PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITE A BELGRADE

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
N2 412 - N2 460 (1973)
434.

A TRIANGLE INEQUALITY*

Paul Erdös and Murray S. Klamkin

It is a known result $[1,13.5]$ that if A, B, C denote the angles of a triangle, then

$$
\cos ^{2}(A / 2), \quad \cos ^{2}(B / 2), \quad \cos ^{2}(C / 2)
$$

are possible sides of another triangle. It then follows immediately, that

$$
\cos (A / 2), \quad \cos (B / 2), \quad \cos (C / 2)
$$

are also sides of a triangle $[1,13.6]$. We show, more generally, that

$$
\cos ^{\lambda}(A / \lambda), \quad \cos ^{\lambda}(B / \lambda), \quad \cos ^{\lambda}(C / \lambda)
$$

are sides of a triangle for all real $\lambda \geqq 2$.
If $A \geqq B \geqq C$, it suffices to show that

$$
\cos ^{\lambda}(A / \lambda)+\cos ^{\lambda}(B / \lambda) \geqq \cos ^{\lambda}(C / \lambda) .
$$

Since $\max \cos (C / \lambda)=1$ and $\min \left\{\cos ^{\lambda}(A / \lambda)+\cos ^{\lambda}(B / \lambda)\right\}$ occurs for $C=0$, we need only prove that

$$
\cos ^{\lambda}(A / \lambda)+\cos ^{\lambda}(B / \lambda) \geqq 1 \quad \text { for } \quad A+B=\pi .
$$

For $\lambda=2$, the 1. h.s. reduces to 1 . For larger values of λ, the inequality immediately follows from the
Lemma. $\cos ^{\lambda}(A / \lambda)(0 \leqq A \leqq \pi)$ is a non-decreasing function of λ for $\lambda \geqq 2$.
Proof. It suffices to prove that $\mathrm{d} y / \mathrm{d} \lambda \geqq 0$ where $y=\cos ^{\lambda}(A / \lambda)$. Here, $y^{\prime} / y=x \tan x+\log \cos x$ where $x=A / \lambda$. Then $D_{x}\left\{y^{\prime} \mid y\right\}=x \sec ^{2} x \geqq 0$. Also, $\log y$ is concave (in λ).

Finally, corresponding to $[1,13.6)]$,

$$
\cos ^{\mu}(A / \lambda), \quad \cos ^{\mu}(B / \lambda), \quad \cos ^{\mu}(C / \lambda)
$$

are sides of a triangle where $\lambda \geqq \mu \geqq 0, \lambda \geqq 2$.

* Presented November 24, 1972 by O. Bottema.

REFERENCES

1. O. Bottema, R. Z̀. Diordjević, R. R. Janić, D. S. Mitrinović and P. M. Vasié: Geometric Inequalities. Groningen, 1969.

University of Wisconsin, Madison, Wisconsin 53706

Ford Motor Company,
Scientific Research Staff,
Dearborn, Michigan 48121
U. S. A.

