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Abstract. It is provet d that, given any positive integer k, there exists a self-complementary graph
with more than 4 .2 4 k vertices which contains no complete subgraph with k+1 vertices . An applica-
tion of this result to coding theory is mentioned .

A graph will be called s-good if it contains neither a complete subgraph
with more than s vertices nor an independent set of more than s vertices .
A special case of the celebrated Ramsey's theorem [7] asserts that given
any positive integer s there is an n = n(s) such that no graph with more
than n(s) vertices is s-good . Apart from the trivial n(1) = 1, only two
exact values of n(s) are known [4] ; these are n(2) = 5 and n(3) = 17 .
Clearly, a graph G is s-good if and only if its complement G is s-good .
It does not seem unlikely that for any s, there is an s-good self-com-
plementary graph with n(s) vertices. This is true at least for s = 2 and
s = 3 (and in this case, the s-good graphs with n(s) vertices are unique
[6] ) . However, it seems quite difficult to prove this conjecture for all
s. We shall denote by n * (s) the greatest integer n * such that there is a
self-complementary s-good graph with n * vertices; trivially, n* (s)< n(s) .

Theorem . n*(st) > (n*(s) - 1)n(t) .

Proof . Let Go = (Vo , E0 ) be an s-good self-complementary graph with
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n* (s) vertices, let fo : Vo - Vo be an isomorphism between G and G . It
is easy to see that the permutation fo has at most one fixed point and
no odd cycles of length > 3 . Therefore there is an s-good self-comple-
mentary graph G Z = (Vi , Ei ) with n *(s) or n *(s)-1 vertices and a per-
mutation f: Vl - Vl setting up an isomorphism between Gl and Gl such
that f has cycles of even length only (and no fixed points) . Consequently,
Vl can be split into disjoint sets X and Y with f(X) = Y, f(Y) = X.

Let G2 = (V2 , EZ ) be a t-good graph with n(t) vertices. We shall con-
sider the graph G = (Vi X V2 , E) where ((u, v), (w, z)) belongs to E
if and only if either {u, w) C El or u = w C X, {v, z) C E2 or finally
u = w E Y, {v, z) (I E2 . G is self-complementary ; indeed, the mapping
F: Vl X V2 - Vl X V2 defined by F(u, v) _ (f (u), v) is an isomorphism
between G and G.

If Z C Vl X V2 spans a complete subgraph in G then at most s ver-
tices in Z have distinct first coordinates (otherwise G l would not be s-
good) and at most t vertices in Z have the same first coordinate (other-
wise G2 would not be t-good) . Therefore IZI < st and G, being self-com-
plementary, isst-good . Hence n*(st) > I Vi X V2 1 > (n*(s)-1)n(t) and
the proof is finished .

Corollary . n *(2t) > 4n(t) .

Our original interest in this area was stimulated by the notion of the
capacity of a graph as defined by Shannon [9] . One defines the product
Gl X G2 X . . . X Gk of graphs Gi = (Vi, Ei ), i = 1, 2, . . ., k, as the graph
G = (VI X V2 X . . . X Vk , E) where two distinct vertices (u l , u2 , . . ., uk),

(vl , v 2) . . ., vk ) of G are adjacent if and only if, for each i = 1, 2, . . ., k,
either {ui , v i) C El or else u i = vi . We denote the largest cardinality of
an independent set in G by M(G); evidently,

(1)

	

g(GI X G2 X . . . X Gk) > g(GI ) g (G2 ) . . . g(Gk ) .

Considering noisy channels in information theory, Shannon [ 9 ] was
led to the definition of the capacity 0(G) of a graph G,

8(G) = sup (g(Gk )) i lk
k
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Obviously, O (G) > p(G) . However, one can have 0 (G) > p (G) ;
for instance, if G is the pentagon then p(G) = 2, µ(G 2 ) = 5 .

It can be shown that p(G l ) = p(G 2 ) = k implies p(G I X G2 )< n(k)
and this bound is best possible . Moreover, this inequality generalizes
into the case of more graphs Gi with p(Gi ) not necessarily equal . Ap-
parently Hedrlin [ 5 ] was the first to discover this relation between Ram-
sey numbers and the capacity problems . However, Hedrlin did not pub-
lish his result . Unaware of his contribution, Erdös, McEliece and Taylor
[3] recently published an independent derivation of the equivalence .

If G = (V, E) is a self-complementary graph with m vertices then
µ(G2 ) > m. Indeed, if f is an isomorphism between G and G then the
set {(u, f(u)) I u C V} is independent in G 2 = G X G. Hence p(G2 ) > m.
Consequently, one has

(2)

	

0(G) > m7

for any self-complementary graph G with m vertices . Rosenfeld [8]
proved that given any k there is a graph Gk with 0 (Gk ) > k p(Gk ) . This
proof is based on the inequality

(3)

	

n*(k) > cka

where a = log 5/log 2 and c is an absolute positive constant . Rosen-
feld's proof of (3) is constructive and has been discovered independently
by Abbott [ 1 ] . Our Corollary together with the probabilistic lower
bound [2]

(4)

	

n(k) > 2z (x+i)

	

k > 2 ,

yields

n*(k) > 4 . 24x

which is better than (3) . Rosenfeld's theorem also follows directly from
(4) and [3, Theorem 3] which asserts the existence, for any k, of a graph
G (with 2n (k) vertices) such that p(G) = k, µ(G2 ) = n (k) .
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