ integers b_{1}, \ldots, b_{ℓ} so that all the $\binom{\ell}{2}$ sums. $b_{i}+b_{j}$ are distinct and in A (here it is not assumed that $\left.b_{i} \varepsilon A\right)$. Also if $k=\frac{n}{2}+2 \quad n>n_{0}$ these are three b 's b_{1}, b_{2}, b_{3} so that all the sums $b_{1}+b_{2}, b_{1}+b_{3}$, $b_{2}+b_{3}$ are $a^{\prime} s$. The odd numbers and 2 shows that this is false for $k=n+1$. If $k>\frac{n}{2}+t \quad(t \quad i n d e p e n d e n t$ of n) there are four b ' s so that the sums $b_{i}+b_{j}, 1 \leq i<j \leq 4$ are all distinct and in A. We were too lazy to determine t. If $k>\frac{n}{2}+c \log n$ there are five b 's so that all the ten sums $b_{i}+b_{j}$ are distinct and in A. The powers of 2 and the odd numbers show that apart from the value of c this is best possible and finally for six b's we need $k>\frac{n}{2}+c \sqrt{ } n$
IV. Last year I asked the following question: Let $z_{i},\left|z_{i}\right|<n$ be complex numbers so that the numbers $\left|z_{i}-z_{j}\right|$ differ from an integer by more than c where $0<c<\frac{1}{2}$. Determine or estimate $t=t(c, n)$. If the z 's are real the problem is trivial.

Graham and Sárközi showed that for every $c\left(0<c<\frac{1}{2}\right) \quad t>{ }_{n}{ }^{\alpha_{0}}$ $\alpha_{c}\left(\alpha_{c}<\frac{1}{2}\right)$, and Sárközi proved $t<c n / \log \log n$.

The same problem can clearly be posed for higher dimensions, but as far as I know has not yet been investigated.
V. Let $n+1, \ldots, n+t$ be a sequence of consecutive composite numbers. Grimm conjectured that there are t distinct primes p_{i} satisfying $p_{i} \mid n+1$.

Selfridge and i proved that if Grimm's conjecture is true then $p_{i+1}-p_{i}<c\left(\frac{p_{i}}{\log p_{i}}\right)^{\frac{1}{2}}$ where $p_{i}<\ldots$ is the sequence of consecutive primes (Proceedings of the Number Theory Conference held at Pullman Washington March 1971). Thus Grimm conjecture if true must be very deep. Selfridge and I in our paper quoted above also investigated the following question: Denote by t_{n} the largest value of t for which these are t_{n} distinct primes $p_{i}, i \leq i s t_{n}$ so that $p_{i} \ln +i$. We proved $t_{n} \geq(1+o(1)) \log n$. Our result was improved by Ramachandra and Tjjdeman. Very recently kamachandra and Shover proved that

$$
t_{n}>c\left(\frac{\log n}{\log \log n}\right)^{2},
$$

which up to now is the sharpest lower bound for t_{n}. We have no nontrivial upper bounds for $\mathbf{t}_{\mathbf{n}}$.
C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. Monthly 76 (1969), 1126-i128.
VI. Let $a_{1}<\ldots$ be a sequence oi invegers A satisfying $\Gamma_{1} \frac{1}{a_{i}}<T$. Denote by $F(A ; n)$ the number of integers $m \leq n$ which are not multiples of any a. I conjecture that

$$
\begin{equation*}
F(A, n)>\frac{c n}{(\log n)^{\alpha_{T}}} \tag{5}
\end{equation*}
$$

A result of Schinzel and Szekeres shows that for every $T>1$
(5) if time is certainly best possible (except for the value of α_{P}).

Let us now add the assumption $\left(a_{1}, a_{j}\right)=1$ and let q_{1}, a_{2}, \ldots
be the sequence of primes not exceeding n in descending order. Define ℓ by

$$
\frac{1}{q_{1}}+\ldots+\frac{1}{q_{\ell}}<A<\frac{1}{q_{1}}+\ldots+\frac{1}{q_{\ell}}+\frac{1}{q_{\ell+1}} .
$$

It seems to me that we have

$$
\begin{equation*}
F(A, n) \geq(1+0(1)) \quad\left(q_{1}, \ldots, q_{\ell} ; n\right) \tag{6}
\end{equation*}
$$

Perhaps I overlook an obvious approach, but I mad no progress with (6).
A. Schinzel and G. Szekeres, Sur un problème de M. Paul Erdös, Acta Sci. Math. Szeged 20(1959), 221-229.
VII. I conjectured that if $f(n)$ is additive (i.e., $f(a, b)=$ $f(a)+f(b)$ for $(a, b)=1)$ and

$$
f(n+1)-f(n)<C_{1}
$$

then $f(n)=c \log n+g(n)$ where $|g(n)|<C_{2}$.

This conjecture was recently proved by Wirsing. At the meeting in Oberwolfach this July Wirsing and I in this connection made the follow ing conjecture. Assume

$$
\overline{\lim } f\left(p^{\alpha}\right) / \log p^{\alpha}=\infty
$$

Is it then true that

$$
\overline{\lim }_{n=\infty} \frac{f(n+1)-f(n)}{\log n}=\infty ?
$$

or perhaps even

$$
\overline{\lim }_{n=\infty} f(n+1) / f(n)=\infty \quad ?
$$

For simplicity perhaps one can at first assume $f\left(p^{\alpha}\right)=f(p)$ or $f\left(p^{\alpha}\right)=\alpha f(p)$.
E. Wirsing, A characterization of $\log n$ as an additive arithnetic function, Institute Nat. di alta Mat. Vol IV 1970 45-57.

