## Diagonals of Nonnegative Matrices

## PAUL ERDÖS and HENRYK MINC $\dagger$

Technion-Israel Institute of Technology, Haifa, Israel and University of California, Santa Barbara 93106, U.S.A.
(Received June 15, 1972)

Let $\left(a_{1}, \ldots, a_{n}\right),\left(r_{1}, \ldots, r_{n}\right)$ and $\left(c_{1}, \ldots, c_{n}\right)$ be real $n$-tuples, $n \geqslant 3$, satisfying

$$
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} c_{i} \text { and } 0 \leqslant a_{i} \leqslant \min \left(r_{i}, c_{i}\right), \quad i=1, \ldots, n
$$

It is shown that a necessary and sufficient condition for the existence of a nonnegative matrix with main diagonal ( $a_{1}, \ldots, a_{n}$ ), with row sums $r_{1}, \ldots, r_{n}$ and column sums $c_{1}, \ldots, c_{n}$, is that

$$
\sum_{i=1}^{n}\left(r_{i}-a_{i}\right) \geqslant \max _{t}\left(r_{t}+c_{t}-2 a_{t}\right) .
$$

Equality can hold if and only if all the off-diagonal positive entries of the matrix are restricted to the $k$ th row and the $k$ th column, for some $k, 1 \leqslant k \leqslant n$.

If $A=\left(a_{i j}\right)$ is an $n$-square matrix and $\sigma$ is a permutation on $n$ objects, then the $n$-tuple ( $\left.a_{1 \sigma(1)}, a_{2 \sigma(2)}, \ldots, a_{n \sigma(n)}\right)$ is called a diagonal of $A$. The sums

$$
r_{i}=\sum_{j=1}^{n} a_{i j}, \quad i=1, \ldots, n
$$

are the row sums, and

$$
c_{j}=\sum_{i=1}^{n} a_{i j}, \quad j=1, \ldots, n
$$

are the column sums of $A$. The matrix $A=\left(a_{i j}\right)$ is said to be nonnegative if $a_{i j} \geqslant 0$ for all $i$ and $j$.

In this paper we obtain necessary and sufficient conditions for an $n$-tuple to be a diagonal of a nonnegative matrix with prescribed row sums and column sums. Clearly we may assume without loss of generality that the diagonal in question is the main diagonal.

[^0]Theorem Let $\left(a_{1}, \ldots, a_{n}\right),\left(r_{1}, \ldots, r_{n}\right)$ and $\left(c_{1}, \ldots, c_{n}\right)$ be $n$-tuples, $n \geqslant 3$, satisfying

$$
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} c_{i} \text { and } 0 \leqslant a_{i} \leqslant \min \left(r_{i}, c_{i}\right), \quad i=1, \ldots, n
$$

Then a necessary and sufficient condition for the existence of a nonnegative matrix with main diagonal $\left(a_{1}, \ldots, a_{n}\right)$, with row sums $r_{1}, \ldots, r_{n}$ and column sums $c_{1}, \ldots, c_{n}$, is that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(r_{i}-a_{i}\right) \geqslant \max _{t}\left(r_{t}+c_{t}-2 a_{t}\right) \tag{1}
\end{equation*}
$$

Equality can hold in (1) if and only if the nonzero entries of the matrix are restricted to the main diagonal, the $k$ th row and the $k$ th column, where $k$ is defined by

$$
r_{k}+c_{k}-2 a_{k}=\max _{t}\left(r_{t}+c_{t}-2 a_{t}\right) .
$$

Proof Let $A=\left(a_{i j}\right)$ be a nonnegative matrix with row sums $r_{1}, r_{2}, \ldots, r_{n}$ and column sums $c_{1}, \ldots, c_{n}$. Clearly the sum of all off-diagonal entries of $A$ cannot be exceeded by the sum of off-diagonal entries in row $t$ and column $t$; that is,

$$
\sum_{i=1}^{n}\left(r_{i}-a_{i i}\right) \geqslant\left(r_{t}-a_{t t}\right)+\left(c_{t}-a_{t t}\right)
$$

$t=1, \ldots, n$. In other words,

$$
\sum_{i=1}^{n}\left(r_{i}-a_{i i}\right) \geqslant \max _{t}\left(r_{t}+c_{t}-2 a_{t t}\right)
$$

We prove the sufficiency by induction on $n$.
We can assume without loss of generality that

$$
\begin{equation*}
r_{1}+c_{1}-2 a_{1} \geqslant r_{2}+c_{2}-2 a_{2} \geqslant \cdots \geqslant r_{n}+c_{n}-2 a_{n} . \tag{2}
\end{equation*}
$$

With this assumption the condition (1) becomes

$$
\begin{equation*}
\sum_{i=1}^{n}\left(r_{i}-a_{i}\right) \geqslant r_{1}+c_{1}-2 a_{1} \tag{3}
\end{equation*}
$$

For $n=3$, this condition asserts that

$$
\begin{equation*}
r_{2}-a_{2}+r_{3}-a_{3} \geqslant c_{1}-a_{1} \tag{4}
\end{equation*}
$$

or equivalently

$$
c_{2}-a_{2}+c_{3}-a_{3} \geqslant r_{1}-a_{1}
$$

Suppose first that $c_{1}-a_{1} \geqslant r_{3}-a_{3}$ and $r_{1}-a_{1} \geqslant c_{2}-a_{2}$. Then the matrix

$$
\left[\begin{array}{ccc}
a_{1} & c_{2}-a_{2} & r_{1}-a_{1}-\left(c_{2}-a_{2}\right) \\
c_{1}-a_{1}-\left(r_{3}-a_{3}\right) & a_{2} & r_{2}-a_{2}+r_{3}-a_{3}-\left(c_{1}-a_{1}\right) \\
r_{3}-a_{3} & 0 & a_{3}
\end{array}\right]
$$

is nonnegative and has the prescribed diagonal, row sums and column sums. If either $c_{1}-a_{1} \leqslant r_{3}-a_{3}$ or $r_{1}-a_{1} \leqslant c_{2}-a_{2}$ (and therefore $r_{1}-a_{1} \geqslant$ $c_{3}-a_{3}$ or $c_{1}-a_{1} \geqslant r_{2}-a_{2}$, by (2)), then the matrix

$$
\left[\begin{array}{ccc}
a_{1} & r_{1}-a_{1}-\left(c_{3}-a_{3}\right)+x & c_{3}-a_{3}-x \\
r_{2}-a_{2}-x & a_{2} & x \\
c_{1}-a_{1}-\left(r_{2}-a_{2}\right)+x & r_{3}-a_{3}+r_{2}-a_{2}-\left(c_{1}-a_{1}\right)-x & a_{3}
\end{array}\right]
$$

where $x=\min \left(c_{3}-a_{3}, r_{2}-a_{2}\right)$, is nonnegative and satisfies all the prescribed conditions.

Assume now that the theorem holds for all nonnegative $(n-1) \times(n-1)$ matrices. Let

$$
\delta=\sum_{i=1}^{n}\left(r_{i}-a_{i}\right)-r_{1}-c_{1}+2 a_{1} \geqslant 0
$$

and set

$$
x_{1}=\left\{\begin{array}{l}
0, \quad \text { if } r_{n}+c_{n}-2 a_{n} \leqslant \delta,  \tag{5}\\
\min \left(r_{n}+c_{n}-2 a_{n}-\delta, r_{1}-a_{1}\right), \quad \text { if } r_{n}+c_{n}-2 a_{n} \geqslant \delta .
\end{array}\right.
$$

and

$$
y_{1}=\max \left(r_{n}+c_{n}-2 a_{n}-\delta-x_{1}, 0\right)
$$

$\operatorname{By}(5), 0 \leqslant x_{1} \leqslant r_{1}-a_{1}$. It is also easy to see that $0 \leqslant y_{1} \leqslant c_{1}-a_{1} \cdot{ }^{\text {. FFor }}$ if $y_{1}=r_{n}+c_{n}-2 a_{n}-\delta-x_{1}>0$, then $x_{1}=r_{1}-a_{1}$, and

$$
\begin{aligned}
c_{1}-a_{1}-y_{1}= & c_{1}-a_{1}-\left\{r_{n}+c_{n}-2 a_{n}-\sum_{i=1}^{n}\left(r_{i}-a_{i}\right)\right. \\
& \left.\quad+r_{1}+c_{1}-2 a_{1}-\left(r_{1}-a_{1}\right)\right\} \\
= & \sum_{i=1}^{n}\left(r_{i}-a_{i}\right)-\left(r_{n}+c_{n}-2 a_{n}\right) \\
\geqslant & 0
\end{aligned}
$$

Now, let $x_{2}, \ldots, x_{n-1}$ and $y_{2}, \ldots, y_{n-1}$ be any numbers satisfying

$$
0 \leqslant x_{i} \leqslant r_{i}-a_{i}, \quad 0 \leqslant y_{i} \leqslant c_{i}-a_{i}, \quad i=2, \ldots, n-1,
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n-1} x_{i}=c_{n}-a_{n}, \quad \sum_{i=1}^{n-1} y_{i}=r_{n}-a_{n} \tag{7}
\end{equation*}
$$

We have to show that such numbers exist, i.e., that

$$
\begin{equation*}
x_{1}+\sum_{i=2}^{n-1}\left(r_{i}-a_{i}\right) \geqslant c_{n}-a_{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}+\sum_{i=2}^{n-1}\left(c_{i}-a_{i}\right) \geqslant r_{n}-a_{n} . \tag{9}
\end{equation*}
$$

If $x_{1}=0$ and $\delta \geqslant r_{n}+c_{n}-2 a_{n}$, then

$$
\begin{aligned}
x_{1}+\sum_{i=2}^{n-1}\left(r_{i}-a_{i}\right)-\left(c_{n}-a_{n}\right) & =\delta-\left(r_{n}-a_{n}\right)+\left(c_{1}-a_{1}\right)-\left(c_{n}-a_{n}\right) \\
& \geqslant c_{1}-a_{1} \\
& \geqslant 0
\end{aligned}
$$

If $x_{1}=r_{n}+c_{n}-2 a_{n}-\delta \geqslant 0$, then

$$
\begin{aligned}
x_{1}+ & \sum_{i=2}^{n-1}\left(r_{i}-a_{i}\right)-\left(c_{n}-a_{n}\right) \\
& =r_{n}-a_{n}-\sum_{i=1}^{n}\left(r_{i}-a_{i}\right)+\left(r_{1}+c_{1}-2 a_{1}\right)+\sum_{i=2}^{n-1}\left(r_{i}-a_{i}\right) \\
& =c_{1}-a_{1}
\end{aligned}
$$

Finally, if $x_{1}=r_{1}-a_{1}$, then (8) holds by virtue of (1). Inequality (9) is proved similarly. If $r_{n}+c_{n}-2 a_{n} \leqslant \delta$, the proof is a virtual repetition of the first case above.

If $0 \leqslant r_{n}+c_{n}-2 a_{n}-\delta \leqslant r_{1}-a_{1}$, i.e.,

$$
r_{n}+c_{n}-2 a_{n}-\sum_{i=2}^{n}\left(c_{i}-a_{i}\right)+r_{1}-a_{1} \leqslant r_{1}-a_{1},
$$

then

$$
\begin{equation*}
\sum_{i=2}^{n}\left(c_{i}-a_{i}\right) \geqslant r_{n}+c_{n}-2 a_{n} . \tag{10}
\end{equation*}
$$

Thus, in this case,

$$
\begin{aligned}
y_{1}+\sum_{i=2}^{n-1}\left(c_{i}-a_{i}\right) & =0+\sum_{i=2}^{n}\left(c_{i}-a_{i}\right)-\left(c_{n}-a_{n}\right) \\
& \geqslant r_{n}-a_{n}
\end{aligned}
$$

by (10). Finally, if $r_{n}+c_{n}-2 a_{n}-\delta \geqslant r_{1}-a_{1}$, then $x_{1}=r_{1}-a_{1}$, and

$$
\begin{aligned}
y_{1} & =r_{n}+c_{n}-2 a_{n}-\delta-x_{1} \\
& =r_{n}+c_{n}-2 a_{n}-\delta-\left(r_{1}-a_{1}\right) \\
& =r_{n}-a_{n}-\sum_{i=2}^{n-1}\left(c_{i}-a_{i}\right) \\
& \geqslant 0
\end{aligned}
$$

