Extremal Problems in Number Theory

Paul Erdős

Hungarian Academy of Sciences

Within the last few years I have written several papers on this subject. To keep this note short I mention only two or three new problems and discuss some of the old problems where some progress has been made. I quote some of the relevant papers.

P. Erdös, On unsolved problems, Publ. Math. Inst. Hung. Acad. 6(1961), 221-254, see also Michigan Math. Journal (1957).

P. Erdos, Some recent advances and current problems in number theory, T. L. Saaty, Lectures on Modern Math. Vol. 3, 196-244.

P. Erdös, Extremal problems in number theory, Theory of numbers, Symposia in Pure Math. VIII (1965), 181-189 (Amer. Math. Soc.). Several problems stated there were partially solved by Choi see e.g. S. L. G. Choi, On a combinatorial problem in number theory, Proc. London Math. Soc. 23(1971), 629-642. 1. Nearly fourty years ago I made the following conjecture:

Let $1 \le a_1 < \ldots < a_k \le n$; $1 \le b_1 < \ldots < b_k \le n$ be two sequences of integers. Assume that the products $a_i b_j$, $1 \le i \le k$; $1 \le j \le k$ are all distinct. Then

(1)
$$k \ell < c_1 n^2 / \log n$$

Szemerédi recently found a surprisingly simple proof of (1), his paper will appear in the Journal of Number Theory.

It would be interesting to strengthen (1) and determine max k l. This problem is almost certainly hopeless, but perhaps one can determine

(2)
$$\lim_{n=\infty} \frac{k \ell \log n}{2} = c$$

It is not even quite clear that the limit in (2) exists. Szemerédi and I proved that to every r there is an s so that in $n > n_0(r,s)$ and

(3)
$$k \, l > \frac{n^2}{\log n} \left(\log \log n \right)^s$$

then for some m, $m = a_i b_j$ has more than r solutions.

The following question which just occurs to me can be raised: Let $A = \{a_1, \ldots, a_k\}; B = \{b_1, \ldots, b_k\}$ be two sequences of integers in the interval (1,m). Denote by N(A,B;n) the number of those integers m for which $m = a_i b_j$ has precisely one solution. Determine or estimate max N(A,B;n) where the maximum is taken over all subsequences A and B of (1,n). Perhaps Szemerédi's method will help to solve this problem. II. A long time ago Turán and I made the following conjecture: Let $1 \le a_1 < \dots < a_k \le n$ be a sequence of integers for which the sums $a_i + a_j$, $1 \le i \le j < k$ are all distinct. Then

(4)
$$\max k = n^{\frac{1}{2}} + O(1)$$
.

(4) seems very deep and I often offered and still offer 250 dollars for a proof or disproof of (4).

Until recently the sharpest result here was due to Lindstrom who proved max $k \le n^{1/2} + n^{1/4} + 1$.

Szemerédi now improved this to $\max k \le n^{1/2} + O(n^{1/4})$. $\max k \ge (1 + O(1)) n^{1/2}$ is an easy consequence of a theorem of Singer.

B. Lindstrom, An inequality for B_2 -sequences, J. Comb. Theory 6(1969), 211-212.

J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43(1938), 377-385.

III. Choi, Szemerédi and I recently proved that to every ℓ there is an $\epsilon_{\rho} > 0$ so that if

$$1 \le a_1 < \ldots < a_k \le n$$
, $k > (\frac{2}{3} - \varepsilon_\ell)n$, $n > n_0(\varepsilon_\ell, \ell)$

is any sequence of integers there always are ℓ a's a_1, \ldots, a_n so that all the $\binom{\ell}{2}$ sums $a_j + a_j$ are all distinct and are elements of A (i.e., are a's).

The proof is not very difficult. It is easy to see that in this theorem $\frac{2}{3}$ cannot be replaced by any smaller number. We suspect that $\varepsilon_3 = \frac{1}{24}$, or more precisely: If $k > \frac{5n}{8} + c$ then there are three

a's a_1, a_2, a_3 so that all the three sums $a_1 + a_1, a_1 + a_3$, $a_1 + a_1, a_1 + a_3$, are also a's (the three sums are trivially distinct). It $a_1^2 + a_{1_3}^3$

