A REMARK ON POLYNOMIALS AND THE TRANSFINITE DIAMETER

BY
P. ERDÖS AND E. NETANYAHU

Abstract

The main result is the following theorem: Let E be the point set for which $\left|\Pi_{v=1}^{n}\left(z-z_{v}\right)\right|<1$. If the zeros $z_{v}(v=1, \ldots, n)$ belong to a bounded, closed and connected set whose transfinite diameter is $1-c(0<c<1)$, then E contains a disk of positive radius ρ, dependent only on c.

Let

$$
\begin{equation*}
f(z)=\prod_{v=1}^{n}\left(z-z_{v}\right) \tag{1}
\end{equation*}
$$

and denote by $E=E(f)$ the point set for which

$$
\begin{equation*}
|f(z)|<1 \tag{2}
\end{equation*}
$$

The present note deals with the proof of the following theorem.
Theorem. Let D be a bounded, closed and connected set, whose transfinite diameter $d(D)$ is equal to $1-c, 0<c<1$. Let $E(f)$ be the point set defined by (2), with $z_{v} \in D, v=1, \cdots, n$. Then there exists a positive number $\rho=\rho(c)$ (dependent only on c) such that the set $E(f)$ always contains a disk of radius $\rho(c)$.

A weaker result is proved in [1, Th. 6]. It should be added that we give here an existence proof. A numerical estimate for ρ and for the degree of the polynomial (mentioned below) would be interesting.

For the proof of the theorem we need the following:
Lemma. Let D be a set with the properties mentioned above. Then there
always exists a polynomial $P(z)=z^{m}+a_{1} z^{m-1}+\cdots+a_{m}$, whose degree $m=m(c)$ depends only on c, such that $|P(z)|<\frac{1}{2}$ on D (instead of $\frac{1}{2}$ we could take any fixed $a, 0<a<1)$.

Proof. Suppose to the contrary that the lemma were false. Then there would exist bounded, closed and connected sets $D_{1}, D_{2}, \cdots, D_{n}, \cdots$, all of them containing $z=0$ with $d\left(D_{n}\right)=1-c, n=1,2, \cdots$, and such that any polynomial $P(z)=z^{k}+\ldots$ for which $\max _{z \in D_{n}}|P(z)| \leqq \frac{1}{2}$ is satisfied, must be of degree at least n.

Denote by F_{n} the component of the complement of D_{n} which contains $z=\infty$. Let the complement of F_{n} be D_{n}^{\prime}. Evidently $D_{n} \subseteq D_{n}^{\prime}$, and if $\max _{z \in D_{n}^{\prime}}|P(z)|<\frac{1}{2}$, then the degree of P is $\geqq n$. By a well known theorem of Fekete [2], the univalent function $\zeta=f_{n}(z)$, which is regular in F_{n} except for $z=\infty$, where it has a simple pole with $f_{n}^{\prime}(\infty)=1$, maps F_{n} on $|\zeta|>1-c$. The inverse functions $z=\phi_{n}(\zeta)$ of $\zeta=f_{n}(z), n=1,2, \cdots$, form a normal and compact family in $|\zeta|>1-c$. Hence a subsequence $\phi_{n_{k}}(\zeta), k=1,2, \cdots$ converges uniformly in $|\zeta|>1-c+\varepsilon(\varepsilon>0$ and arbitrarily small so that $1-c+\varepsilon<1)$ to a univalent function $\phi(\zeta)=\zeta+a_{0}+a_{1} / \zeta+\cdots$ which maps $|\zeta|>1-c+\varepsilon$ on a domain F whose complement is D^{*} with $d\left(D^{*}\right)=1-c+\varepsilon$. The image of $|\zeta|=1-c+\varepsilon$ by $\phi(\zeta)$ is C which is the boundary of D^{*}. The analytic curve $C_{n_{k}}, k=1,2, \cdots$, which is the image of $|\zeta|=1-c+\varepsilon$ by $\phi_{n_{k}}(\zeta)$ is the boundary of a domain $D_{n k}^{*}$ which contains $D_{n_{k}}, k=1,2, \cdots$. These domains $D_{n k}^{*}$ converge uniformly to D^{*}; hence, because of our assumptions, there is no polynomial $P(z)=z^{m}+\cdots$ such that $|P(z)| \leqq \frac{1}{2}$ on D^{*}. But this last result, because of $d\left(D^{*}\right)=1-c+\varepsilon<1$, is in contradiction to $[2 ; \S 2,3]$ and the proof of the lemma is complete.

The proof of the theorem follows now on the same lines as [1, Th. 6]. For the sake of completeness we present it here.

Let $P(z)=\Pi_{i=1}^{m}\left(z-t_{i}\right)$ be the polynomial of degree $m=m(c)$ whose existence was proved and which satisfies $|P(z)|<\frac{1}{2}$ on D. Evidently there exists a number $\rho>0$ such that $\Pi_{i=1}^{m}\left|z-s_{i}\right|<\frac{1}{2}+\varepsilon$ for all z in D if s_{i} lies in the disk H_{i} whose radius is ρ and center is at t_{i}. Let $\max _{z \in H}|f(z)|=\left|f\left(s_{i}\right)\right|$.

Since

$$
\prod_{i=1}^{m} f\left(s_{i}\right)=(-1)^{m n} \prod_{v=1}^{n}\left(z_{v}-s_{1}\right)\left(z_{v}-s_{2}\right) \cdots\left(z_{v}-s_{m}\right)
$$

and since the right member is of a modulus less than 1 , at least one of the quan-
tities $\left|f\left(s_{i}\right)\right|$ is at most 1 . Hence $|f(z)|<1$ throughout one of the disks H_{i}, as was to be proved.

We remark that the theorem is false when D is not connected.
Indeed, consider the lemmiscate

$$
\left|z^{2}-a^{2}\right|<1, \quad(a>0)
$$

By increasing a, it is seen that the radius of any disk contained in $E\left(z^{2}-a^{2}\right)$ can be made as small as we piease.

Our result implies, of course, that if D is a connected set of transfinite diameter $1-c$ and if $z_{v} \in D$, then the area of the set $\overline{E(f)}$, given by $\left|\Pi_{v=1}^{n}\left(z-z_{v}\right)\right| \leqq 1$, is greater than $f(c)$; we have no explicit estimation of $f(c)$.

If D has transfinite diameter 1 , then perhaps the area of $\overline{E(f)}$ can be made $<\varepsilon$ for every $\varepsilon>0$ if $n>n_{0}(\varepsilon)$ (here the connectedness of D will not be needed). That this is so when D is the unit circle or the interval $(-2,+2)$ is proved in [1]; the general case is open.

Another related problem is the maximum number of components of $\overline{E(f)}$. If D is the unit circle, it is proved in [1; Th. 7] that the maximum number is $n-1$, and if D is the interval $(-2,+2)$, it is easy to see that $E(f)$ can have n components. As far as we know, the general case has not been investigated.

References

1. P. Erdös, Herzog and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), 125-148.
2. M. Fekete, Ueber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.

Technion-Israel Institute of Technology
Haifa, Israel

