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SIMPLE ONE-POINT EXTENSIONS OF TOURNAMENTS

P . ERDŐS, A. HAJNAL AND E. C. MILNER

1. Introduction .

	

A tournament .T = <T, -+> is a relational structure on the
non-empty set T such that for x, y e T exactly one of the three relations

x->y,x=y,y->x
holds. Here x -+ y expresses the fact that {x, y} e -+ and we sometimes write this
in the alternative form y <--- x . Extending the notation to subsets of T we write
A --+ B or B <- A if a --+ b holds for all pairs a, b with a e A and b e B .
T' _ <T,' --+'> is a subtournament of .l, and i is an extension of ,T', if T' e T
and -+' is the restriction of --+ to T' ; we will usually write <T', -+> instead of
<T', -*'> . In particular, if I T - T'I = k, we call .T a k-point extension of J7- ' .

A convex subset of .T is a set K c T such that either K -+ {x} or {x} -+ K for
every x e T - K. Equivalently, K is convex if, and only if, x, y e K, z e T,
x --+ z --+ y implies z e K. The convex set K is non-trivial if K 0 T and IKI > 1 .
A tournament l is simplet if it has no non-trivial convex subset .

In [1] we showed with Fried that any tournament .T of order 19-1 = I TI 0 2
has a simple 2-point extension . This result is best possible in the sense that there is
no simple tournament of order 4 and if T is an odd chain then it does not have a
simple 1-point extension . We stated in [1] that we did not know how to characterize
those tournaments which do have simple 1-point extensions . Moon [2] settled this
problem for finite tournaments by showing that the only finite exceptions are the
ones we had already noted . We now extend Moon's result to general tournaments
and prove the following theorem .

THEOREM . If the tournament .9 = <T, ~> is not a finite odd chain and I Ti 0 3,
then it has a simple 1-point extension .

Our proof of this result for the finite case (§3) is different from Moon's proof.

2 . Notation and preliminary lemmas . Let .9 = <T, -> be a tournament. If
x e T we define 9-(x, -+) = {y e T : x -+ y} and 9-(x, •-) = {y e T : x +- y} . To
uniformize our notation, whenever we say that .T* = <T*, -+> is a 1-point
extension of .T we shall always denote the added point by z, i .e . T * - T = {z} .
The extension ,T* is then uniquely determined by specifying the set B = .T *(z, -+)
and we denote this 1-point extension of .T by .T(B) . An element x e T is extremal
if either {x} -+ T - {x} or {x} *--- T - {x}. C c T is a chain of .T if -* is transitive
on C (i .e . <C, -+> is a simple order) . We shall write C = {x t , . . ., x„}- to indicate
that C is the chain in which x, -+ xj for 1 < i < j < n . We denote by C,(9- ) the
set {X c T : IXI = 2, X convex in T} and by G(T) the graph with vertex set T and
edge set C2 (9° -) . The valency of a point x E T in the graph G(.T) will be denoted by
AX) .
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LEMMA 1 . p(x) < 2 for all x e T.

Proof Suppose the lemma is false. Then there are distinct points x, yl, Y2,
y 3 e T such that {x, y i } e C 2(J)(1 < i < 3) . By symmetry we can assume that
Y1 -4 Y2 -+ Y3 . Now by the convexity of {x, y l } and {x, y 3 } we obtain the con-
tradictory relations x - Y2 and Y2 -> x .

LEMMA 2 . A path in G(J) is a chain in J .

Proof. Suppose C = {x 1 , . . ., x„} is a path of length n in G(J), i.e .
{x i , xi+1} e C 2 (J)(1 <, i < n) . Assume that x 1 _+ x2 . Let 2 <, j < n and suppose
that we have already established that {x 1 , . . ., xj}_ is a chain . Since x i --> xj and
{xx, x;+1} is convex, we have that x i -> xj+1 (1 < i < j) . Also xx -> xj+1 since
x,_1 _+ xj+ 1 and {xj _ 1 , xj} is convex. Thus {x1,

...,x1+,)- is a chain . It follows by
induction that C is a chain . A similar argument applies if x 1 <-- x2 or if C is a 1-way
or 2-way infinite path of G(.9) .

LEMMA 3 . G(J) is circuit free .

