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1 . Introduction . For any arithmetic function f(n), we denote its
iterates as follows :

f l (n) = f (n) , fk (n) = fl[ fk_1(n) ]

	

(k > 1) .

Let a(n) and a* (n) denote,'respectívely, the sum of the
divisors of n, and the sum of its unitary divisors, where we recall
that d is called a unitary divisor of n if (d,n/d) = 1 . Makowski
and Schinzel [3] proved that

and conjectured that

ak (n)
lim inf n

	

< oo for every k .

This is not proved even for k = 3 . on the other hand, Erdős [2]
stated that i£ we neglect a sequence of density zero, then

a2 (n)
lim inf	n = 1,

ak (n)

	

v_ (1 + o(1))ke log log log n .
ak-1 (n)

This implies, in particular, that

a2 (n)
al n)

	

co

on a set of density unity .

In contrast to this, we show here the following result .

Theorem 1 .

on a set of density unity .



2 . Somelemmas . The proof makes use of the following lemmas .
Throughout what follows, h, q, r, r l , r2 represent primes, and c,

r small positive numbers . Almost all n < x will mean : all but

o(x) integers n s x .

Lemma 1 . For almost all n < x, every p < (log log x) 1-E satisfies

(n) .

Lemma 2 . For almost all

where e _ E(") > 0

p >

n < x and for any given

1p < n,
p 1a*(n)

	

l+E(log log x)

is sufficiently small .

we have

Lemma 3 . For almost all n < x and all p < t (t fixed but
arbitrary),

for every fixed ac .

we only outline the proofs of the lemmas and the theorem .

Proof of Lemma 1 . For a given p < (log log x)
1-E for which

pja2(n), n < x, it is enough if we show that there are at least two
primes rl , r2 such that

pa
1a* (n)

and

rl =- r2 =_ -1 (mod p),

r l i n, r2 In,

	

r2 1 n, r 2
2 in .

For this purpose we use the Page-Walfisz-Siegel formula for primes in
arithmetic progression (Pracher [6], p. 320) which states that if
n(a,d,y) denotes the number of primes a a (mod d) and
for (a,d) = 1,

s y, then

ir(a,d,y) _ (1 + 0(1))	Y	-p(d) log y

uniformly in a and d for d < (logy ) t for every fixed t . Hence,
for primes r such that rin, r- -1 (mod p), we have



> c (log log x) e .
r =- -1 (mod p)

log log x < r < x

Hence we easily obtain by the sieve of Brun or Selberg that the
number of integers n < x which are divisible by just one prime is
less than x exp (-c (log log x) E) . There are fewer than (log log x) 1-E

primes < (log log x) 1-E , and (log log x) 1-Ex exp(-c (log log x) E)
= OW,

and the number of integers which are divisible by the square of a
prime > log log x is o( log	log x)' Thus these numbers can be

ignored . Thus Lemma 1 is proved .

Proof of Lemma 2 . We consider the sum

x

Hence

S< c x log log x

	

= o (x) .
P > (log log x) l+E P

Proof of Lemma 3 . Given a p < t, we see, on using the sieve of

Eratosthenes and the fact that

s = 1
n=l

	

P l a* (n) 1+Ep > (log log x)

1
P

For a fixed p, we see that every prime r such that
r =- -1 (mod p), rln, contributes a factor p to a * (n) . Since the
number of integers n < x for which rIn is 1[2], it follows that
for a given p the number of times the term p occurs in the sum S
corresponding to each prime r =- -1 (mod p) is less than [r]. Also,
on using the Brun-Titchmarsh estimate for primes in arithmetic pro-
gression [6, p . 320] we have

Li
] < c xloqlog x

P
r =- -1 (mod p)

z
r =- -1 (mod p)

1 _ cc,
r



chat crime newer
most j primes q of the form q -1 (mod p), each of them occur-
ring to the first power in n, is o(x), j being an arbitrary
positive integer . Hence the number of such integers n s x is o(x) .
Since for each such n we have p~~o* (n), the lemma follows at once .

