RAMSEY'S THEOREM AND SELF-COMPLEMENTARY GRAPHS

V. CHVATAL
McGill University, Montreal, Canada
P. ERDÖS
Hungarian A cademy of Science, Budapest, Hungary
Z. HEDRLIN
Charles University, Prague, Czechoslovakia

Received 4 November 1971

Abstract

It is proved that, given any positive integer k, there exists a self-complementary graph with more than $4-2^{\frac{1}{4} k}$ vertices which contains no complete subgraph with $k+1$ vertices. An application of this result to coding theory is mentioned.

A graph will be called s-good if it contains neither a complete subgraph with more than s vertices nor an independent set of more than s vertices. A special case of the celebrated Ramsey's theorem [7] asserts that given any positive integer s there is an $n=n(s)$ such that no graph with more than $n(s)$ vertices is s-good. Apart from the trivial $n(1)=1$, only two exact values of $n(s)$ are known [4]; these are $n(2)=5$ and $n(3)=17$. Clearly, a graph G is s-good if and only if its complement \bar{G} is s-good. It does not seem unlikely that for any s, there is an s-good self-complementary graph with $n(s)$ vertices. This is true at least for $s=2$ and $s=3$ (and in this case, the s-good graphs with $n(s)$ vertices are unique [6]). However, it seems quite difficult to prove this conjecture for all s. We shall denote by $n^{*}(s)$ the greatest integer n^{*} such that there is a self-complementary s-good graph with n^{*} vertices; trivially, $n^{*}(s) \leqslant n(s)$.

Theorem. $n^{*}(s t) \geqslant\left(n^{*}(s)-1\right) n(t)$.
Proof. Let $G_{0}=\left(V_{0}, E_{0}\right)$ be an s-good self-complementary graph with
$n^{*}(s)$ vertices, let $f_{0}: V_{0} \rightarrow V_{0}$ be an isomorphism between G and \bar{G}. It is easy to see that the permutation f_{0} has at most one fixed point and no odd cycles of length $\geqslant 3$. Therefore there is an s-good self-complementary graph $G_{1}=\left(V_{1}, E_{1}\right)$ with $n^{*}(s)$ or $n^{*}(s)-1$ vertices and a permutation $f: V_{1} \rightarrow V_{1}$ setting up an isomorphism between G_{1} and \bar{G}_{1} such that f has cycles of even length only (and no fixed points). Consequently, V_{1} can be split into disjoint sets X and Y with $f(X)=Y, f(Y)=X$.

Let $G_{2}=\left(V_{2}, E_{2}\right)$ be a t-good graph with $n(t)$ vertices. We shall consider the graph $G=\left(V_{1} \times V_{2}, E\right)$ where $\{(u, v),(w, z)\}$ belongs to E if and only if either $\{u, w\} \in E_{1}$ or $u=w \in X,\{v, z\} \in E_{2}$ or finally $u=w \in Y,\{v, z\} \notin E_{2} . G$ is self-complementary; indeed, the mapping $F: V_{1} \times V_{2} \rightarrow V_{1} \times V_{2}$ defined by $F(u, v)=(f(u), v)$ is an isomorphism between G and G.

If $Z \subset V_{1} \times V_{2}$ spans a complete subgraph in G then at most s vertices in Z have distinct first coordinates (otherwise G_{1} would not be s good) and at most t vertices in Z have the same first coordinate (otherwise G_{2} would not be t-good). Therefore $|Z| \leqslant s t$ and G, being self-complementary, is $s t$-good. Hence $n^{*}(s t) \geqslant\left|V_{1} \times V_{2}\right| \geqslant\left(n^{*}(s)-1\right) n(t)$ and the proof is finished.