Proof. Suppose {x 1 , . . ., x„} is a circuit of length n > 3 in G(J). Assume that
x1 -> x2 . Then, by Lemma 2, {x 1 , . . ., x„}_ is a chain in J. Also, {x 2 , . . ., x,,, x1}_
is a chain . This gives the contradictory relation x 2 -> x1 .

An immediate deduction from Lemmas 1 and 3 is the

COROLLARY . G(J) is the union of disjoint paths .

For brevity we shall write J e f if J has a simple 1-point extension . The next
lemma is due to Moon [2] .

LEMMA 4. If J is simple and IJ1 > 4, then J e (f .

Proof. Since 2 1 ' 1 > 21 T I + 2, there is a set B c T such that B :0 0, B 0 T,
• 0 J(x, -+) and B 51- {x} u -q-(x, -).) for any x e T. Consider the 1-point extension
J(B) = <T u {z}, ->> . Suppose K is a non-trivial convex subset of J(B) . Since
• is a proper, non-empty subset of T, K 0 T. Therefore, since J is simple and
• n T is convex in J, K = {x, z} for some x c T. Since T - B -* {z} -> B, we
have that T - B - {x} --> {x} -> B - {x} contrary to the definition of B . This
shows that J(B) is simple and that J e e.

Our main lemma is the following .

LEMMA 5 . Let 19-1 > 4, and suppose there is an element x e T such that
(i) p(x) 5 1, (ii) x is not an extremal element of J, and (iii) J l = <T - {x}, -+> eó°.
Then J e .6 .

Proof By Lemma 4 we can assume that J is not simple . By (iii) there is
• c T - {x} such that J 1 (B) = <(T - {x}) u {z}, -+> is simple . If there is a
y e T by (i) there is at most one such that {x, y} e C,(9-) and if y ~ B, then we put
A = B u {x} . Otherwise, put A = B . Then the 1-point extension J(A) of J is
simple .

To see this, suppose that K is a non-trivial convex subset of J(A) . Since 9-,(B)
is a simple subtournament it follows that either (a) K = (T - {x}) u {z} or (b)
• = {x, z} or (c) K = {x, y} for some y e T - {x} . If (a) holds, then x is extremal
in J. If (b) holds, then 9-(x, ->) = B, J is isomorphic to J1(B) and therefore
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simple . If (c) holds, then y is the unique point such that {x, y} E C,(9-) and, by the
definition of A, either y -+ z --* x or y .- z E- , i .e. {x, y} is not convex in 9-(A) .
Thus in each case we obtain a contradiction .

3. Proof of the theorem for finite tournaments . We need two additional lemmas
which are true only for finite tournaments .

LEMMA 6 . If 57 is a finite tournament, then G(J- ) cannot have exactly two
components .

Proof. Suppose that T = C 1 U C2, where C 1 , C2 are components of the graph
G(fl . Then by Lemma 2 and the Corollary after Lemma 3, C1i C2 are paths in
G(T) and chains in 9- . Suppose that C, = {x 1 , . . ., x,„}-, C 2 = {y l , . . ., y„}- and that
xl -+ y, Using the fact that {xl , xi+1} and {yj,Y,+1} are convex in 9- , we immediately
deduce that C, --> C2 . Thus J is a chain and G(.%) has only one component .

LEMMA 7 . Suppose that J is a finite tournament, JJ l > 4 and that .T is not a
chain. Then there is x c T such that (i) p(x) < 1, (ü) x is not an extremal point and
(iii) T - {x} is not a chain .

Proof. Since 19- 1 > 4, it follows from Lemma 6 and the Corollary after Lemma 3
that there are at least four points x c T which satisfy (i) . Since there are at most two
extremal points, there are two points, say x l and x2 , which satisfy both the conditions
(i) and (ü) . We may assume that T -{xl} _ {y1, . . .,YoX 2~Yr+1~ • • • , Yn}_, and
T - {x 2 } _ {y l , . . ., Y5, x1, Ys+ 1, . . ., Yn}- are both chains and that I < r < s 5 n .
Since .% is not a chain we can assume further that r < s and that x l -> x2 . It is
obvious that (ü) and (iii) are satisfied with x = yr+1 and a simple matter to verify
that (i) also holds .

We now conclude the proof for finite tournaments .

If 19- 1 = 1 or 2, then trivially J c .6 . Also J E S if 19- 1 = 4 since every tourna-
ment of order 4 is isomorphic to a subtournament of the simple tournament .l* of
order 5 illustrated .

