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Abstract . Given the integers 1,, k,,1 2 , k 2 , r, which satisfy the condition 1,, 1 2 > r> k,, k 2 > 0,
we define m = N(1,, k, ; 1 2 , k 2 ; r) as the smallest integer with the following property : if S is a
set containing m points and the r-subsets of S are partitioned arbitrarily into two classes, then
for i = 1 or 2 there exists an l i subset of S each of whose ki-subsets lies in some r-subset of the
ith class . The integers defined in this way form a collection of which the usual Ramsey num-
bers are a special case : i .e ., the Ramsey number N(1 1 , 1 2 ; r) is represented as N(l,, r; 1,, r; r) .
We derive two major results concerning the values of these generalized Ramsey numbers . If
k, + k 2 = r + 1 then N(1,, k, ; 1 2 , k 2 ; r) = l, +12-k,-k2+1, corresponding to the "pigeonhole
principle" . For k,+k i < r, we show that N(1 1 , k, ; 1 2 , k2 ; r) = max (1„ l 2 ) . The next interesting
case occurs for k, + k 2 = r + 2, where we show that there are constants c, and c 2 such that
for sufficiently large 1, 2 c,1< N(l, k, ; 1, k2 ; r) < 2c 2 1 .

Given integers li , ki , i = 1, . . ., n, and r, which satisfy the properties
l i > r > ki > 0, for i = 1, . . ., n, we may define an integer N(l 1 , k 1 ; 12 , k2 ;
. . .,"n, kn ; r) = in as the smallest integer with the following property : If
S is a set containing in points and the r-subsets of S are partitioned
arbitrarily into n classes, then for some i, 1 < i < n, there exists an l i -
subset of S each of whose k i -subsets lies in some r-subset of the ith class .
The fact that such an integer exists follows immediately from the exist-
ence of the Ramsey number N(l 1 , 1 2 , . . ., I n ; r), for if the set S contains
this many points, there is some i, 1 < i < n, such that all the r-subsets of
some li -set are of the ith class [3] . Then certainly each ki subset of this
1i subset lies in such an r-set, since k i < r . In what follows we shall be con-
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cerned mainly with the case where there are only two classes of r-sub-
sets (n = 2) . The proof of the following remarks are entirely analogous
to those found in [ 31 and will be omitted .

Remark 1 . N(r, k l ; 1, k2 ; r) =N(1, ki ; r, k 2 ; r) =1 .

Remark 2 . N(l i , k ] ; 1 2 , k 2 ; r) < N(N(1 1 -1, k 1 ; 1 2 , k2 ; r), k 1 -1 ;
N(l 1 ,k i ;1 2 -1,k2 ;r),k 2 -1 ;r-1)+1 .

The following remark has no counterpart in any theorem on Ramsey
numbers, but is elementary .

Remark 3. If ki < ki and kz < k 2 , then N(l 1 , ki ; 1 2 , k 2 ; r) < N(l 1 , k i ;
1 2 , k 2 ; r) .

Proof. Let m < N(l 1 , k i ; 1 2 , k 2 ; r) . Then there exists a partition of the
r-subsets of the m-set S into two classes such that every li subset contains
a k i subset all of whose containing r-subsets are class j, j ~ i, i, j = 1, 2 .
Since k'l < k i , k 2 < k 2 , the above property is inherited and
m < N(l i , ki ; 1 2 , kz, r) . Thus N(1 1 , k',,"2, k2 ; r) <N(1 1 , k l ; 1 2 , k 2 ; r) .

We will show :

Theorem 1 . If ki + k 2 =r+ 1, then N(l 1 , k i ;1 2 , k2 ; r)=1 1 +12-ki -k2 +1 .
Further, if k, + k 2 < r, then N(l 1 , k l , 12, k 2 ; r) = max (1 1 , 1 2 ) .

Proof. Let us first dispose of the simpler case where k l + k 2 < r. We
may assume 1 1 < 12 . Clearly, N(l 1 , k l ; 12, k 2 ; r) > 12 ; merely consider
the set S containing 12 -1 points all of whose r-sets lie in class 2 ; S has
no 12 subset at all and no 1 1 subsets with k,-subsets contained in class 1
r-sets. Now assume S contains 1 2 points . If every k2 subset lies in an r-
set of class 2, we are finished; therefore assume there is a k 2 -subset S,
all of whose containing r-sets are class 1 . But now all k, -subsets S2 C- S
lie in an r-subset of class 1, since IS, U S2 I < r.