3 . Proof of the theorem_ . Let n be chosen arbitrarily small and
then keep it fixed. We shall then choose t and o = a(t) suffi-
ciently large so that

(3 .1)

	

(1+ á) <1+17
p < t

	

p

and

of integers n s x such that n is divisible by at

(3 .2)

	

(1 + 2) < 1 + p .
p z t

	

p

The latter inequality is possible because of the convergence of
~(1 +

P
) .

Since almost all n < x satisfy Lemmas 1, 2, 3, we have for
almost all n,

(3 .3)
a2 (n)
aa 1 (n) s

on noting that

(3 .4)

	

1

	

1 < "
(log log x) 1-E < p < (log log x) l+E

for a suitably chosen E = E(1)) .

Combining Lemma 2 and the result (3 .4), we get

p s t

(1 + á) 11 (1 + 1
p p > t

	

p

II
(log log x) 1 E < p < (log log x) l+E

(1 +-pl) < 1 + 77 .
p > t

p ~ v* (n)
p2, a* (n)

(1 + p),



It then follows from (3_3) that £or almost aü -1 i.e., except for
values of n with density zero,

a2 (n)
< 1 + 17,al n

and the proof of the theorem is complete . our theorem implies that
a2(n)/n has the same distribution function as ai(n)/n .

4 . Some remarks and problems . Let (p* (n) be the unitary analogue of
Euler's totient function (see E . Cohen [1]) . Then (p* (n) has the
evaluation

pa jIn

Following the method of proof of Theorem 1, we can show that

except for a sequence of values of n of density zero . we shall not
give the details of proof .

Let R = R(n) be the smallest integer such that (p R (n) = 1 .
This function was first considered by S . S . Pillai [5] who proved that

log (n/2) + 1 s R(n) s log 	+ 1 .log 3

	

log 2

others who considered this function include Niven [4], Shapiro
[7] and Subbarao [8] .

Let

T (n) _ 91 (n) + (p2 (n) + . . . + 9R (n) .

Since (p2 (n) = o(91 (n)) for almost all n, and (pj (n) is even for
j z 1, we easily obtain that for almost all n

P2(n)
~d* (n) + 1

	

(ml ( n) _ (P (n) )

1

T(n) _ (1 + o(1))Q(n),

so that T(n) < n for almost all n .
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There are many problems left about T(n) and we state a few of

them below .

Denote by F(x,c) the number of integers n s x for which
T(n) > cn . For every 1 < c < 3/2 we have for every t > 0 and
E > 0, if x > XO = XO (C, t, E) ,

(4 .1)

		

log x (log log x) t < F (x, l+c) <	x 1-E(log x )

This follows easily from Theorem 1 of [2] .

(4 .2)

	

F (x, l) _ (c + 0(l) ) log log log log x

The proof of (4 .2) can be obtained by the methods used in this
paper and by those of [2] .

It seems likely that for 1 < c l < c 2 < 2

Put

We can show that T(n) > Zn

Probably,

lim F (x, l+c 1 ) /F (x, 1+c 2 ) = oo .
x~

lim T2(nn)

F (x C) = o(	 x
(log x

F (x,2) = o(log x ),

Further we have

Trivially L s 2 (L = 2 if there are infinitely many Fermat
primes) . It is easy to show that

for infinitely many n, which
implies L z 2 . We cannot show that L > 2 .

Equation (3) of Theorem 1 of [2] implies that for c > 3 and
every c > 0,
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but we have not worked out the details .

Some other questions that are still unanswered are the following=

(i) Does log n have a distribution function?

(ü) Does log n approach a limit for almost all n? If this

limit exists is it equal to log 2 or log 3 ?

Similar questions arise in the case of the function R * = R*(n)
defined as the smallest integer such that lp

e
(n) = 1 . Here tp* (n)

is the unitary analogue of the Euler totient, introduced by Eckford
Cohen [1], which is defined as the multiplicative function for which

0
* (pk ) = pk _ 1 for all primes p and all positive integers k. We

Univ . B . 27 (1957), 327-333 .

do not even know of any nontrivial estimate for R* (n) . Probably
R* (n)
R* (n)

= o(nf ) for every e > 0 . It is not clear to us at present if
< clog n has infinitely many solutions for some c > 0 .
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