We now assume that .% is a finite tournament of order 1 .11 > 5 and use induction
on 19- 1 . By hypothesis .% is not an odd chain . If J is the even chain {x l , . . ., x20--
then it is easy to verify that 157-({X2,+1 : 0 ' i < n}) is a simple 1-point extension .



60

	

P. ERDŐS, A . HAJNAL AND E. C. MILNER

Therefore, we may suppose that .I is not a chain . By Lemma 7, there is x e T
such that p(x) < 1, x is not extremal and .I, _ (T - {x}, -+) is not a chain . By
the induction hypothesis I, e e and therefore J e 9 by Lemma 5 .

4. Proof of the theorem for infinite tournaments . We first need some results about
chains. Let .I = < T, -> > be a chain. Then .I is a simply ordered set in which a
precedes b if and only if a -+ b . The order type of .I with this ordering will be
denoted by tp.I. As usual, w denotes the least infinite ordinal number and co* is the
reverse order type . A set X c T is cofinal (coinitial) in I if whenever t e T then
either t e X or there is x e X such that t -> x (x --> t) . For a, b e T we denote by
[a, b] the closed interval {a, b} u {x e T : a -), x -> b or b -> x -+ a} . Let ~(I) be
the set of all the non-trivial closed intervals [a, b] c T (i .e . with a b). Also, for
x e T we define

E(x) _ {y e T : [x, y] is finite} .

Clearly, E(x) is a sub-interval of J which is either finite or infinite and having order
type w or w* or co* + co .

We showed in [1] that, if .T is a chain, then ~(I) has the Bernstein property,
i .e . there is a set B e T such that

B n I 0 0 and I- B o

	

(1 e f(.I)) .

	

(1)

(This result was also proved by Hausdorff [3] for the case when .I is a densely ordered
set .)
Of course, if .I is a finite chain {x,, . . ., x„}- then B is one of the two sets {x,, x 3 , . . .}
or {x2, xq, . . .} . Note that if B satisfies (1) then so also does the complementary set
T - B . Consequently, there is B c T which satisfies (1) and

B is coinitial in .I .

	

(2)

Unless .i is an odd chain we assert further that there is B c T such that (1) and
(2) hold and also

T - B is cofinal in .I .

	

(3)

For suppose that B satisfies (1) and (2) but not (3) . Then there is a final element
a *- T - {a} and a e B . It is easy to see that (1) and (3) hold with

B, _ (E(a) - B) u (B - E(a)) in place of B . Now, if (2) is false for B„ then there
is an initial element b --> T - {b} and b e T - B, . It follows that b e E(a) n B
and that T = E(a) is an odd chain .

We need the following stronger result .

LEMMA 8 . Suppose that <I is a chain and that tp.I

	

w + oo* . Then there are
two distinct sets B e Tsatisfying (1), (2) & (3) .

Proof. By the above, there is one set B c T such that (1), (2) and (3) hold .
Let U denote the set of extremal points of .I (i .e . I U1 = 0, 1 or 2) . Put A = UX E V E(x)
and B, _ (A n B) u (T - A u B) . It is easy to see that the set B, satisfies (1), (2)
and (3) . Also, since tp .I

	

w + co*, it follows that A

	

T and hence that B,

	

B .

LEMMA 9 . Let J be a chain and let B e T satisfy (1), (2) and (3) . Then .I(B)
is a simple 1-point extension of .I.
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Proof. Suppose that K is a non-trivial convex subset of I(B) . Then n T
is a sub-interval of I. If z 0 K, then I K n T j > I and there is I e f (9-) such that
I c K . Therefore, by (1), there are a, b e I such that a E B, b 0 B . Hence, a z *--- b,

and this contradicts the assumption that K is convex. Therefore, z e K . K n T is
coinitial in I. Otherwise, there is x e B such that x --> K n T and we have the
contradiction that z -> x -> K - {z} . Similarly, K n T is cofinal in I. Since
•

	

n T is an interval in I, K = T u {z} and this is a contradiction .

LEMMA 10 . If A is a maximal chain of the tournament I = <T, -*> and a e A,
b e T - A, then {a, b} is not convex in I .

Proof. Suppose {a, b} is convex. Then I(a, E-) n A -+ {a, b} -> I(a, -*) n A
and so A u {b} is a chain .