Now let ki + k2 = r + 1 . Assume S = S, U S2 , S, and S2 disjoint, with
IS, I = 1 1 -k i and IS2 I =12 -k2 . We construct a partition of the r-set of
S as follows : place r-sets in class 1 which intersect S, in > k 2 points
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and all other r-sets in class 2, i .e ., those that intersect S 2 in at least k i
points, since k 1 + k2 = r + 1 . Note that any l 1 -set must contain at least
k i points in S2 and those k 1 points are contained only in class 2 r-sets .
The situation is entirely symmetric for l2 -sets. Thus

(1) N(l i , kUl2 , k2 ; r) > ISI =11 -k 1 +12 -k2 .

Now assume that we have a set S whose r-sets are partitioned into
two classes such that there is no li-set each of whose k i-sets lies in an
r-set of class i, i = 1, 2. We may assume that S is of maximal cardinality
with the property

(2)

	

ISI =N(l i , k 1 ; 1 2 , k2 ; r)-1 .

Let T, be a maximal subset of S such that each of its k i -subsets is con-
tained in an r-set of class 1 . Then IT, I < 1 1 -1 . Let T2 = S\Ti , and
choose any point p in T 2 . If all r-subsets containing p and intersecting
T, in r-1 points were in class 1, then T, would not be maximal since
the point p could be adjoined . Therefore there is an r-set U of class 2
which intersects T 1 in r-1 points . We now show that T2 U U has the
property that each of its k2 -subsets is contained in an r-set of class . Ob-
viously any k2 -set lying in U \ T2 is contained in the set U which is of
class 2. Now take any k 2 -set V in T2 U U such that V n T i C U and
k2 n T2 = W ~ 0 (this is the only remaining case) . We assume that V
lies only in r-subsets of class 1 and arrive at a contradiction . For take
any k1 subset V' lying in T, U W. If V' lies totally in T i , it is contained
in an r-set of class 1 ; but if V' n W # 0, then I V' U VI < r and since all
r-subsets containing V are of class 1, V' is contained in an r-set of class
1 . Therefore any k 1 -subset of T i U W lies in an r-set of class 1 which
contradicts the maximality of T i . Thus the arbitrarily chosen k2 -set
V in T 2 U U must lie in some r-subset of class 2 . But I T2 U UI =
IT21 +r-l, and we must have IT21 +r-1 < 1 2 -1 by the definition of
S. Since IT, I < 1 1 -- 1, we have

or by equation (2)

ISI = I T11 + I T21 < 11 + 1 2 -1* + 1 =11 + 1 2 -k 1 -k 2 .
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N(h, ki ; 12, k2 ; r) < l i + l 2 -k i -k2 + 1 .

Combining this result with inequality (1), we see that

(3) N(li , ki ; 12, k2 ; r) = l i + l 2 -ki -k2 + 1 ,

which proves the theorem .

Theorem 1 is a generalization of the pigeonhole principle, the simplest
Ramsey result which states that the Ramsey number N(1,, 12 ; 1) (equiv-
alent in our notation to N(11 , 1 ; 12, 1 ; 1)) is given by 1 1 + 12 -1 .

We now consider the numbers N(li , ki ; 12, k2 ; r), with the condition
that k l + k2 = r + 2. These are analogous to the Ramsey numbers
N(li, 12 ; 2) (N(li , 2 ; 12, 2; 2), in our notation) . To get an exact formula
for these numbers would be too much to expect since this has not been,
possible with the usual Ramsey numbers even in very restricted cases .
The numbers are so highly variable if both ll and 12 are allowed to range
that we shall restrict ourselves to studying the asymptotic behavior of
N(l, kl ; l, k 2 ; r). We shall prove :

Theorem 2 . If k, + k 2 = r + 2, then there exist constants c l and c2
such that for sufficiently large l, 2e , l < N(l, kl ; l, k2,"') < 2`'= l .

Proof. We first show that N(l, ki ; l, k2 ; r) < 2' 2 l . Let S be a set contain-
ing N(l, l ; 2) points. This assures that if the edges defined by pairs of
points in S are partitioned into two classes, there will be an l-gon (a
complete 1-graph) all of whose edges are in one class .