Corollary. $n^{*}(2 t) \geqslant 4 n(t)$.
Our original interest in this area was stimulated by the notion of the capacity of a graph as defined by Shannon [9]. One defines the product $G_{1} \times G_{2} \times \ldots \times G_{k}$ of graphs $G_{i}=\left(V_{i}, E_{i}\right), i=1,2, \ldots, k$, as the graph $G=\left(V_{1} \times V_{2} \times \ldots \times V_{k}, E\right)$ where two distinct vertices $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$, $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of G are adjacent if and only if, for each $i=1,2, \ldots, k$. either $\left\{u_{i}, v_{i}\right\} \in E_{i}$ or else $u_{i}=v_{i}$. We denote the largest cardinality of an independent set in G by $\mu(G)$; evidently,

$$
\begin{equation*}
\mu\left(G_{1} \times G_{2} \times \ldots \times G_{k}\right) \geqslant \mu\left(G_{1}\right) \mu\left(G_{2}\right) \ldots \mu\left(G_{k}\right) . \tag{1}
\end{equation*}
$$

Considering noisy channels in information theory, Shannon [9] was led to the definition of the capacity $\theta(G)$ of a graph G.

$$
\theta(G)=\sup _{k}\left(\mu\left(G^{k}\right)\right)^{1 / k}
$$

Obviously, $\theta(G) \geqslant \mu(G)$. However, one can have $\theta(G)>\mu(G)$; for instance, if G is the pentagon then $\mu(G)=2, \mu\left(G^{2}\right)=5$.

It can be shown that $\mu\left(G_{1}\right)=\mu\left(G_{2}\right)=k$ implies $\mu\left(G_{1} \times G_{2}\right) \leqslant n(k)$ and this bound is best possible. Moreover, this inequality generalizes into the case of more graphs G_{i} with $\mu\left(G_{i}\right)$ not necessarily equal. Apparently Hedrlín [5] was the first to discover this relation between Ramsey numbers and the capacity problems. However, Hedrlín did not publish his result. Unaware of his contribution, Erdös, McEliece and Taylor [3] recently published an independent derivation of the equivalence.

If $G=(V, E)$ is a self-complementary graph with m vertices then $\mu\left(G^{2}\right) \geqslant m$. Indeed, if f is an isomorphism between G and \bar{G} then the set $\{(u, f(u)) \mid u \in V\}$ is independent in $G^{2}=G \times \bar{G}$. Hence $\mu\left(G^{2}\right) \geqslant m$. Consequently, one has

$$
\begin{equation*}
\theta(G) \geqslant m^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

for any self-complementary graph G with m vertices. Rosenfeld [8] proved that given any k there is a graph G_{k} with $\theta\left(G_{k}\right)>k \mu\left(G_{k}\right)$. This proof is based on the inequality

$$
\begin{equation*}
n^{*}(k)>c k^{\alpha} \tag{3}
\end{equation*}
$$

where $\alpha=\log 5 / \log 2$ and c is an absolute positive constant. Rosenfeld's proof of (3) is constructive and has been discovered independently by Abbott [1]. Our Corollary together with the probabilistic lower bound [2]

$$
\begin{equation*}
n(k)>2^{\frac{1}{2}(k+1)}, \quad k \geqslant 2, \tag{4}
\end{equation*}
$$

yields

$$
n^{*}(k)>4 \cdot 2^{\frac{1}{4} k}
$$

which is better than (3). Rosenfeld's theorem also follows directly from (4) and [3, Theorem 3] which asserts the existence, for any k, of a graph G (with $2 n(k)$ vertices) such that $\mu(G)=k, \mu\left(G^{2}\right)=n(k)$.

References

[1] H.L. Abbott, A note on Ramsey numbers, Discrete Math., to appear.
[2] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947) 292294.
[3] P. Erdös, R.J. McEliece and H. Taylor, Ramsey bounds for graph products, Pacific J. Math. 37 (1971) 45-46.
[4] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatie graphs, Canad. J. Math. 7 (1955) 1-7.
[5] Z. Hedrlín, Ramsey's theorem and information theory, Charles University, Prague, 1964.
[6] J.G. Kalbfleisch, A uniqueness theorem for edge-chromatic graphs, Pacific J. Math. 21 (1967) 503-509.
[7] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.
[8] M. Rosenfeld, Graphs with a large capacity, Proc, Amer. Math. Soc. 26 (1970) 57-59.
[9] C.E. Shannon, The zero error capacity of a noisy channel, IRE Trans, Inform. Theory IT-2 (1956) 8-9.

