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1 . INTRODUCTION

We are concerned �n th�s paper w�th problems of the type �llustrated
as follows : Is �t true that for any part�t�on of the Eucl�dean plane �nto
two classes (we say that the plane �s two-colored), there ex�sts a set of
three po�nts all �n the same class form�ng the vert�ces of an equ�lateral
tr�angle of s�de length 1 ? (We call such a set monochromat�c .)

In th�s example the answer �s "no," as can be seen by d�v�d�ng the
po�nts (x, y) �nto two classes accord�ng to the par�ty of [2yl -0] . On the
other hand, �f we two-color the po�nts of Eucl�dean 4-space, we have
only to look at the f�ve po�nts of an equ�lateral s�mplex of s�de length 1
to see that there must be a monochromat�c equ�lateral tr�angle of s�de
length l .

These examples, then, suggest the follow�ng general quest�on : Let K
be a f�n�te set of po�nts �n Eucl�dean m-space for some m. Then �s there
an �nteger n, depend�ng only on K and the �nteger r, such that for any
r-color�ng of Eucl�dean n-space there �s a monochromat�c conf�gurat�on
K' congruent to K?

In the case of an equ�lateral tr�angle w�th r - 2, we saw that the answer
�s "yes," and that the m�n�mal poss�ble value for n sat�sf�es 2 G n <_ 4 .
We shall see later that the exact number �s n = 3 .

These quest�ons can be cons�dered spec�al cases of the general Ramsey
problem, descr�bed as follows : Let A and B be two sets, and R a subset
of A x B . For a e A denote by R(a) the set {b e B I (a, b) c- R}. R �s sa�d
to have the Ramsey property for r colors �f for every part�t�on�ng of B
�nto r classes (r-color�ng of B), there �s an a c A such that R(a) �s conta�ned
�n only one class (monochromat�c) . The general Ramsey problem �s to
character�ze those R for wh�ch the Ramsey property holds . For �nstance,
suppose A �s the set of /-subsets of an n-set S, and B �s the set of k-subsets
of S . Let R= {(a, b) I b C a} .

THEOREM 1 (Ramsey [7]) . If n �s large enough (depend�ng only on l, k, r),
R sat�sf�es the Ramsey property for r colors.

The type of quest�ons we are concerned w�th here, as �nd�cated above,
are quest�ons �n wh�ch R �s determ�ned by geometr�c cons�derat�ons . For
�nstance, �n the example above, B �s the set of po�nts of Eucl�dean n-space,
En, and A �s the set of tr�ples of these po�nts form�ng equ�lateral tr�angles
of s�de 1 . R �s just the �nclus�on relat�on. We saw that for r = 2 and n = 4
the Ramsey property holds, wh�le for r = 2 and n = 2 �t does not.
The theorem of van der Waerden [9] on ar�thmet�c progress�ons was

the f�rst �mportant case �n wh�ch R was determ�ned geometr�cally . In th�s
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case we can take B to be the pos�t�ve �nteger po�nts on the real l�ne,
A the subsets of l equally spaced po�nts of arb�trary d�stance (length l
ar�thmet�c progress�ons), and R the �nclus�on relat�on .

THEOREM 2 (van der Waerden [9]) . R has the Ramsey property for
all r .

(Actually, van der Waerden's Theorem �s stronger, and says that �f B
cons�sts only of the f�rst n �nteger po�nts, where n depends on l and r,
then R sat�sf�es the Ramsey property for r colors .)

Van der Waerden's Theorem was general�zed by Gallal [6] and others
[3, 1] . The general�zat�on �s as follows : Let K be a set of k po�nts �n
Eucl�dean m-space, En' . Let B be the set of po�nts Em and A the set of
k-sets �n Em s�m�lar (�n fact homothet�c, that �s, s�m�lar w�thout rotat�ons)
to K. Let R be the �nclus�on relat�on .

THEOREM 3 (Galla�) . R has the Ramsey property for all r.

Aga�n, as �n van der Waerden's Theorem, B need only cons�st of a
f�n�te set of appropr�ately chosen po�nts . Th�s �s due to the "compactness
argument" (see [8], p. 69) wh�ch, when appl�ed to the Ramsey property,
becomes the follow�ng :

PROPOSITION 4 . For sets A and B suppose R sat�sf�es the Ramsey
property for r colors w�th R(a) f�n�te for all a c A . Then there are f�n�te
subsets A' C A, B' C B w�th R(a') C B' for all á C A' such that the �nduced
relat�on (def�ned for A' x B' by (a', b') E R' ' (a', b') E R) sat�sf�es the
Ramsey property for r colors .

Theorem 3 �s l�ke the case above of the un�t equ�lateral tr�angle except
that s�m�lar�ty replaces congruence . In general, we can cons�der a property
RH(K, n, r), where K �s a f�n�te set of po�nts �n En, r �s an �nteger, and H
�s a group of transformat�ons on En as follows :

RH(K, n, r) : For any r-color�ng of the po�nts of En there �s a mono-
chromat�c conf�gurat�on K' wh�ch �s the �mage of K under some element
ofH. (Th�s, of course, �s the statement that, �f B �s the set of po�nts of En,
A the set of �mages of K under H, and R the �nclus�on relat�on, then R
sat�sf�es the Ramsey property for r colors .)

We are �nterested �n whether for a g�ven K, r, and H there �s an n for
wh�ch RH(K, n, r) �s true . In part�cular, we are pr�mar�ly concerned w�th
the group of Eucl�dean mot�ons (congruences), and we w�ll drop the
subscr�pt H �n RH(K, n, r) when th�s group �s cons�dered �f th�s causes
no confus�on . (In our example, where K was a un�t equ�lateral tr�angle,
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we saw that R(K, 2, 2) was false, but R(K, 4, 2) was true.) We remark
that, �f R(K, n, r) �s true, then so �s R(K', n, r) for any K' s�m�lar to K.

In Sect�ons 3, 4, and 5 we w�ll �nvest�gate conf�gurat�ons K such that
for each r there �s an n such that R(K, n, r) �s true. These w�ll be called
Ramsey conf�gurat�ons . Not all f�n�te conf�gurat�ons are Ramsey, as we
shall see later . We beg�n f�rst w�th some spec�al cases .

2 . EXAMPLES

Certa�n spec�al cases of R(K, n, r) are already known . For �nstance :

THEOREM 5 . Let P be a pa�r of po�nts d�stance d apart . Then R(P, 2, 7)
�s false, wh�le R(P, 2, 3) �s true .

Proof. We refer the reader to [4] and [2] for proofs . However, we
�nclude the proof for R(P, 2, 3) s�nce �t cons�sts only of F�gure 1, to
wh�ch we shall refer later . In �t there are seven po�nts of wh�ch at most
two can s�multaneously not be d�stance d apart .

FIG . 1 . All edges have length d .

As prom�sed �n the �ntroduct�on, we show that R(S3 , 3, 2) �s true,
where S3 �s the equ�lateral tr�angle of s�de 1 (or equ�valently of s�de d) .

