A REMARK ON POLYNOMIALS AND THE TRANSFINITE DIAMETER

BY

P. ERDÖS AND E. NETANYAHU

ABSTRACT

The main result is the following theorem: Let E be the point set for which $\left| \prod_{\nu=1}^{n} (z-z_{\nu}) \right| < 1$. If the zeros z_{ν} ($\nu=1,\ldots,n$) belong to a bounded, closed and connected set whose transfinite diameter is 1-c (0< c<1), then E contains a disk of positive radius ρ , dependent only on c.

Let

(1)
$$f(z) = \prod_{v=1}^{n} (z - z_{v}),$$

and denote by E = E(f) the point set for which

The present note deals with the proof of the following theorem.

THEOREM. Let D be a bounded, closed and connected set, whose transfinite diameter d(D) is equal to 1-c, 0 < c < 1. Let E(f) be the point set defined by (2), with $z_v \in D$, $v = 1, \dots, n$. Then there exists a positive number $\rho = \rho(c)$ (dependent only on c) such that the set E(f) always contains a disk of radius $\rho(c)$.

A weaker result is proved in [1, Th. 6]. It should be added that we give here an existence proof. A numerical estimate for ρ and for the degree of the polynomial (mentioned below) would be interesting.

For the proof of the theorem we need the following:

LEMMA. Let D be a set with the properties mentioned above. Then there

always exists a polynomial $P(z) = z^m + a_1 z^{m-1} + \dots + a_m$, whose degree m = m(c) depends only on c, such that $|P(z)| < \frac{1}{2}$ on D (instead of $\frac{1}{2}$ we could take any fixed a, 0 < a < 1).

PROOF. Suppose to the contrary that the lemma were false. Then there would exist bounded, closed and connected sets $D_1, D_2, \dots, D_n, \dots$, all of them containing z = 0 with $d(D_n) = 1 - c$, $n = 1, 2, \dots$, and such that any polynomial $P(z) = z^k + \dots$ for which $\max_{z \in D_n} |P(z)| \leq \frac{1}{2}$ is satisfied, must be of degree at least n.

Denote by F_n the component of the complement of D_n which contains $z = \infty$. Let the complement of F_n be D'_n . Evidently $D_n \subseteq D'_n$, and if $\max_{z \in D'_n} |P(z)| < \frac{1}{2}$, then the degree of P is $\geq n$. By a well known theorem of Fekete [2], the univalent function $\zeta = f_n(z)$, which is regular in F_n except for $z = \infty$, where it has a simple pole with $f'_n(\infty) = 1$, maps F_n on $|\zeta| > 1-c$. The inverse functions $z = \phi_n(\zeta)$ of $\zeta = f_n(z)$, $n = 1, 2, \dots$, form a normal and compact family in $|\zeta| > 1-c$. Hence a subsequence $\phi_{n_k}(\zeta)$, $k=1,2,\cdots$ converges uniformly in $|\zeta| > 1 - c + \varepsilon$ ($\varepsilon > 0$ and arbitrarily small so that $1 - c + \varepsilon < 1$) to a univalent function $\phi(\zeta) = \zeta + a_0 + a_1/\zeta + \cdots$ which maps $|\zeta| > 1 - c + \varepsilon$ on a domain F whose complement is D^* with $d(D^*) = 1 - c + \varepsilon$. The image of $|\zeta| = 1 - c + \varepsilon$ by $\phi(\zeta)$ is C which is the boundary of D^* . The analytic curve C_{n_k} , $k=1,2,\cdots$, which is the image of $|\zeta| = 1 - c + \varepsilon$ by $\phi_{n_k}(\zeta)$ is the boundary of a domain D_{nk}^* which contains D_{nk} , $k=1,2,\cdots$. These domains D_{nk}^* converge uniformly to D^* ; hence, because of our assumptions, there is no polynomial $P(z) = z^m + \cdots$ such that $|P(z)| \leq \frac{1}{2}$ on D^* . But this last result, because of $d(D^*) = 1 - c + \varepsilon < 1$, is in contradiction to [2; §2, 3] and the proof of the lemma is complete.

The proof of the theorem follows now on the same lines as [1, Th. 6]. For the sake of completeness we present it here.

Let $P(z) = \prod_{i=1}^m (z-t_i)$ be the polynomial of degree m=m(c) whose existence was proved and which satisfies $|P(z)| < \frac{1}{2}$ on D. Evidently there exists a number $\rho > 0$ such that $\prod_{i=1}^m |z-s_i| < \frac{1}{2} + \varepsilon$ for all z in D if s_i lies in the disk H_i whose radius is ρ and center is at t_i . Let $\max_{z \in H} |f(z)| = |f(s_i)|$.

Since

$$\prod_{i=1}^{m} f(s_i) = (-1)^{mn} \prod_{\nu=1}^{n} (z_{\nu} - s_1)(z_{\nu} - s_2) \cdots (z_{\nu} - s_m)$$

and since the right member is of a modulus less than 1, at least one of the quan-

tities $|f(s_i)|$ is at most 1. Hence |f(z)| < 1 throughout one of the disks H_i , as was to be proved.

We remark that the theorem is false when D is not connected. Indeed, consider the lemmiscate

$$|z^2-a^2|<1$$
, $(a>0)$.

By increasing a, it is seen that the radius of any disk contained in $E(z^2 - a^2)$ can be made as small as we please.

Our result implies, of course, that if D is a connected set of transfinite diameter 1-c and if $z_v \in D$, then the area of the set $\overline{E(f)}$, given by $\left| \prod_{v=1}^n (z-z_v) \right| \leq 1$, is greater than f(c); we have no explicit estimation of f(c).

If D has transfinite diameter 1, then perhaps the area of $\overline{E(f)}$ can be made $< \varepsilon$ for every $\varepsilon > 0$ if $n > n_0(\varepsilon)$ (here the connectedness of D will not be needed). That this is so when D is the unit circle or the interval (-2, +2) is proved in [1]; the general case is open.

Another related problem is the maximum number of components of $\overline{E(f)}$. If D is the unit circle, it is proved in [1; Th. 7] that the maximum number is n-1, and if D is the interval (-2, +2), it is easy to see that E(f) can have n components. As far as we know, the general case has not been investigated.

REFERENCES

- 1. P. Erdös, Herzog and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), 125-148.
- 2. M. Fekete, Ueber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL