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1. Introduction

Let S be a set of n points in general position (no three collinear) in the plane .

For any two points p, q e S, the directed line pq has a certain number, N(pq),

of points of S on its positive side, that is, the open half plane to the right of pq.
We are interested in the directed k-graphs, Gk , of S whose edges are the seg-

ments pq with N(pq) = k (k = 0, 1, . . ., n-2). Since clearly G„ k_2 = - Gk,
that is, the k-graph with all orientations reversed, it suffices to consider the
cases k < (n-2)/2 . If n is even, then the bigraph B = G(„_ 2 ) /2 is of special
interest since each edge occurs in both orientations and it can therefore be
considered as an undirected graph .

This case has been studied in several previous papers .
In Section 2, we discuss some general properties of the graphs Gk . In

Section 3, we answer the relatively easy question concerning the upper and
lower bounds on the number of vertices of Gk and the lower bound on the
number of edges of Gk . In Section 4, we tackle the far more difficult problem
of the upper bound e. ,k on the number of edges in G k . We obtain upper
bounds of the form cn~lk and lower bounds of the form cn log n for en , rn_ t ,
where r is a rational number, 0 < r < 1, and rn is an integer. Finally in
Section 5 we discuss new problems and generalizations .

2. Some structural properties of k-graphs

We can construct the graph Gk as follows. Let l be any oriented line containing
no points of S and having k+ 1 points of S on its positive side . Translate I
to its left until it meets a point p i of S . Call this line 1(0) . Now rotate 1(0)
counterclockwise by 0 about p, into line 1(0) until it meets a second point p z
of S at I(0,) = 1 1 . Now rotate counterclockwise about p z until 1(0) meets a
point p 3 of S at 1(0 2 ) = 1z , etc. We thus get a sequence of (not necessarily
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distinct) points p,, p 2 , . . ., pN of S with pN+I =ply PN+z = P2 and a sequence
of directed lines l,, 12 , . . ., IN , IN+I with IN+, = II

Theorem 2.1 . The graph Gk consists of those vertices p, and those edges

p,+, pi for which the orientation p ip, +I is opposite to that of the line I, .
Proof. Clearly the number N(O) of points on the positive side of 1(0)

remains constant in any interval which does not contain one of the angles 0, .

If p ipi+ , is in the direction of h then for small e > 0 we have N(0,-a) _
N(0,) = N(0,+e), since the points p,, p, +, are either on or to the left of l(0)

for 0,-e < 0 <, 0,+e . Ifpip ; + , is in the direction opposite to h then N(0 i) _
N(0,-e)-1 = N(O i +e)-1 for small e > 0, since one of p,, p,+, is to the
right of 1(0) in 0, -e < 0 < 0,+e except for 0 = 0 ; when both are on l, .

Thus we have N(0) = constant = k+ 1 for all 0 0, and N(O,) = k+ 1

or k according as pipi+ , is in the direction of h or not .
Finally we can see that all edges of G k are included in the lines 1(0) since

any line l' not included in 1(0) is like-directed to a line l(0') so that N(l')-N(O')

0 since 1(0') contains a point of S . If 0' = O, and p ip i+ , is in the direction
opposite to l„ this proves that N(1') k . Otherwise N(0') = k+1 and l'
passes through two points on the right of 1(0') so that N(F) S k-1 .

Theorem 2.2. Given a line L containing no points of the set S so that L
divides S into two sets S, and S z with J5,1 = m S n-m = ISz 1 . Then L
intersects m,, = min {m, k+1{ edges of Gk going from S, to S, and m o
edges of Gk going from Sz to S, .
Proof. Since a small perturbation of L does not affect the hypotheses we

may assume that L is not parallel to any line pq joining two points p, q c S .
We may therefore pick the point p, e S, and the directed line l(0) of the
family defined in Theorem 2 .1 through p, ; S, lies on the negative side of
l(0) . As 0 increases from 0 to 7r, the number N(0, S,) of points of S, on the
positive side of l(0) increases from 0 to m o = min {k+ 1, m} . This increase is
monotonic if we ignore the values 0 = 0, .
Now the number N(0, S,) is clearly constant in any interval which does

not contain a 0, . If both points p,, p l+ , of l(0,) are in S z then N(0 ;-e, S,) _

N(0,, S,) = N(O,+g, S,) for small a > 0 . Similarly, ifpip,+ , is in the direction
of l(0,) then N(0,-e, S,) = N(0,, S,) = N(O,+e, S,) for small e > 0 .

Ifp;, p,+ , are both in S, and pip;,, is opposite directed to 1(0 ;) then the point
p i+ , is to the right of 1(0,-e) and p i is to the left of 1(0,-e) for small e > 0,
while p,+1 is to the left of 1(0 1 +e) and p; is to the right of 1(0 j+e) for small
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E > 0. Thus we have N(0,-E, S,) = N(O i+ e, S,) in this case . Finally if

p i , pl+I are in opposite sides of L and pips,-, is opposite directed to 1(0) for
0 < O i < 7r then p i e S,, pI+I e SZ and N(O I +E, S,) = N(0 1 , S1)+ I =
N(O i - e, Sl )+1 for small e > 0, since the point p i is to the right of 1(O ;+E)
but on 1(0 i -a) . We have thus shown that N(O, S,) increases by one in the

interval 0 < 0 < 7r whenever L is intersected by a segment p l+,p, of Gk
going from SZ to S, . Since N(O, S,) increases to m o there must be m o such
segments of Gk .

As 0 increases from 7r to 27r, the number N(O, S I ) decreases from mo to 0
and in a manner entirely analogous to that used above we see that N(O, S,)

decreases by one whenever L is intersected by a segment pi+ , p, of Gk going
from S, to Sz . Thus there must be m o such segments of G k .

Theorem 2.3. If n is odd then G(„-3)/2 is connected.

Proof. In this case each of the segments p,+I p i in Theorem 2.1 is part of

the graph. This is certainly the case if pi+Ipt has the orientation of /,since in
that case there are (n-3)/2 points to the right of 1 I, but it is also the case if

p i + ,p i has the opposite orientation of 1i since in that case there are (n-I)/2
points to the right of 1; and hence (n-3)/2 points to the left of h . Thus the
construction at the beginning of this section yields a closed oriented Euler
path through the graph G(„-3 ) 12 .

Except for the trivial case of Go , which is the positively oriented boundary
of the convex hull of S, this is the only case in which G k must be connected .
Theorem 2.4. For any n and any k with 0 < k < (n-2)/2, k (n-3)/2

there exist sets S with n elements so that Gk is not a connected graph .

Proof. We have either n = 2k+2 or n > 2k+4. In the first case we let S
consist of the vertices of a convex n-gon and Gk consists of the diagonals
joining diametrically opposite vertices .

In the second case let S consist of the vertices of a regular (2k+4)-gon K
with the remaining n-2k-4 points situated closer to the center of K than
any of the non-diametric diagonals of K. Then Gk(S) = Gk(K) consists of two
closed (k+2)-gons obtained by joining each vertex of K to the one following
it by k+ I steps in the counter-clockwise direction. All lines which pass
through a point of SDK contain at least k+ 1 points of K on each side . Thus
no point of S\K is a vertex of Gk(S)-

Theorem 2.5. If we order the oriented lines of the edges of Gk at a vertex, v,
in counterclockwise order, then between any two lines containing outgoing
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edges there is a line containing an incoming edge, and between any two lines
containing an incoming edge there is a line containing an outgoing edge .

Proof. Let 1, and I Z be successive oriented lines through v containing
outgoing edges of Gk . Then as l rotates from l, to lz we have k+ 1 points of S
on the positive side of I for I near to 1, and k points of S on the positive side
of I for 1 near to 12 . Since the number of points of S on the positive side of l
increases by one each time 1 passes through a point p of S in the oriented
angle (1,, 12 ) and decreases by one each time l passes through a point p of
S in the opposite vertical angle (-1 z, -l,), it follows that at some stage
of the rotation the number of points on the positive side of l decreases from

k + 1 to k so that 1 contains an incoming edge pv of Gk . The argument for
successive lines containing incoming edges is entirely analogous .

Corollary 2.6 . At each vertex of Gk , the number of incoming edges is equal
to the number of outgoing edges . Thus each component of Gk has an oriented
Eider circuit .
In the (unoriented) bigraph (k = (n-2)/2) the number of edges at each

vertex is odd.

Theorem 2.7 . Let G' be a component of Gk and let S' be the set of vertices
of G' . Then there exists a k', k' < k, so that G' = Gk-(S') .

Proof. The directed lines 1'(0) which contain the edges of G' form a subset
of the lines 1(0) constructed at the beginning of this section . Let N'(0) denote
the number of points of S' on the positive side of 1(0) . We first show that
N'(0) is constant, k'+I > l, for all values of 0 which do not correspond to
edges of G' where N'(0) = k' . Clearly N'(0) can change only when 1(0)
contains two points of S and if at least one of these points is in S' . Now let

p i , p i , , e 1(O i ) n S; ifp i , p i+I are both in S' then p i , , p i is not an edge of Gk

and hence 1(0 ) has the direction p ipi+ , . Thus neither p i nor pi+ , is on the
positive side of 1(0) for O i -r < 0 < O i + E for sufficiently small a > 0 and N'(0)
is constant in this range . If both p i and pi+I are in S' but 1(0,) has direction

p ip i+I then the same argument applies to keep N'(0) constant. Finally, if

p i+ , p i is an edge of G' then p i+ , is on the positive side of 1(0 i-a) and p i is on
the positive side of 1(0 i +e) for small s > 0 . Thus N'(0 i - a) = N'(O i +a) _
N'(0 i)+l = k'+1 .

We have thus shown that G' c Gk-(S') . The argument that G'

	

Gk , (S')
is exactly as in the proof of Theorem 2.1 .

Corollary 2.8. Theorem 2.2 applies to each component G' of Gk . That is,
if a directed line L which contains no vertices of G' divides the vertices of G'
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into sets of m' and n'-m' vertices with m' < n'-m', then L intersects
min {in', k'+ I} edges of G' crossing L from right to left and the same number
crossing L from left to right .

Corollary 2.9 . Let G', G", . . ., G (r) be the components of Gk and set
GM = Gk i(S (i) ) . Then k = k, + . . . +kr +r-1 and each directed line con-
taining an edge of G (i) is crossed by k; edges of G(i) from left to right and k j
edges of G(j)from right to left for each j i .

Each union
G(ü) U GU2) U . . . U G (") = G I(S (" ) U . . . U SUO ),

where t = k ip + . . . +kis +s-1 .

Proof. As shown in the proof of Theorem 2.7, an edge of GM is contained
in a line whose positive side contains k i points of S (i) and ki + 1 points of SO)
for each j 0 i . Thus k = k, + . . . +kr +r-1 .

3. On the number of vertices of Gk .

Lemma 3 .1 . A point p of S is a vertex of G,(S), k < (n-2)/2, if and only
if there exists a directed line through p whose positive side contains no more
than k points of S .

Proof. The necessity is obvious since any line of an edge of Gk with vertex
p has that property. The sufficiency follows from the fact that, as a directed line
I is rotated around p, the number of points on its positive side ranges through
all values from the minimum m to the maximum M. We have m < k and
M = n-m-1 >, n-k-1 > k+ 1 . Thus there must be an instant at which
the number of points on the positive side of 1 changes from k to k+ 1 . This

can only happen when I contains an edge py of Gk .
Corollary 3.2 . All points on the convex hull of S are vertices of every G,(S) .

In particular, if all points of 'S are on its convex hull then G k(S) has n vertices .
Theorem 3 .3 . Every point of S is a vertex of Gr(„-z)/21 . If k < [(n-2)/2]

then Gk has at least 2k + 3 vertices, and for every v with 2k + 3 < v S n there
exists an S so that Gk(S) has exactly v vertices .
Proof. The first part of the theorem is an immediate consequence of Lemma

3.1 . If k < [(n-2)/2] then choose a point p of S which lies on its convex hull
and a line I through p which contains at least [(n-1)/2] points of S on each
side and is not parallel to any line joining two points of S . Then there exist
two oppositely directed lines I I , 12 on either side of 1 parallel to I through
points of S so that their positive sides, which exclude 1, contain exactly k
points of S each. According to Lemma 3.1, each of the 2k+2 points to the
right of or on one l i (i = l, 2) and the point p is a vertex of Gk so that Gk
has at least 2k+3 vertices .
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Finally, if 2k+3 < v 5 n, let S consist of the vertices of a regular v-gon
inscribed in the unit circle K and of n-v points located so near to the center
of K that a line through one of them cuts K in arcs exceeding 27r(k+ 1)/v .
Thus by Lemma 3 .1 and Corollary 3.2, the vertices of Gk are exactly those of
the regular v-gon .

4. On the number of edges of G,.

The lower bound on the number of edges is easily settled by the result of the
preceding section . According to Corollary 2.6, each vertex of Gk is incident
to at least two directed edges, so that the number of its edges can be no less
than the number of its vertices .

Theorem 4.1 . The graph G«n-2)/21 has at least n directed edges . In particular,
if n is even, the bigraph B = G(n-2)12 has at least n/2 undirected edges . If
k < [(n-2)/2] then Gk has at least 2k+3 edges. For every number e with
2k+3 < e S n there is a set S so that G,(S) has exactly e edges .

Proof. By Theorem 2.2, every vertex of the convex hull is incident to exactly
two edges of Gk. Thus the theorem follows from the constructions made in
the proof of Theorem 3.3 .
Using Lemma 3 . 1, we can get an upper bound on the valence of a vertex of

Gk .

Theorem 4 .2. The valence of the vertices of G k does not exceed 2k+2.

Proof. Let p be a vertex of Gk , and assume k S (n-3)/2 . The edges of G k
through p clearly lie on the directed lines joining p to other points of S
whose positive side contains no more than (n-3)/2 points of S. There are no
more than n-1 such lines and if n is even there are no more than n-2 such
lines .
By Lemma 3.1, the point p is also a vertex of Gk+i, Gk+2, • • G[(n-3)121

all of which are edge-disjoint from each other and from Gk . Since the valence
vp of p is not less than 2 in any of these graphs, we get for odd n

vp < n-1-2(n23 -k) = 2k+2

and for even n
n-4

vp < n-2-2	 2 -k = 2k+2.

Since the vertices of Gk include those of Go, G, . . ., Gk- I , it follows that all
these vertices have valences less than 2k+2, including vertices of valence 2
which are points on the boundary of the convex hull of S. We could use this
to get a poor upper bound for the number of edges of Gk . A better upper
bound is obtained through the use of Theorem 2.2 .
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Theorem 4.3 . The number of edges of Gk, k (n-2)/2, is less than

En,k = 4,/(k+ 1),/(n-k-1),/n .

Proof. Pick a direction which is not parallel to any line joining two points
of S and draw n- I parallel lines in this direction separating the points of S .
According to Theorem 2.2, the total number of intersections of these lines with
the edges of Gk is

N = 2(2+4+ . . . +2k)+2(n-1-2k)(k+ 1)
= 2n(k + 1) - 2(k + 1)2 .

Now we choose an integer a, to be determined later, and divide the edges of
Gk into two classes according to whether they intersect at least a of the
parallel lines or not . The first class clearly contains no more than N/a
elements . The second class contains no more elements than there are pairs of
points of S separated by fewer than a of the parallel lines, that is

2[(n-2)+(n -3)+ . . . +(n-a)] = 2(a-1)n-a(a+1)+2 .

Thus the number of edges of Gk is certainly less than 2an+N/a which is
minimal when we choose a = I(N/2n) . Let a be the integer just above
,I(N/2n) ; then the number of edges is less than 2,/(2nN) = E„, k .

Definition 4.4 . Let e,,, k denote the maximal number of edges of a graph
Gk(S) where S contains n points. For (undirected) bigraphs we write
_Ien - 2e2n n-1

Theorem 4.5 . If k (n - 2)/2 then

e2,,,2,+, -- 2e,,,+n .

Proof. We first show that a Gk(S) with a maximal number of edges must
have n vertices . For, assume that there is a point p c S which is not a vertex
of Gk . According to Lemma 3 . 1, this means that p is on the negative side of all
the edges of Gk . If we move p across the line of an edge of G k then that
edge is removed from the graph but there will be at least two new edges
incident to p, contrary to the maximality assumption for Gk .

Now associate an outgoing edge ep to each vertex p of Gk and construct
a set S' with 2n points by splitting each point p into two points p' and p"

at a small distance e from p, with pp and pp" in the direction of ep . Consider
G2k+l(S') . First for each p e S we get pp" as an edge of G2k+I since each

point on the positive side of ep has become two points ; and, if eP = pq, then
exactly one of the two points q', q" is on the positive side of ep . In addition,

both p"q' and p" q" are edges of G2k+I whose positive sides contain the points
arising from those on the positive side of ep and, respectively, the point p' or
that point q', q" which lies on the positive side of ep.

6
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Finally, if pq is an edge of Gk other than eP, then the edge which joins the

point p' or p" on the negative side ofpq to the point q' or q" on the positive

side ofpq as well as the edge which joins the point p' or p" on the positive

side ofpq to the point q' or q" on the negative side of pq are edges of G2k+,
Thus in this splitting process each edge of Gk yields two edges of G2k+, and

the n edges e p of Gk yield an additional edge pp" . Thus

e2n,2k+, i e(G2k+l) = 2en,k+n .
In order to get an analog to Lemma 4.5 for bigraphs B, we must avoid the

possibility of associating the same edge in its two orientations with both of

its endpoints, that is, ep = pq and e9 = qp . Since e, = 1, e2 = 3, such
associations cannot be avoided for bigraphs on 2 or 4 vertices, but they can
be avoided for 2n > 6 .
Lemma 4.6. en+, > e,,+2 .

Proof. Let B be a bigraph of S with 2n vertices and en unoriented edges .
By an affine transformation we can assume that all points of S are close to
the x-axis and that all edges of B make small angles with the x-axis . Now we
add two points p, q to S, where p has sufficiently large positive y-coordinate
and q has sufficiently large negative y-coordinate and both have, say, x-
coordinates smaller than the x-coordinates of the points of S ; then all the edges
of B(S) are also edges of B(S'), where S' = S u {p, q}, and since pq is not an
edge of B(S'), there are two new edges incident to p and q, respectively .
Thus e,,-,, > e(B(S')) = e,+2 .

Corollary 4.7. For n > 3, we have e„ > 2n .
Lemma 4.8 . If B is a bigraph of S with 2n vertices and e n unoriented

edges, n > 3, then each component of B has at least 6 vertices .

Proof. By Corollary 2.9, each union of components of B is itself a bigraph .
Thus if B has a component B' with no more than 4 vertices, we can write
B = B' u B" where B' has 2i < 4 vertices and therefore 5 2i-1 edges and
B" has 2n-2i vertices and therefore < en _ ; edges. This implies en <, e,,- i +
2i-1, in contradiction to Lemma 4 .6 .
Lemma 4.9. For a bigraph B with 2n vertices and a maximal number e n

of unoriented edges, n > 3, it is possible to associate to each vertex p an edge
ep of B so that ep ea whenever p zA q .

Proof. By Lemma 4.8 and Corollary 4 .7, each component B' of B has at
least as many edges as it has vertices . It therefore contains a circuit C .
If we arrange the vertices of C in cyclic order p,, p 2i . . ., ps with ps+, = p,
then we can associate with each p i the edge pip,,, . If there are vertices B' not
included in C then there exist immediate neighbors, q, of vertices p i in C. To
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each such neighbor we associate the edge qp ; . If this still does not exhaust the
vertices of B' we get additional vertices joined to the immediate neighbors of
C etc.

Theorem 4.10 . For n > 2, we have e, n >, 2en +2n.

Proof. For n = 2, we do this by inspection since e2 = 3 is obtained whenever
the vertices form a non-convex quadruple and e4 = 9 by a modified split-
ting procedure . For n >, 3, we use Lemma 4.9 to associate to each vertex
a different incident edge of B and then employ the splitting process used in
the proof of Theorem 4 .5 to complete the proof.

By iterated application of Theorems 4.5 and 4.10, we get

i

Fig . 1 .

Corollary 4.11 . (1) e2-n,2 .„(k+I)_I >, 2'"en,k+m2'-'n .
For n > 2, (2) e2 l „ n i 2'"en + m2 '"n .

Theorem 4.12 . For all n, we have e n > 3n 1092 (2n/3) .

= 3 • 2"'(2+m) .

	

(4 .13)
•

	

2'"+', then m + 1 > 1092 (n/3) and

en >, e3 .21» > In loge (2n/3) .
If we modify Theorem 4.3 to include the unoriented bigraph, we replace n
by 2n, k by n-1 and N by IN so that the proof of Theorem 4.3 yields

Proof. Apply Corollary 4.11 to get
e3.2~~ > 2'"e 3 +3m • 2"'

Now choose m so that 3 • 2' < n <
3 • 2' > In, so that (4.13) yields

3
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Theorem 4.14 . For all n, e„ < (2n)á .

We can generalize the lower bound of Theorem 4.12 to arbitrary en k .
For convenience, we restrict our attention to the cases n > 3(k+1) .

Lemma 4.15 . For all m >, 2, we have

e,,,,o = 1n ;
and hence for all m > 3 and all l > 0,

e2ln,,21-1 > (1+2)2'-I1n .

	

(4.16)

Proof. The first part follows from the fact that G,(S) consists of the boundary
of the convex hull of S traversed in the counter-clockwise direction . The
second part then follows through 1-fold application of Theorem 4.5 to em,O .
Lemma 4.17 . If n > 3(2'-1) then

en , 2 ,_ 1 >, (1+2)21-1[n/2'] .

Proof. Choose m 3 n/2 1 . Then according to Lemma 4.15 and its proof
there exists a set S with 2 1m points whose vertices consist of clusters of 21
points in arbitrarily small neighborhoods of vertices of a convex (say, a
regular) m-gon C so that e(G2,-,(S)) > (1+2)2 1-1m. Now we can place
n-21m points so near to the centroid of C that every line through one of
these points has at least 2' points of S on either side . Thus if the new set is
called S' then e(G2,-,(S')) = e(G,,_,(S)) >, (1+2)2'-1 m = (1+2)2'-I[n/2'] .

Lemma 4.18 . ent2,k+1 % en ,k+4 .

Proof. The proof follows from a construction which is entirely analogous
to that used in the proof of Lemma 4.6 .

Theorem 4.19. If n >, 3(k+1) then
e n , k 1> z(n-3k) 1092 (2k+2) .

Proof. Write k = 2 1 -1 +a, where 0 < a < 2', and n = 2'm+2a+b, where
0 < b < 2' . Then 2'x-1 > k+ 1, so that 1+2 >, 1092 (2k+2) and 2'm =
n-2a-b >, n-3(2'-1) >, n-3k. Now, combining Lemmas 4.17, 4 .18 and
4.19, we get

en,k ~> (1+2)2 1-1m > 1(n-3k) 1092 (2k+2) .

5. Generalizations and problems

There are several obvious generalizations of the graphs Gk considered above .
For example, if we have a set S of n points in general position in E' (no d+ 1
on a hyperplane) then we can consider the hypergraph Gk consisting of
oriented hyperplanes containing d points of S and having k points of S on
their positive sides . By symmetry we may again assume k < (n-d)/2 .
The elements of the graph are now vertices and hyperplanes (d-tuples of
vertices) . However, the construction in Section 2 is no longer applicable for
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the construction of Gk since the spatial rotations do not form a one-dimen-
sional group .

It is now clear that every (d-1)-tuple of points of S, through which there
passes a hyperplane containing no more than k points of S on one side, is
contained in at least 2 faces of Gk . We must get a trivial lower estimate for
e,, , the maximal number of faces of Gk, obtained whenever the points of S
are vertices of its convex hull,

en ,k > 2(d 'I 1
)

*

	

(5.1)

The other lower bound estimates, such as Theorems 3 .3 and 4.1 can also be
generalized without difficulty . However, the more difficult estimates based on
Theorems 2 .2 and 4.5 do not generalize as easily . In particular, if we try to
extend the splitting process of Theorem 4.5, we would turn each point into
d points and the distributions on opposite sides of the dividing planes
would not be easy to establish .

Another generalization would be to use other classes of dividing curves
and surfaces instead of straight lines and planes. For example, in the plane
we could use circles through 3 points or conic sections through 5 points, etc .

It appears likely that the lower bound obtained for e„ is closer to the truth
than the upper bound .

Conjecture 5.2 . The lower bound e„ > cn log n obtained in Theorem 4.12
cannot be substantially improved . In particular, we conjecture that e„ = o(n' +E)
for all a > 0 .

Finally, the upper bound construction in Theorem 4.3 leads to the following
Problem 5.3 . Given any graph with n vertices in general position in the

plane (the graph need not be planar, so its edges are permitted to intersect),
what is the minimal number e = f(n, k) of edges that guarantees that there
exists a straight line intersecting at least k of the edges?

Obviously, f(n, 1) = l , f(n, 2) = 2 while f(n, 3) = n+ 1 since a convex
n-gon has n edges no three of which are intersected by a straight line . In the
same manner we get

f(2m1, 21'+ 1) > ml(21-1)
since we can place complete graphs on 21 vertices in small neighborhoods of
the vertices of a regular m-gon . Then no straight line can intersect more than
two of these complete graphs and therefore no straight line intersects more
than 21' edges of the graph. This leads us to a final conjecture :

Conjecture 5.4. If a graph with n vertices in general position in the plane
has more than nk edges, then there exists a straight line which intersects k'
edges .
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