THEOREM 6. R(S3 , 3, 2) �s true.

Proof. Let E 3 be 2-colored, say red and blue . Then choose any pa�r
of po�nts d�stance 1 part and both the same color, say red (Theorem 5) .
Now e�ther there �s a th�rd red po�nt at d�stance 1 from both of these,
and we are done, or else there �s an ent�re c�rcle of blue po�nts at d�stance 1
from both . Th�s c�rcle has rad�us x/3/2 . Now choose any two po�nts on
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the c�rcle d�stance 1 apart. If there �s a th�rd po�nt at d�stance 1 from both
wh�ch �s blue, we are done . Otherw�se there �s an ent�re c�rcle of red
po�nts (�n a plane perpend�cular to the plane of the blue c�rcle) . If th�s
second alternat�ve holds for each pa�r of po�nts on the blue c�rcle d�stance 1
apart, then, as we move around the blue c�rcle, we obta�n a whole fam�ly
of red c�rcles wh�ch def�ne a degenerate torus (no hole �n the center, due
to self �ntersect�on) . The equator�al rad�us of th�s torus �s (A/2 + A/3)/2 .
Thus we can f�nd three po�nts on the equator mutually (N/6 -{- 3)/4 > 1
apart. Mov�ng symmetr�cally from these three po�nts along the surface
of the torus toward the m�ddle, we can f�nd three po�nts mutually 1 apart .
S�nce they are on the torus, all three are red, and the proof �s complete .

We next cons�der the un�t square C2 . The argument used below was
suggested by S . Burr.

THEOREM 7 . R(C 2, , 6, 2) �s true .

Proof. Cons�der the 15 po�nts (X,, , X2 , . . ., Xd �n Es def�ned by hav�ng
four entr�es equal to 0 and two entr�es equal to 1/0 . These 15 po�nts
can be represented by edges �n the complete graph on 6 vert�ces, where
the edge between v � and v; corresponds to the po�nt w�th 1/N/2 �n the �
and j coord�nates, 1 < � < j 6. Any 2-color�ng of Es determ�nes, �n
part�cular, a 2-color�ng of the 15 po�nts . Th�s determ�nes a 2-color�ng
of the edges of the complete graph on 6 vert�ces .

It �s well known that �n any 2-colored complete 6-graph there ex�sts
a monochromat�c quadr�lateral. That �s, there must be four vert�ces,
v, , v2 , v3 , and v4 for �nstance, such that the four edges (v � v 2), (v 2 v3 ),
(v3v4), and (v 4v�) all have the same color . But th�s means that the corre-
spond�ng po�nts �n E° all have the same color, l / x/2(110000),1 / x/2(011000),
1 /x/2(001100), I /N/2(100100) . S�nce these form the vert�ces of a un�t
square, the theorem �s proved .

We note that R(C2 , 2, 2) �s false, as we see by color�ng (x, y) accord�ng
to the par�ty of [y] . Whether �t �s true for n = 3, 4, 5 �s undec�ded .

THEOREM 8 . ff T �s any set of three po�nts, R(T, 3, 2) �s true .

Proof. Let T be a tr�angle w�th s�des a, b, and c (where a + b may
equal c �n the degenerate case) . Let E3 be 2-colored, say w�th red and blue .
Then by Theorem 6, we can f�nd some equ�lateral monochromat�c (say
red) tr�angle ABC of s�de a . Cons�der F�gure 2 �n the plane of ABC. The
tr�angles ABE, DBC, GFC, EFH, ACH, and DEG are all congruent .
Then, by choos�ng the angle EBC properly, we can let them all be con-
gruent to the or�g�nal tr�angle T.



346

	

ERDOS ET AL .

F�G . 2.

Now A, B, and C are all red. Thus, �f there are no monochromat�c
tr�angles congruent to T, by cons�der�ng tr�angles ABE, DBC, and ACH,
we see that E, D, and H are blue. Then tr�angle DEG forces G to be red .
But tr�angles CFG and EFH force F to be blue and red, respect�vely, a
contrad�ct�on . Thus one of the s�x tr�angles must be monochromat�c .

We note that for some tr�angles (e .g ., S2) R(T, 2, 2) �s false . In at least
one case, the 30°-60° r�ght tr�angle, �t �s true, as we see below .

THEOREM 9 . Let d > 0, and let T, , T2 , T3 be any three tr�angles such
that T� has a s�de of length d, T2 a s�de of length á/3d, and T3 a s�de of
length 2d. Then for any 2-color�ng of E 2, there �s a tr�angle T wh�ch �s
congruent to one of T� , T2 , T3 and wh�ch �s monochromat�c .

Proof. By the proof of Theorem 8 above, �t �s suff�c�ent to show that
we must have a monochromat�c equ�lateral tr�angle w�th one of the three
s�de lengths d, á/3d, 2d. Let E2 be colored red and blue, and let
u - d(1, 0), v = d(1/2, x/3/2) . By Theorem 5 we may assume (0, 0)
and a are both red .

Suppose none of the three k�nds of equ�lateral tr�angles occurs . Then v
and u - v must both be blue . Th�s forces 2u to be red, wh�ch �n turn
forces 2v to be blue . But then u + v can't be red or blue (because of
tr�angles (u, 2u, a + v) and (v, 2v, a + v)), a contrad�ct�on .

COROLLARY 1 0 . Let T be a 30°-60° r�ght tr�angle . Then R(T, 2, 2) �s
true .
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The only tr�angle for wh�ch R(T, 2, 2) �s known to be true �s the 30°-60°
r�ght tr�angle, and the only one for wh�ch �t �s known to be false �s the
equ�lateral tr�angle . We conjecture that R(T, 2, 2) holds unless T �s
equ�lateral, and, moreover, that any 2-color�ng of E 2 w�th no monochro-
mat�c equ�lateral tr�angle of s�de d �n fact has monochromat�c equ�lateral
tr�angles of s�de d' for all d'

	

d.

THEOREM 11 . Let L be the conf�gurat�on of po�nts �n E 2 g�ven by
(-1 ., 0), (0, 0), (1, 0), and (l, 1) . Then R(L, 3, 2) �s true .

Proof. Color E3 red and blue . Then by Theorem 8 there are three
po�nts, A, B, C, �n a l�ne d�stance 1 apart and all the same color, say red .
Suppose there �s no monochromat�c L' congruent to L .

Cons�der the two c�rcles of rad�us 1, CA and C, w�th centers A and C,
respect�vely, and perpend�cular to the l�ne ABC. Both c�rcles must be
completely blue, or else we have a red L' . Now cons�der the c�rcle CB of
rad�us 1, centered at B and also perpend�cular to ABC. Th�s c�rcle must
be ent�rely red, or together w�th two po�nts on CA and one on C, we get
a blue L' .

Let S be the sphere of rad�us V2 centered at B, and let S' be the set
of po�nts on S wh�ch are at most d�stance 1 from CB . S' �s just S truncated
by the planes of CA and C, . All po�nts of S' must be blue. For each such
po�nt s �s d�stance 1 from some po�nt x on CB . Let y be the po�nt on CB
d�ametr�cally oppos�te x . Then yBx �s perpend�cular to sx, s�nce sxB
�s a r�ght tr�angle. Thus sxBy �s congruent to L, and s must be blue .

Cons�der a po�nt p �n the plane of CB and d�stance 2 from B . Then p
must be blue, or together w�th B and two po�nts on CB we get a red L' .
Now cons�der a po�nt q on S', �n the plane of CB and d�stance 1 from p .
The l�ne jo�n�ng p and q meets Y�n another po�nt r, wh�ch must be d�stance
1 from q . p, q, and r are all blue . Thus the c�rcle of rad�us 1, center r and
perpend�cular to the l�ne pqr must be red, or we get a blue L' . But th�s
�s a contrad�ct�on s�nce th�s c�rcle meets S', wh�ch �s all blue .

3. CONFIGURATIONS THAT ARE NOT RAMSEY

We recall that a conf�gurat�on (set) K �n Eucl�dean space �s Ramsey �f
for each r there �s an n for wh�ch R(K, n, r) �s true. For �nstance, �f K �s
the equ�lateral tr�angle of s�de length 1, then R(K, 2r, r) holds (s�nce the
un�t s�mplex �n E2 r has 2r + 1 po�nts, and thus any r-color�ng y�elds
three po�nts w�th the same color .)

We next cons�der a class of conf�gurat�ons wh�ch are not Ramsey . We
�llustrate f�rst w�th some spec�al cases .
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THEOREM 12 . Let L, denote the conf�gurat�on of k coll�near po�nts
separated by un�t d�stance . Then R(L3 , n, 4), R(L 4 , n, 3), and R(L,, n, 2)
are false for all n .

Proof. For the case of L3 , let each x e En be colored accord�ng to
the res�due of [I x 1 2 ] (mod 4). Now suppose we have three po�nts x, x + u
and x - u, where u has length 1 . If all three have the same color, there
must be �ntegers a, , a2 , a ., an �nteger r, 0 < r < 4, and numbers B� ,
0<B�<1, �=1,2,3, so that Ix1 2 - 4a, +r+B4 , Ix-u1 2 =
4a 2 + r + 02 , and I x + u 12 - 4a3 + r + e3 . Th�s �mpl�es that
1 +2x-u= 4(a3 - a,) + B 3 - B� ,and 1 - 2x - u - 4(a 2 a4 ) + 82 - B� .
Hence 4(a 2 + a3 - 2a �) - 2 + (B3 + 02 - 20,) = 0, a contrad�ct�on s�nce
B � < 1 . Thus R(L3 , n, 4) �s false .

For the case of L4 , we color the po�nts x E Ell accord�ng to the res�due
[2 1 x I 2 ] (mod 3) . Suppose x + �u, 1 < � < 4, u a un�t vector, are the
same color . Let a � = I x + �u 1 2 . Then we have 2a, + 2a3 = 4a2 + 4,
and 2a2 + 2a4 = 4a 3 + 4 . S�nce all four po�nts are the same color, �f
we let f� be the fract�onal part of 2a� , l < � < 4, we get, by reduct�on
modulo 3 to reduced res�dues, f� + .f3 = 2f2 + 1 and f2 + f4 = 2f3 + 1 .
Add�ng these, we get f� + J4 = .f2 +f3 -~ 2, an �mposs�b�l�ty .

For the Ls case we color the x �n En accord�ng to the par�ty of [ x 1 2 /6] .
Let x + �u, 1 < � < 6, be the same color, where u �s a un�t vector . Let
a � = 6 1 x + �u 1 2 , 1 < � < 6. Then a�+� + a�_, = 2a� + 1/3, for
� = 2, 3, 4, 5, and all [a � ] have the same par�ty . We cla�m that th�s �s
�mposs�ble .

By replac�ng each a� by a � + (� - 4)[a 3 ] + (3 - �)[a4 ], we may assume
[a 3] _ [a4] = 0, and thus that each [a� ] �s an even �nteger . The �dent�t�es

a 2 - 2a3 a 4 + 1/3,
a, = 2a4 - a 3 + 1/3,
a, = 2a2 a3 + 1/3,
a s = 2a, - a 4 + 1/3,

a,+as = a3+a4+2
are eas�ly ver�f�ed .

Us�ng the f�rst two equat�ons, we f�nd a, and a, are conta�ned �n the
�nterval (-2/3, 7/3) . But [a2 ] and [a,] are even, so a, and a, are �n
I v [2, 7/3) . If a 2 - 2, then

4<2a2 +a, =3a3 +I<4,

a contrad�ct�on. Hence a2 E I, s�m�larly a, c L By a s�m�lar process we get
a, e I and a s e L But then 2 < a3 + a 4 + 2 = a, + a, < 2, a contrad�ct�on .

We say that a conf�gurat�on K - {v,, v	vj of po�nts �n Em �s
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spher�cal �f �t �s �mbeddable �n the surface of a sphere, that �s, �f there �s
a center x and a rad�us r so that I v � - x I = r for all v� c K.

THEOREM 13 . If K �s not spher�cal, then K �s not Ramsey.

To prove th�s we requ�re two lemmas .

LEMMA 14. The set K = {v,_ . ' v k} �s not spher�cal �f and only �f there
ex�st scalars c	c k not all 0 such that :

(2)

(1)

(3)

582a/14Í3-6

�=1

k

L: C�(V� - VO) _ 0 ,
�=1

k

C�(I V�I2- IVo 1 2) - h

	

0 .
�=1

Proof. (We use v �e to mean I V� 12 .) Assume K �s spher�cal, w�th center
w and rad�us r, and suppose (1) holds. Then

V�e - Vo2 = (V� - W)2 - (VO - W)2 + 2(v� - vo ) ' w = 2(v� - Vo) ' w,

and
k

	

k

y_ c�(v� 2 - V o2 ) = 2w •

	

c � (v� - vo) .
�=1

Hence (2) does not hold .
Now suppose K �s not spher�cal . It �s suff�c�ent to assume that K �s

a m�n�mal non-spher�cal set . That �s, all subsets are spher�cal . S�nce
every non-degenerate s�mplex �s spher�cal, �t follows that the vectors
v� - vo , 1 <_ � < k, are l�nearly dependent . There ex�st c� , 1 <_ � < k,
not all 0, sat�sfy�ng (1) . Assume ck 0 and that {vo , . . ., Vk_11 �s on a
sphere w�th center w and rad�us r . Then

k

	

k
C�(V� 2 - Vo2) _

	

C�[(V� - W)2 _ (VO - w)2]

�=1

	

�=1

= Ck(Vk2 - VO2)

	

0,

and (2) holds . Th�s proves Lemma 14 .

LEMMA 15 . Let Cl,- .-, C k , b be real numbers, b

	

0. Then there ex�sts
an �nteger r, and some r-color�ng of the real numbers, such that the equat�on

k
Y c�(x� - xo ) = b 0
�=1
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has no solut�on xo , xl ,.- x 7c where all the x� have the same color (mono-
chromat�c solut�on) .

The proof of th�s lemma, wh�ch some may cons�der of greater �nterest
than Theorem 13, we defer unt�l Sect�on 4 below . It extends the funda-
mental work of R. Rado [6] .

Proof of Theorem 13 . Let K be a non-spher�cal set {v	v,}. For an
arb�trary n we exh�b�t a color�ng of En avo�d�ng any monochromat�c set K'
congruent to K.

By Lemma 14, there are real numbers, cl , c 2 , . . ., c,c , not all 0, such that
equat�ons (1) and (2) of Lemma 14 hold . By Lemma 15 there �s some
�nteger r and some r-color�ng X of the real numbers such that equat�on (3)
of Lemma 15 has no monochromat�c solut�on . (That �s, X �s a funct�on
from the real numbers to {l, 2, . . ., r}, where the r colors, or classes, are
the X-1(j), 1 < j + r .) We now color En by the color�ng X* g�ven by
X*(v) = X(v2) . Thus the colors form spher�cal "shells" around the or�g�n .

Now we observe that equat�ons (1) and (2) rema�n val�d �f K �s replaced
by any k + 1-tuple of po�nts congruent to K (us�ng the same cho�ce of c� ) .
For (1) �s clearly �nvar�ant under any aff�ne transformat�on and thus
certa�nly under �sometr�cs, wh�le (2) �s �nvar�ant under �sometr�cs f�x�ng
the or�g�n, s�nce then the v � 2 rema�n unchanged. Furthermore, (2) rema�ns
val�d after translat�ons as well, s�nce �f we translate by z we get

7c

	

k

	

k
Y c�[(V, + Z)2 - (V, + Z)2] _

	

C�(V�2 - VO2) + 2z

	

c�(v� - v,)
�=1

	

�=1

	

�=1

�=1

Thus (1) and (2) both hold for any {v o', . . ., VkI congruent to K .
In part�cular, �f we have a monochromat�c {v o', . . ., vk} congruent to K,

then lett�ng x� - (v� ' ) 2 - (vo') 2 we obta�n a monochromat�c solut�on
to (3), contrary to the cho�ce of the color�ng X . Th�s completes the proof
of Theorem 13 for f�n�te sets . The case �n wh�ch K �s �nf�n�te �s �mmed�ate
by cons�der�ng an appropr�ate f�n�te subset .

Theorem 13 establ�shes the necess�ty of a set be�ng spher�cal �f �t �s
to be Ramsey . The suff�c�ency of th�s cond�t�on rema�ns undec�ded . The
suff�c�ency of a stronger cond�t�on �s establ�shed �n Sect�on 5 below .
We note that the number of colors used depends on the c � , wh�ch �n turn
depend on the conf�gurat�on K . The dependence on the c � appears expl�c�tly
�n the proof of Theorem 16 (Lemma 15) below .

The color�ng used �n the proof of Theorem 13 was spher�cal . That �s,
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any sphere centered at the or�g�n has po�nts of only one color . We m�ght
ask whether other k�nds of color�ngs could be used to show sets other
than non-spher�cal sets to be non-Ramsey. In part�cular, suppose S �s
a "n�ce" surface (closed, bounded, separat�ng En �nto two d�sconnected
reg�ons) wh�ch �s ent�rely v�s�ble from the or�g�n . That �s for each po�nt
s c- S, the l�ne segment jo�n�ng the or�g�n and s meets S only at s) . Then E7 l

can be decomposed �nto "concentr�c" surfaces Sa = {as I s e S}, a a non-
negat�ve real number. An S-color�ng �s a color�ng wh�ch �s constant on Sa
for each a . We m�ght hope that for some S an S-color�ng could be used
to show some conf�gurat�on to be non-Ramsey . Any such conf�gurat�on
would, of course, not be �mbeddable �n any Sa . However, any non-
degenerate s�mplex wh�ch �s �mbeddable �n a sphere �s also �mbeddable
�n some S. �f n �s large enough, depend�ng on the conf�gurat�on (see
Lesley O'Connor's thes�s [5] for a d�scuss�on of th�s and related problems) .
Thus no non-degenerate s�mplex can be shown to be non-Ramsey by
an S-color�ng .

4. EXTENSION OF RADO'S RESULTS ON MONOCHROMATIC
SOLUTIONS OF NON-HOMOGENEOUS EQUATIONS

Our object here �s to prove Lemma 15 above . Actually, we prove a
somewhat stronger result that w�ll be useful later �n Sect�on 6 to get a
general�zat�on of Theorem 13 .

THEOREM 16. Let e, , c 2 , . . ., ck , b

	

0 be elements of a f�eld F. Then
there ex�sts a f�n�te color�ng X of F so that

k

(4)

	

Y c �(x � - xz ') = b
2=1

has no solut�on x� , xl', X2, x2', . . ., x k , xk ' E F w�th X(x�) = X(x� ' ),
l<_�<k .

Proof. Follow�ng Rado, we observe that �t �s suff�c�ent to prove th�s
theorem for the f�eld Fo = H(cá , . . ., CA where H �s the pr�me f�eld ofF.
To see th�s choose a Hamel bas�s B w�th b c B for F over Fo and assume
that we have a color�ng X of Fo for wh�ch Theorem 16 holds when
xz , x� ' EFo , 1 <_ � <_ k, and b �s replaced by 1 . Now color x c- F by
X*(x) = X(x), where x = xb + �s the B-expans�on of x .
Then

k

Y cz(x � -

	

= b

	

w�th X*(x .) = X * (x� ')
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leads to

k

y_ e�(X�
�=1

k

y_ c�({x�} -
�=1

�) = 1

a contrad�ct�on. We can therefore prove the theorem by prov�ng �t f�rst
for pr�me f�elds, then for pure transcendental extens�ons, and then for
f�n�te extens�ons .

Case 0 . F =17, the prune, f�eld. Th�s case �s essent�ally g�ven by Rado .
If 17 �s f�n�te, we color all elements w�th d�st�nct colors so that X(x�) = X(x�')
�mpl�es x� = x� ', and (4) has no solut�on w�th X(x�) = X(x�') .

If 17 = Q, the rat�onal numbers, assume w�thout loss of general�ty
that the c� and b are �ntegers . Let p be a pr�me not d�v�d�ng b, and let M
be an �nteger sat�sfy�ng M >_ y 1 1 c � I . Now let X be a color�ng of the
rat�onale g�ven by X(x) - X(x') �f and only �f [x] _ [x'] (mod p) and
[M{x}] _ [M{x}], where [x] �s the �nteger part of x and {x} �s the frac-
t�onal part. Thus X �s an Mp-color�ng .

Now �f X(x� ) = X(x �') and

k

	

k

	

k
b =

	

c�(x� - x � ') _

	

c�([x�] - [x�']) + y_ c�({x� } - {x�' }),
�=1

	

�=1

	

�=1

then the f�rst sum on the r�ght �s an �nteger d�v�s�ble by p wh�ch d�ffers
from b by at least 1, s�nce b �s not d�v�s�ble by p. The second sum sat�sf�es

'}) C	 e� M{x�} - M{x� }1

�=1

	

M

a contrad�ct�on . Th�s completes Case 0 .

Case 1 . Purely trancendental extens�ons . That �s, we assume that
the theorem holds for the f�eld F and show that �t also holds for F(y),
where y �s transcendental over F. Mult�ply�ng by a su�table polynom�al
we can assume that all c � and b are �n F[y] . We may also assume b(0) 0 ;
for, �f F �s �nf�n�te, we may replace y be y a and b(0) by b(a) for any
a e F �f necessary; �f F �s f�n�te, we f�rst make a f�n�te extens�on F of F
(for wh�ch the theorem holds tr�v�ally) such that b(y) does not van�sh
�dent�cally on F, and aga�n replace y by y - a .

w�th

	

X(XJ - X(x�'),

Y-I�,,1c�1 ~1M



Now let m = maxl\�-,, deg c�(y) and wr�te c � = Y_mo c �; y' . For each
x� , x� ' E F(y) we have Laurent ser�es expans�ons

By hypothes�s we can f�nd a color�ng X of F so that th�s has no solu-
t�ons w�th X(a�;) - X(a�;), 1 + � + k, 0 + j + m. If we now color
x = yA(y) + ~ o a, y-, by the "product color" X *(x) _ (X(ao), . . ., X(am))
(that �s, X*(x) = X*(x') �f and only �f X(a;) = X(a;') for all j = 0, 1, . . ., m),
then there �s no solut�on of (4) �n F(y) w�th X*(x�) = X*(x � '), I + � + k .

Case 2 . F�n�te extens�ons . We now assume that the theorem holds
for F and prove �t for a f�n�te extens�on L of F. Let [L : F] = d, and let
co l , . . ., u)d be a bas�s for L over F. We can then wr�te :

and
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x� = yA�(y) +

	

a�,y- l,
=o

x�' = yA� '(y) + Y á�gy -' ,

k m
y Y c�;(a�; - á�1) = b(0) + 0.
�=1 j=o

d

e� = y e�sws ,
s=�

d

x� = Y, a�sws ,
s=�

d

_ Y á�sws ,
s=�

d

b = Y bscos ,

	

bl + 0,
s=�

d

y_ A.3Ywy,
Y=I

�=o

where the sums on the r�ght have only a f�n�te number of non-zero terms,
a�; , a�l E F, A.�(y) and A �'(y) are �n F(y), and A � (0) and A� '(0) are �n F.
Compar�ng the constant terms on both s�des of (4) g�ves

A ar3y. E F.
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Compar�ng coeff�c�ents of co,, �n (4) we obta�n

k d d

y_ Z A,3,c�a(a�R - a�p) = b, y- 0 .
�=1 —I 0=1

By hypothes�s, we can f�nd a color�ng X of F so that th�s has no solut�on
w�th X(a �j = X(a'a), 1 < � < k, 1 < d. Ifwe color each x = Ys= 1 apcua
by the product color�ng X*(x) - (X(a,), . . ., X(ad)), as above �n Case 1,
then we see that (4) can have no solut�on �n L w�th X*(x�) = X*(x� ') for
all �. Th�s completes Case 2 and the proof of Theorem 16. We note that
�n both Cases 1 and 2 the number of colors was dependent on the degrees
of the c� (over the appropr�ate f�eld) . In Case 0, where H - Q, the number
of colors depended on the magn�tudes of the c� and the pr�me d�v�sors
of b .

It �s natural to ask whether Theorem 16 can be extended to express�ons
�n wh�ch the l�near forms on the left-hand s�de of (4) are replaced by a
homogeneous form of h�gher degree . Th�s quest�on �s settled negat�vely
below .

THEOREM 17 . If Q �s colored w�th k colors then the equat�on
(x1 Y1)(x2 Y2) = 1 always has solut�ons w�th color x � - color y �
(� = 1, 2) .

Proof. By van der Waerden's Theorem [9] there �s an ar�thmet�c
progress�on w�th k! (2k + 1) 2 elements all of wh�ch are colored al�ke so
x, - y, = do has monochromat�c solut�ons w�th n = 1, 2, . . ., k! (2k + 1)2
for some d > 0 .
Now cons�der the numbers

1

	

1

	

1
d(k + 1)! ' dk! (k + 2) '

	

dk! (2k + 1)

two of them, say

have the same color and

where n < lc! (2k + 1)2 .

1

	

1
X2 = dk! (k + �)

	

and

	

Yz dk! (k +j)'

X2 - Y2 d k! (k + �)(k + j)

	

dn '
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By the proof of Theorem 16 we see that �n Theorem 13 the number of
colors needed to color En and to avo�d a monochromat�c K' congruent
to K depends on the number theoret�c propert�es of the d�stances between
po�nts of K. In certa�n spec�al cases, however, we can obta�n an upper
bound on the number of colors depend�ng only on the number of po�nts
�n K. The follow�ng �s essent�ally the �terat�on of Case 1 �n Theorem 16,
followed by an appl�cat�on of Case 0 .

COROLLARY 18 . Y'K = {v,, . . ., vk} �s a m�n�mal non-spher�cal set (all
subsets are spher�cal), and the constants c, �n (1) and (2) of Lemma 14 are
such that c2/c, , c3 /c, , . . . . C k1c, are algebra�cally �ndependent over Q, then
every En has a color�ng (�nn spher�cal shells) w�th (2k)k colors so that there
�s no monochromat�c K' congruent to K �n En .

Proof. It suff�ces to show that there �s a (2k)k-color�ng of R, the real
numbers, so that equat�on (3) has no real solut�ons xo , x, , . . ., x k wh�ch
are monochromat�c .

As �n the proof of Theorem 16, Case 1, we may assume that b + 0 .
Thus we may assume b = 1, c, = 1, and C2, . . ., ck are algebra�cally
�ndependent transcendentals . Proceed�ng as �n Case 1 we expand the x�
�n Laurent ser�es �n c2

x	a�2c22 + aj,cz� + ago + a2,-�c2 + . . .

so that compar�ng the constant terms �n (3) we get

(a,o

	

aoo) + (a21

	

a,,) + c3(a,o

	

aoo) + . . . + ck(ako - aoo) - 1 .

Expand�ng the a� ; Laurent ser�es �n c3 we get

a . . + a�j2c32 + az;,c3� + az,o + a,;-,c3 + . . .

and

(aaoo - aoo,)) + (a2�o - ao�o) + (a,,, - a.. .) + . . . + ck(akoo - aooo) - 1 •

Repeat�ng th�s process we f�nally get

(a,,, . . .0 - aoo . . .o) + (a210 . . .0 - ao,O . . .,) + (a3010 . . .o - aoo,, . . .O)
+ . . . + (ako . . .o,

	

aoo. ..") - 1,

where the a� , . . ., z, are rat�onal numbers .
Now we color the rat�onale w�th 2k colors as follows : Two rat�onale a
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and a' have the same color �f and only �f [a] _- [a] (mod 2) and
[k{a}] _ [k{á }] . It �s then clear that the equat�on �n the a j ,' a . . .' k above has
no monochromat�c solut�on, s�nce the left s�de would equal an even
�nteger plus k fract�ons each less than Ilk �n absolute value .

The product color�ng

X*(xz) _ (X(azo . . .o), X(a�10 . . .0), . . ., X(a�o . . .o,))

has (2k)k colors and y�elds no monochromat�c solut�on to (3) .
For three coll�near po�nts we have a sl�ghtly better result .

COROLLARY 19 . If K = {V1, v, , v 2 {, where (v, - v o ) + a(v2 - vo) = 0
and a 0 Q (the rat�onale), then for every En there �s a spher�cal color�ng
w�th 16 colors avo�d�ng monochromat�c sets congruent to K .

Proof. If a �s transcendental, we can apply the prev�ous corollary,
obta�n�ng 42 = 16 colors . If a �s algebra�c, as �n the proof �n Theorem 11,
�t suff�ces to 16-color the reals, I1B, so that

(x, - xo) + a(x, - xo) = b 0

	

(5)

has no monochromat�c real solut�on . As above, we may assume b = 1 .
It �s suff�c�ent to 16-color Q(a), as �n the proof of Theorem 16 . Assume
the m�n�mal polynom�al of a �s

xn - a,,,xn 1 - a _2xn-2 - " - ao E Q[x]n

	

.

Sett�ng x� _ ~;_ó x�;a� and equat�ng constant terms �n (5) y�elds

(x10 - XOo) + a0(x2,n-1 - x0,n-1) = 1 •

	

( 6)

Now def�ne X(c) _ [2c] (mod 4) . Then the product color�ng
X *(xz) _ (X(x�o), X(aoxj,n_,)) �s a 16-color�ng of Q(a) . If X *(x o ) = X *(x,) _
X*(x2), then x, o - xoo = 2K + e, K an �nteger, and 0 <_ e G 1/2, and
a0(x2,n-1 - xo,n-1) = 2L + 8, L an �nteger and 0 <_ 8 < 1/2. Th�s
contrad�cts (6), complet�ng the proof.

We observed at the beg�nn�ng of Sect�on 3 that �f a = 1 then 4 colors
suff�ce . It rema�ns open whether �n fact there �s some r such that r colors
suff�ce for all a, rat�onal or �rrat�onal . More generally, �t �s unknown
whether for any k there �s a number r of colors depend�ng only on k such
that r colors suff�ce to prevent a monochromat�c K for any non-Ramsey K
w�th k + 1 po�nts .
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5. CONFIGURATIONS THAT ARE RAMSEY

We observed at the beg�nn�ng of Sect�on 3 the obv�ous fact that the
equ�lateral tr�angle �s Ramsey . S�m�larly, �f K �s a regular s�mplex of
k -�-- 1 po�nts, then R(K, kr, r) always holds, and thus K �s Ramsey. These
and the conf�gurat�ons der�ved from them by the theorems below are
the only ones that are presently known to be Ramsey .

If K, C En, K2 C E- we def�ne K, x K2 �n En+m to be the set of po�nts

{(x,, . . ., Xn , Y1, . . . . Ym) I (x1 , . . ., xj c- K, , (y, , . . ., ym) E K2} .

THEOREM 20 . If K, and K2 are Ramsey, then so �s K, x K2 .

Proof. By the compactness pr�nc�ple (Propos�t�on 4 �n Sect�on 1), for
any �nteger r there �s an �nteger n, and a f�n�te set T C Enl such that every
r-color�ng of Ty�elds a monochromat�c K,' congruent to Kl . Let

I
T
I =

t .
S�m�larly, for K2 there �s some n2 and some f�n�te set S �n E112 such that
every r'-color�ng of S y�elds a monochromat�c K2 ' congruent to K2 .

Cons�der the set T x S �n E n �+n2 . Let T X S be r-colored by X . Now
def�ne a color�ng X* on S by lett�ng X*(u) = X*(u'), u, u' E S, �f and only
�f X(v x u) = X(v x u') for all v E T. Th�s �s an r'-color�ng of S. Hence
there �s some K2 ' congruent to K2 �n S on wh�ch X* �s constant . Let
uo E K2 ' . Def�ne a color�ng X** on T by X**(v) = X(v x uo) . Th�s �s an
r-color�ng of T. Hence there �s a Kl ' monochromat�c and congruent to K, .
But then X �s monochromat�c on Kl' x K2 ', s�nce, by cho�ce of X*,
X rema�ns constant as we vary the po�nts �n K2 ', and, by the cho�ce of
X** , X rema�ns constant as we vary the po�nts of K l ' . Th�s completes the
proof. We obta�n a (probably very weak) bound on the s�ze of n for wh�ch
R(K, x K2 , n, r) holds. Namely, �f R(K,, n,, r) and R(K2 , n 2 , rn�) hold,
then R(KI X K2 , nl + n 2 , r) holds .
We use Theorem 14 to obta�n a class of Ramsey conf�gurat�ons . We

say that a br�ck �n En �s any set congruent to a set

B - {(x, , . . ., xn) I x� = 0, az ; az j 0 ; 1 <- l <- n} .

That �s, B �s the set of vert�ces of a rectangular parallelep�ped .

COROLLARY 21 . Any br�ck �s Ramsey .

Proof. S�nce the sets K� _ {0, a� l are s�mpl�ces, th�s �s a d�rect result
of �terat�ng Theorem 20, as B = Kl x K2 x . . . x K. . The bounds
obta�ned from Theorem 20 on the d�mens�on as a funct�on of the number
of colors are colossal . However, better and more expl�c�t bounds are
obta�ned �n Part 11 of th�s paper (to appear) .
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COROLLARY 22 . Any subset of the vert�ces of a br�ck �s Ramsey .

We remark that the proof of Theorem 20 does not necessar�ly y�eld
the best bounds for the d�mens�on requ�red for the Ramsey property to
hold. For example, the argument �n Theorem 20 g�ves a bound of n = 10
for R(C2 , n, 2), �n contrast to n = 6 from Theorem 7. S�m�larly, for any
rectangle, Theorem 20 g�ves n = 10, whereas a s�m�lar but more careful
argument w�ll y�eld n = 8 . In part�cular, we could have replaced n 2 = 8
�n Theorem 20 (for th�s case) w�th n2 = 6, s�nce the monochromat�c
edge of the tr�angle T (needed to assure the ex�stence of a monochromat�c
pa�r w�th g�ven d�stance) can occur only �n 6 d�fferent ways .

The regular un�t s�mplex of k po�nts �s �tself a subset of a br�ck, namely,
�n the cube �n Ek w�th s�de length 1/ V2 . Let an 1-dual of a s�mplex of n
po�nts be the set obta�ned by tak�ng the centro�ds of each of the (,)
1-po�nt subs�mpl�ces . The 1-dual �s the s�mplex �tself, and the (n - 1)-
dual �s the usual dual . We see then that any /-dual of a regular s�mplex
�s Ramsey (by Theorem 1 [Ramsey's]) . Among the sets obta�ned th�s way
�s the regular octahedron, the 2-dual of the tetrahedron . We can real�ze
the /-duals of regular s�mpl�ces as subsets of br�cks as well . For tak�ng the
regular s�mplex of n po�nts to be, for �nstance, {(1, 0, . . ., 0), (0, 1, 0, . . ., 0), . . .,
(0, . . ., 0, 1){, the po�nts of the /-dual are all po�nts (XI , x2 , . . ., x,,) where
all but / of the x � are 0, and these / are equal to 1/ V1 . These are clearly
vert�ces of a cube of s�de 1 / Vl .

Some s�mpl�ces are not real�zable as subsets of br�cks . For �nstance,
any s�mplex such that three po�nts �n �t determ�ne a tr�angle conta�n�ng
an obtuse angle cannot be so real�zed . One can ask whether hav�ng all
angles non-obtuse �s suff�c�ent for a s�mplex to be �mbeddable �n a br�ck .
In the case of the tetrahedron, we can answer the quest�on �n the aff�rma-
t�ve, but for the 5-po�nt s�mplex the answer �s negat�ve .

The cond�t�on that no angle be obtuse �s equ�valent to the follow�ng
property : For any three vert�ces v, ., v 2 , v 3 the d�stances between them
d12 , d13, d2a sat�sfy d�e > d23 - d�a > 0, the tr�angle �nequal�ty for the
squares of the s�des . For the case of f�ve po�nts, the follow�ng set of
d�stances are the d�stances of a s�mplex wh�ch cannot be �mbedded �n
a br�ck : d12 = d23 = d13 = 1/2, dr4 = d24 = d34 = d15 = d25 = day = 1,
d45 = 2/ A/3 . We can see th�s by observ�ng that, s�nce br�cks are spher�cal,
any �mbedd�ng of the s�mplex �n a br�ck would determ�ne a center x
equ�d�stant from all po�nts of the s�mplex . Th�s �s clearly �mposs�ble .

THEOREM 23 . Let d� , , 1 < � < j < 4 be s�x d�stances sat�sfy�ng
d + d;2k > d2,, for each �, j, k . Then there �s a 6-d�mens�onal br�ck such
that a subset offour of �ts vert�ces real�ze these s�x d�stances .



EUCLIDEAN RAMSEY THEOREMS

Proof. Let vl , v 2 , v3 , v4 be the vert�ces we are go�ng to choose, and
let them f�rst be vert�ces of a 7-d�mens�onal br�ck as follows :

v� = (0, 0, 0, 0, 0, 0, 0),

	

v2 - (0, 0, 0, a4 , a5 , a6 , a 7),

v3 = (0, a 2 , a,, 0 , 0 , a,, a7),

	

V4 - (al, 0, a3 , 0, a5 , 0, a7) .

They are vert�ces of an al x a2 x . . . x a7 br�ck. What we must show �s
that we can choose the az nonnegat�ve w�th one a � be�ng 0. We have s�x
equat�ons, one for each edge of the tetrahedron :

d 2

	

2

	

2

	

2

	

212 = a4 +a5 +a6 +a7,

d13 - a22 + a3 2 + a62 + a7 2 ,

d
2

	

2

	

2

	

2

	

223 - a2 T a3 + a4 + a5 ,

d14 = a1 2 + a32 + a52 + a 7 2,

d24 - a � 2 ~ a3 2 + a4 2 + as ,

d34 =

	

-�- 22 + a5 2 + a6 22

a22 + a32 =

a42 + a52 =

a62 + a72 =

d23 + d�3 - d�2
2

d22 + d23 - d�3
2

d22 + d�3 - d23
2

,

,
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Now cons�der�ng the three equat�ons correspond�ng to the edges of a
tr�angular face, say the 12-, 23-, 13-edges, we can solve for certa�n pa�r-
w�se sums of the a � l . For �nstance, from the 1, 2, 3 tr�angle we get

These are all nonnegat�ve by the cond�t�on on the d2 (non-obtuse) . Do�ng
th�s for each of the four faces, we eventually get nonnegat�ve solut�ons
for each pa�r a�2 + a; 2 where � e {3, 5, 61, j c- {1, 2, 4, 71 .

Now choose the smallest a� 2 + a;2 , say a 1 2 d- a32 . Look�ng at the
equat�ons for a � 2 + a;2 w�th � = 3 or j = 1 we see that there �s a un�que
solut�on w�th a1 = 0 and a; >_ 0 for all j . S�nce the other equat�ons must
be cons�stent w�th these s�x, they are also sat�sf�ed . Thus we have solved
for a2 , a3 , . . ., a7 so that the g�ven tetrahedron �s a subset of the vert�ces
of an a2 x . . . x a 7 br�ck .
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We showed �n Sect�on 3 that for a conf�gurat�on to be Ramsey �t �s
necessary that �t be spher�cal . In th�s sect�on we see that a suff�c�ent
cond�t�on �s that �t be a subset of a br�ck . It �s an open quest�on whether
e�ther of these cond�t�ons �s both necessary and suff�c�ent . In part�cular,
the s�mplest conf�gurat�on wh�ch the Ramsey property �s undec�ded �s
three po�nts form�ng an obtuse tr�angle . (If they form an non-obtuse
tr�angle, �t �s Ramsey by Theorem 23, and �f they are coll�near �t �s not
Ramsey by Theorem 13 .)

We po�nt out one more relat�on between br�cks and spheres . We say
that a conf�gurat�on �s sphere-Ramsey �f for each r there �s an �nteger n
and a real number d such that every r-color�ng of a sphere S of d�mens�on
at least n and rad�us at least d y�elds a monochromat�c conf�gurat�on
K' C S congruent to K.

THEOREM 24. Every br�ck �s sphere-Ramsey .

Proof. The proof �s just l�ke that for Theorem 20 and Corollary 21 .
We f�rst observe that a sphere of rad�us at least *N/k/2(k + 1) and d�men-
s�on at least k + 1 conta�ns the k -{- 1 vert�ces of a regular un�t s�mplex .
Lett�ng k - r and d = a A/k/2(k + 1) we see that the theorem �s true
for the one-d�mens�onal br�ck of length a .

If Sn �s the (n - 1)-sphere of rad�us do , and S„~ �s the (m - 1)-sphere
of rad�us d„,, then Sn x S,, �s conta�ned �n the (m + n - 1)-sphere of
rad�us '\//dn 2 + dm2 . Us�ng th�s fact we can argue exactly as �n the proof
of Theorem 14 to show that, �f K l �s sphere-Ramsey and K2 �s sphere-
Ramsey, then Kl x K2 �s sphere-Ramsey. Th�s shows, then, that all
br�cks are sphere-Ramsey .