LEMMA 1 1 . Let I = <T, -.> be an infinite tournament and suppose that
T = U,,« A,,, where A µ is a maximal infinite chain of the subtournament
(Uµ,v«A,,, ->) (µ < Y1) . Let B,, c A„ be a set satisfying the conditions (1), (2)
and (3) for the infinite chain <A v , ->> (v < A), and let B = U,<, B,, . If X is a non-
trivial convex subset of I(B), then there is an ordinal a such that 0 < a < A and
•

	

= {z} u U. _<,,,A v .

Proof. By Lemma 9, for each v < A, either A,, u {z} c X or

J(A v u {z}) n X1 < 1 .

Suppose that z 0 X. Then there are /l, y such that f3 < y < A and

IX nA~j=IXnAj=1 .

Then X n (A. u A Y ) is convex in <As u AY , -4>, a contradiction against Lemma 10 .
Therefore, z e X . Let a be the least ordinal such that X n A,, 0. Then Aa c X.
If a < /i < A and y E A#, then by the maximality of A a there are x, x' e A a such that
x --> y -+ x' and so y e X. This proves that X = {z} u U,,_< , < , A, . Also, since
X is a non-trivial, a > 0 .

LEMMA 12 . Suppose that I and A µ(µ < A) satisfy the same conditions as in
Lemma 11. Suppose also that tp<Ao , -+> w + w* . Then I e S .

Proof. Let B,,(v < .i) satisfy conditions (1), (2) and (3) for the chain <A,,
By Lemma 8, there is Bo ' c A o such that Bo '

	

Bo and such that Bo ' also satisfies
(1), (2) and (3) for <Ao, -+>. Put B = U,,B,,, B' = Bo ' u Uo<v<aB, . Suppose
that I(B) is not simple. Then by Lemma 11, there is a such that 0 < a < A and

•

	

= U«,Y<x A,, u {z} is convex in I(B) . Similarly, if I(B') is not simple, there is
# such that 0 < /3 < A and Y = Ufl,v<zA, u {z} is convex in I(B') . Let
y = max {a, fi} . Suppose there is an element y e Bo - Bo ' . Since z -+ y in I(B),
we have that A Y -+ y in I. Similarly, since z <- y in I(B'), Ay f-- y in I. This
contradiction shows that B c B' . By symmetry, we also have that B' c B, and this
contradicts the fact that B 56 B' .

We now conclude the proof of our theorem .
Let I = <T, -.) be an infinite tournament . If X is a chain of I, then there is a

maximal infinite chain A o

	

X. Hence there is a partition of T,

T=Ao uA,u . . .uAz ,

	

(4)
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where A(,> 1) is an ordinal, A, is finite (possibly empty), A 0 X and Aµ(µ < A)
is a maximal infinite chain in the sub-tournament (U, A,, -).) . We shall write
T' = T - A. , and .I' _ <T', -. ) .

We shall first prove, by induction on JA J, that if .T' e 9 then J e S . If Ak = 0
there is nothing to prove . Suppose A . , 0 0 . By Lemma 10, there is no edge of the
graph G(.%) of the form {x, y} with x e A, and y 0 Az . Therefore, by the Corollary
after Lemma 3, there is an element x e A,, such that p(x) < l . This x is not extremal
in J by the maximality of A, By the induction hypothesis <T - {x}, -+ > e iff and
hence 9- e if by Lemma 5 .

We will now assume that .% 0 ó and obtain a contradiction . If there is a partition
(4) of T which is such that tp<Ao , -~ > w + w*, then 9 ' (and hence 9-) e 9 by
Lemma 12. Therefore, we can assume that

tp<X, -->> '< w + (0*

	

(5)

whenever X is a chain in 9l . Consider any partition of T of the form (4) . Let
B, c Av be a set which satisfies the conditions (1), (2) and (3) for the chain <A,, -*>
(v < A) and let B = U,« Bv . By our assumption J ' 0 (9 and so 9- '(B) is not simple .
Therefore, by Lemma 11, there is a such that 0 < a < A and U. ,v « A, U {z) is
convex in .l'(B) . Since A o - Bo -+ z -. Bo in 9- '(B), we have that

A o - Bo -> A,, --* B o

in .%. Since A., B0 are infinite chains and A,, precedes Bo , it follows from (5) that
tp<Aa , -->> = co . Similarly, A o - Bo and AQ are infinite chains and A o - Bo precedes
Aa , and hence tp<A a, -->> _ (o* by (5) . This contradiction completes the proof .
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