is easy to see that for $k = \frac{5n}{8}$ this does not hold

Further we proved: If $k > \frac{n}{2} + n^{1-\epsilon_{L}}$, there are L integers b_{1}, \dots, b_{L} so that all the $\binom{L}{2}$ sums. $b_{1} + b_{j}$ are distinct and in A (here it is not assumed that $b_{1} \epsilon A$). Also if $k = \frac{n}{2} + 2$ $n > n_{0}$ these are three b's b_{1} , b_{2} , b_{3} so that all the sums $b_{1} + b_{2}$, $b_{1} + b_{3}$, $b_{2} + b_{3}$ are a's. The odd numbers and 2 shows that this is false for k = n + 1. If $k > \frac{n}{2} + t$ (t independent of n) there are four b's so that the sums $b_{1} + b_{j}$, $1 \le i < j \le 4$ are all distinct and in A. We were too lazy to determine t. If $k > \frac{n}{2} + c$ log n there are five b's so that all the ten sums $b_{1} + b_{j}$ are distinct and in A. The powers of 2 and the odd numbers show that apart from the value of c this is best possible and finally for six b's we need $k > \frac{n}{2} + c \sqrt{n}$

IV. Last year I asked the following question: Let z_i , $|z_i| < n$ be complex numbers so that the numbers $|z_i - z_j|$ differ from an integer by more than c where $0 < c < \frac{1}{2}$. Determine or estimate t = t(c,n). If the z's are real the problem is trivial.

Graham and Sárközi showed that for every $c(0 < c < \frac{1}{2})$ $t > n^{\alpha_c}$ $\alpha_c (\alpha_c < \frac{1}{2})$, and Sárközi proved t < c n/loglog n.

The same problem can clearly be posed for higher dimensions, but as far as I know has not yet been investigated. V. Let n + 1, ..., n + t be a sequence of consecutive composite numbers. Grimm conjectured that there are t distinct primes p_i satisfying $p_i | n + i$.

Selfridge and I proved that if Grimm's conjecture is true then

$$p_{i+1} - p_i < c \left(\frac{p_i}{\log p_i}\right)^{\frac{1}{2}}$$
 where $p_i < \dots$ is the sequence of consecutive

primes (Proceedings of the Number Theory Conference held at Pullman Washington March 1971). Thus Grimm's conjecture if true must be very deep. Selfridge and I in our paper quoted above also investigated the following question: Denote by t_n the largest value of t for which these are t_n distinct primes p_i , $1 \le i \le t_n$ so that $p_i | n + i$. We proved $t_n \ge (1 + o(1)) \log n$. Our result was improved by Ramachandra and Tjjdeman. Very recently Ramachandra and Shover proved that

$$t_n > c \left(\frac{\log n}{\log \log n}\right)^2$$
,

which up to now is the sharpest lower bound for t_n . We have no nontrivial upper bounds for t_n .

C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. Monthly 76(1969), 1126-1128.

VI. Let
$$a_1 < \ldots$$
 be a sequence of integers A satisfying $\sum_{i=1}^{n} \frac{1}{i} < T$.

Denote by F(A;n) the number of integers $m \le n$ which are not multiples of any a. I conjecture that

(5)
$$F(A,n) > \frac{c n}{(\log n)^{\alpha}}$$

A result of Schinzel and Szekeres shows that for every T > 1(5) if time is certainly best possible (except for the value of α_r).

Let us now add the assumption $(a_i, a_j) = 1$ and let $q_1, q_2, ...$ be the sequence of primes not exceeding n in descending order. Define *L* by

 $\frac{1}{q_1} + \dots + \frac{1}{q_{\ell}} < A < \frac{1}{q_1} + \dots + \frac{1}{q_{\ell}} + \frac{1}{q_{\ell+1}} .$

It seems to me that we have

(6)
$$F(A,n) \ge (1 + O(1)) (q_1, \dots, q_n; n)$$

Perhaps I overlook an obvious approach, but I mad no progress with (6).

A. Schinzel and G. Szekeres, Sur un problème de M. Paul Erdös, Acta Sci. Math. Szeged 20(1959), 221-229.

VII. I conjectured that if f(n) is additive (i.e., f(a,b) = f(a) + f(b) for (a,b) = 1) and

$$f(n + 1) - f(n) < C_{1}$$

then $f(n) = c \log n + g(n)$ where $|g(n)| < C_2$.

This conjecture was recently proved by Wirsing. At the meeting in Oberwolfach this July Wirsing and I in this connection made the following conjecture. Assume

$$\frac{\lim f(p^{\alpha})}{p,\alpha} = \infty .$$

Is it then true that

$$\frac{1}{\lim_{n \to \infty} \frac{f(n+1) - f(n)}{\log n}} = \infty ?$$

or perhaps even

$$\frac{1}{1} \frac{1}{n} f(n + 1) / f(n) = ?$$

For simplicity perhaps one can at first assume $f(p^{\alpha}) = f(p)$ or $f(p^{\alpha}) = \alpha f(p)$.

E. Wirsing, A characterization of log n as an additive arithmetic function, Institute Nat. di alta Mat. Vol IV 1970 45-57.