6. GENERALIZATIONS : /-RAMSEY CONFIGURATIONS

A set K�n En �s I-Ramsey �f for every r there �s an N, depend�ng only
on r, l and K, such that every r-color�ng of EN y�elds a set K' congruent
to S such that the po�nts of K' are colored w�th at most l colors. We see
that the prev�ous not�on of Ramsey �s just I Ramsey by th�s def�n�t�on .
Theorem 13 can now be general�zed as follows :

THEOREM 25 . If K cannot be �mbedded �n l - 1 concentr�c spheres,
then K �s not m-Ramsey for m G l .

We use two lemmas, as �n the proof of Theorem 13 .



LEMMA 26 . Let x1 , . . ., x � , y1 , . . ., y � be (not necessar�ly d�st�nct) po�nts
of En . Then there ex�sts a po�nt a c- En such that I x� - a I = I y � - a 1,
1 <_ � <_ 1, �f and only �ffor all scalars c 1 , c 2 , . . ., c � w�th L�=1 c�(x � - y�) - 0
we have J�t�

=1 c � (x �,2 - y� 2 ) - 0 .

Proof. Assume that there ex�sts an a �n En so that I x� - a = y� - a I
for � = 1, 2, . . ., 1 . Then

a
0- ~c�(Ix� - al e- y� - a~ 2)

�=1

a
c�(x 2 - y�2)

	

2a ' Y c �(x� - y �)
I�=1

	

�=1

Thus 1~-1 c�(x �2 - y�2) = 0 whenever E'=1 c�(x� - y� ) - 0.
Conversely, the ex�stence of a po�nt a c En w�th I x� - a 1 = 1 y�

	

a l,
� = 1, . . ., 1, �s equ�valent to the cons�stency of the set of equat�ons
2(x � - y�) • a - x�2 y�2 , 1 < � <_ 1, where the var�ables are the coord�-
nates of a . Th�s system �s cons�stent �f and only �f every l�near comb�nat�on
ann�h�lat�ng the left-hand s�de also ann�h�lates the r�ght-hand s�de . That �s
1�=1 c�(x�

	

y�) = 0 �mpl�es ��=1 c�(x�2

	

y�2 ) - 0 .

LEMMA 27 . Let K = {x 1 , . . ., x � , y 1 , . . ., y,} be a set of 21 not neces-
sar�ly d�st�nct po�nts of En so that there ex�sts no po�nt a E En w�th
I x� - a I = I y� a I for all �, 1 � <_ 1. Then there �s a number r = r(K)
of colors so that every En can be r-colored such that for every K' congruent
to K �n En the colors ofx � ' and y � ' are not all the same, � = 1, 2, . . ., 1.

Proof. Accord�ng to Lemma 20 there ex�st constants c1 , . . ., c l so that
1=1 c�(x� y�) = 0 and f�_1 c�(x� 2 - y � 2 ) = b 0. Now by Theorem 16

there ex�sts a f�n�te color�ng X of the reals so that the equat�on
c

Y_�=1 c�(u� - v � ) - b has no solut�on w�th X(u�) = X(v�), 1 < � <_ l.
Thus, �f we use the spher�cal color�ng x*(x) = X(x 2 ), the equat�on
11 =1 c�(x �2 - y� 2 ) = b has no solut�ons w�th X(x�2) = X(y � 2), 1 < � < l
(or X*(x�) = X*(y�) for all �) .

Proof of Theorem 25 . Assume for a f�n�te K that for every sphere-
color�ng of En there ex�sts a set K' congruent to K colored �n m <_ l 1
colors. Each such color�ng g�ves a part�t�on P of K �n the d�sjo�nt un�on
K1 u K2 u . . . u Kn, = K w�th the K� congruent to d�st�nct K�' each of
wh�ch �s monochromat�c.

For each f�n�te K there �s only a f�n�te number M of such part�t�ons P .
If for each P there �s a spher�cal color�ng Xr of En that prevents the ex�s-
tence of a set K' congruent to K w�th each K� ' monochromat�c, then,
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us�ng the product color�ng X = (X, 1 , . . ., XP „), we get a f�n�te color�ng of
En prevent�ng any K' congruent to K w�th fewer than l colors .

Now, by assumpt�on, the sets K, , . . ., Kr,, do not l�e on the un�on of m
concentr�c spheres. Therefore, for each I K� I > 1 we can label the po�nts
of K� as x� , y �p , . . ., y� , , , and there can be no po�nt a so that
x�

	

a I - I y�1 - a I for all pa�rs x� , y �; , 1 ~ j < k� , 1 < � < m .
By Lemma 27 �t �s poss�ble to color En w�th a f�n�te spher�cal color�ng X

�n such a way that for no K' congruent to K do we have X(x�') - X(y� ;)
for all �, j. In other words, not all K� ' can be monochromat�c. Th�s proves
Theorem 25 for f�n�te K. The �nf�n�te case follows �mmed�ately .

THEOREM 28 . If K = Kl x K2 x . . . x Kt and for each �, 1 < � < t,
K� �s f�n�te and l�-Ramsey, then K �s 112 • • • It Ramsey .

Proof : We clearly need only to prove th�s for t = 2. So let K� be
l� ,Ramsey, � = 1, 2. By the compactness argument (Propos�t�on 4 �n
Sect�on 1), for any r we can f�nd f�n�te sets A, and A 2 such that whenever
A 2 �s rIKII-colored �t conta�ns an l2chromat�c K2 ' congruent to K2 , and
whenever A, �s rIA 2 1-colored �t conta�ns an /,-chromat�c K,' congruent
to KI .
Now A, x A 2 �s conta�ned �n some En, for n large enough . Any

r-color�ng X of En �nduces the r-color�ng X of A, x A 2 . Each of the po�nts
x c- A, can be assoc�ated w�th the I A 2 1-tuple of colors determ�ned by the
X(x x y), y c- A 2 . Th�s �s, then, an rJA2~-color�ng X* of A, . Now, by
cho�ce of A, , there �s K,' C A, such that X* has only h d�fferent values
on K,' .
Now def�ne a color�ng X** on A 2 by lett�ng X**(y) = X**(y') �f and

only �f X(x x y) = X(x x y') for all x c K,' . Th�s �s an r1Kr1-color�ng
of A 2 and thus there �s a K2' congruent to K2 such that X**(y) has at
most I2 d�fferent values for y e K 2 ' .

By def�n�t�on of the color�ngs X* and X** we see that X(x x y) takes
only 1,.12 d�st�nct values on KL' x K2 ' . Th�s establ�shes the theorem .
Among the open quest�ons that rema�n are whether Theorem 28 �s

val�d �f K �s �nf�n�te . Also, general�z�ng from the l = 1 case, �t �s undec�ded
whether any set wh�ch �s �n the un�on of l concentr�c spheres must be
Z-Ramsey .
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