Thus

$$
y_{1}+\sum_{i=2}^{n-1}\left(c_{i}-a_{i}\right)=r_{n}-a_{n}
$$

Next we use the induction hypothesis to show that there exists an $(n-1)$ square nonnegative matrix $B=\left(b_{i j}\right)$ with main diagonal $\left(a_{1}, \ldots, a_{n-1}\right)$, row sums $r_{i}-x_{i}, i=1, \ldots, n-1$, and column sums $c_{i}-y_{i}, i=1, \ldots, n-1$.

We first show that

$$
\begin{equation*}
\left(r_{1}-x_{1}\right)+\left(c_{1}-y_{1}\right)-2 a_{1}=\max _{i}\left(\left(r_{i}-x_{i}\right)+\left(c_{i}-y_{i}\right)-2 a_{i}\right) \tag{11}
\end{equation*}
$$

In fact we prove that

$$
\begin{equation*}
\left(r_{1}-x\right)+\left(c_{1}-y_{1}\right)-2 a_{1} \geqslant r_{2}+c_{2}-2 a_{2} \tag{12}
\end{equation*}
$$

and therefore

$$
\left(r_{1}-x_{1}\right)+\left(c_{1}-y_{1}\right)-2 a_{1} \geqslant r_{i}+c_{i}-2 a_{i}, \quad i=2, \ldots, n-1
$$

It suffices to prove inequality (12) in case $r_{n}+c_{n}-2 a_{n}-\delta \geqslant 0$. Then $x_{1}+y_{1}=r_{n}+c_{n}-2 a_{n}-\delta$ and therefore

$$
\begin{aligned}
\left(r_{1}-\right. & \left.x_{1}\right)+\left(c_{1}-y_{1}\right)-2 a_{1}-\left(r_{2}+c_{2}-2 a_{2}\right) \\
= & r_{1}+c_{1}-2 a_{1}-r_{2}-c_{2}+2 a_{2}-\left(r_{n}+c_{n}-2 a_{n}-\delta\right) \\
= & r_{1}+c_{1}-2 a_{1}-r_{2}-c_{2}+2 a_{2}-r_{n}-c_{n}+2 a_{n} \\
& \quad+\sum_{r=2}^{n}\left(r_{i}-a_{i}\right)-c_{1}+a_{1} \\
= & \sum_{i=1}^{n}\left(r_{i}-a_{i}\right)-\left(r_{2}+c_{2}-2 a_{2}+r_{n}+c_{n}-2 a_{n}\right) \\
= & \frac{1}{2} \sum_{r=1}^{n}\left(r_{i}+c_{i}-2 a_{i}\right)-\left(r_{2}+c_{2}-2 a_{2}+r_{n}+c_{n}-2 a_{n}\right) \\
= & \frac{1}{2}\left\{\left(r_{1}+c_{1}-2 a_{1}\right)-\left(r_{2}+c_{2}-2 a_{2}\right)\right. \\
& \left.\quad+\sum_{r=3}^{n-1}\left(r_{i}+c_{i}-2 a_{i}\right)-\left(r_{n}+c_{n}-2 a_{n}\right)\right\}
\end{aligned}
$$

$$
\geqslant 0,
$$

by (2). We now show that

$$
\sum_{i=1}^{n-1}\left(\left(r_{i}-x_{i}\right)-a_{i}\right) \geqslant\left(r_{1}-x_{1}\right)+\left(c_{1}-y_{1}\right)-2 a_{1}
$$

and thus, by the induction hypothesis, that the matrix $B$ exists. If

$$
x_{1}+y_{1}=r_{n}+c_{n}-2 a_{n}-\delta \geqslant 0
$$

then

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left(\left(r_{i}-x_{i}\right)-a_{i}\right) & =\sum_{i=1}^{n}\left(r_{i}-a_{i}\right)-\left(r_{n}-a_{n}\right)-\sum_{i=1}^{n-1} x_{i} \\
& =r_{1}+c_{1}-2 a_{1}+\delta-\left(r_{n}-a_{n}\right)-\left(c_{n}-a_{n}\right) \\
& =r_{1}+c_{1}-2 a_{1}-x_{1}-y_{1} .
\end{aligned}
$$

If $x_{1}+y_{1}=0$, that is $r_{n}+c_{n}-2 a_{n}-\delta \leqslant 0$, then

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left(\left(r_{i}-x_{i}\right)-a_{i}\right) & =r_{1}+c_{1}-2 a_{1}+\delta-\left(r_{n}-a_{n}\right)-\left(c_{n}-a_{n}\right) \\
& \geqslant r_{1}+c_{1}-2 a_{1} \\
& =\left(r_{1}-x_{1}\right)+\left(c_{1}-y_{1}\right)-2 a_{1}
\end{aligned}
$$

Thus there exists an $(n-1)$-square matrix $B=\left(b_{i j}\right)$ with

$$
b_{i i}=a_{i}, \quad i=1, \ldots, n-1
$$

and with rows sums $r_{i}-x_{i}, i=1, \ldots, n-1$, and column sums $c_{i}-y_{i}$, $i=1, \ldots, n-1$. It follows that the $n \times n$ matrix

$$
A=\left(a_{i j}\right)=\left[\begin{array}{c:c} 
& x_{1} \\
B & x_{2} \\
& \cdot \\
& x_{n-1} \\
\hdashline y_{1} y_{2} \cdots & \cdots
\end{array}\right]
$$

where

$$
\begin{aligned}
a_{i j} & =b_{i j}, & i, j & =1, \ldots, n-1, \\
a_{i n} & =x_{i}, & i & =1, \ldots, n-1, \\
a_{n j} & =y_{j}, & j & =1, \ldots, n-1,
\end{aligned}
$$

and

$$
a_{n n}=a_{n},
$$

has the required properties, i.e., main diagonal $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, row sums $r_{1}, r_{2}, \ldots, r_{n}$ and column sums $c_{1}, c_{2}, \ldots, c_{n}$.

It remains to discuss the case of equality. With assumption (2), we have to show that if

$$
A=\left[\begin{array}{ccccc}
a_{1} & c_{2}-a_{2} & c_{3}-a_{3} & \cdots & c_{n}-a_{n}  \tag{13}\\
r_{2}-a_{2} & a_{2} & 0 & 0 \cdots & 0 \\
r_{3}-a_{3} & 0 & a_{3} & 0 \cdots & 0 \\
\cdot & \cdot & \cdot & & . \\
\cdot & \cdot & & . & . \\
\cdot & . & & . & 0 \\
r_{n}-a_{n} & 0 & 0 & 0 \cdots & a_{n}
\end{array}\right]
$$

and $A$ is nonnegative, then (3) is an equality, and conversely if equality holds in (3) then the only nonnegative matrix with main diagonal ( $a_{1}, \ldots, a_{n}$ ), row sums $r_{1}, \ldots, r_{n}$ and column sums $c_{1}, \ldots, c_{n}$ is the matrix in (13). These conclusions are quite obvious, since

$$
\sum_{i=1}^{n}\left(r_{i}-a_{i}\right)=\left(r_{1}-a_{1}\right)+\left(c_{1}-a_{1}\right)
$$

asserts that the sum of all off-diagonal entries is equal to the sum of the offdiagonal entries in the first row and those in the first column.

By setting $r_{1}=\cdots=r_{n}=c_{1}=\cdots=c_{n}=1$ we obtain
Corollary An n-tuple $\left(a_{1}, \ldots, a_{n}\right)$, where $0 \leqslant a_{i} \leqslant 1, i=1, \ldots, n$, is a diagonal of a doubly stochastic matrix if and only if

$$
\sum_{i=1}^{n} a_{i} \leqslant n-2+2 \min _{i} a_{i} .
$$

The result in the corollary is due to A. Horn [1].

## Reference

[1] Alfred Horn, Doubly stochastic matrices, Amer. J. Math. 76 (1954), 621-630.

AMS 1970 Subject classification: Primary 15A48, 15A45.


[^0]:    $\dagger$ The work of this author was supported in part by the U.S. Air Force of Scientific Research under Grant AFOSR-72-2164.