Now partition the r-tuples of S into class 1 and class 2 in any manner .
We say that a k i -set is of class 1 if all r-tuples containing it are of class
1, and a k 2 -set is of class 2 if all r-tuples containing it are of class 2 .
Note that a ki -set of class 1 and a k 2 -set of class 2 intersect in at most
one point, for if they intersected at two points, then the union of the
ki -set and k 2 -set would be an r-set which would have to be in class 1
and class 2 simultaneously .

We define two edge disjoint graphs as follows : an edge is in G, if it
is contained in a k i -set of class 1 and is in G 2 if it is contained in a k2-
set of class 2 . Since ISI =N(l, l ; 2), there is an l-set where either G, or
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G 2 has no edge, say G, . But then every k2 -subset of this 1-set is con-
tained in an r-set of class 2 . Thus, N(l, ki ; 1, k 2 ; r) < N(l, l ; 2) . Now it
has been shown in [ 2] that N(l, l; 2) < (21-2 ) < 2 21- , and for c 2 = 2,

(4)

	

N(1, k l ,- 1, k2 ; r) < 2e21 .

We will now show that N(l, k 1 ; l, k 2 ; r) > 2e ~ 1 , for some constant
c l , with l sufficiently large . To do this we shall need the following re-
sult :

Lemma l . Let Fk (2, l) be the largest integer for which there is a graph
G on Fk (2, 1) vertices so that every set of l vertices in it contains a com-
plete k-gon and a set of k independent points (no two joined by an edge) .
There is a constant c k depending only on k such that for l sufficiently
large, Fk (2,1) > 2c kl .

Consider a set of S = Fk (2, l) points and let k = max (k i , k2 ) < r,
k, + k 2 = r + 2. We partition the r-sets of S as follows : place an r-set in
class 2 if it contains a ki -gon in the graph G and in class 1 if it contains an
independent k2 -set. Note that an r-set cannot contain both a k l -gon and
an independent k2 -set as they would intersect at two points ; thus the
partition is well defined if we add that r-sets not containing either a k,-
gon or an independent k2 -set are placed arbitrarily in either class .

Now with ISI = Fk (2, l) points we have constructed a partition of the
r-tuples such that every 1-set contains a ki -set all of whose containing
r-sets are class 2 and a k2 -set all of whose containing r-sets are class 1 .
Thus

(5)

	

N(l, ki ; 1, k2 ; r) > Fk (2,1), k = max (k i , k2 ) .

This shows that the definition of Fk (2, l) as the largest integer with the
given property is proper, since we know that N(l, ki ; l, k2 ; r) is bounded
above. Furthermore, given the result of Lemma 1 and eq . (5), we will
know that there is an integer c t depending only on max (k I , k2 ), such
that, for l sufficiently large,

(6)

	

N(l, ki ; 1, k2 ; r) > 2` ,l
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This taken with eq . (4) will give Theorem 2 . It is only necessary to prove
Lemma 1 therefore .

Proof of Lemma L By a theorem of Erdős and Hanani [ 1 ] , for fixed k
and 1 large, a set of 1 elements contains (I + ~p (1))1 2 Ik2 = L(k, l) k-sub-
sets, every two of which have at most one element in common, asymp-
totically in 1 . We shall disregard the áp(1) term, since we shall see that it
only affects the value of the constant ck .

Let m < 2ekl . (We shall indicate the value of ck later) . There are 2(z >
graphs on m labelled vertices . We first estimate the number of graphs G
on m points for which a given I-subset of points does not contain both a
complete k-gon and k independent points . Consider our L(k, 1) k-sets .
Let us say that we do not permit k-gons in this l-subset of G . Then there
are 2(

k
) -1 ways in which the edges of the graph G may be placed in

each of the L(k, 1) k-sets, and since the L(k, 1) k-sets are edge disjoint,
the colorings are independent . The number of graphs on 1 points which
do not contain k-gons is therefore at most

(7)

	

2 ( 2 ) ( 1-1/2 ( z ) )L(k .l)

Since we could just as well have permitted k-gons and forbidden in-
dependent k-sets, the number of graphs on l points becomes at most
twice the number . All the remaining edges among the m points, (i)-(2)
in number may be included or not included in the graph G arbitrarily and
it will remain a graph for which a given l-subset of points does not con-
tain both a complete k-gon and k independent points . The number of
such graphs G is

2 • 2( ' 2` ) ( 1-1/2(2) )!,(kl) .

Since there are (m) I-subsets, the total number of graphs with some I-sub-
set which does not contain a complete k-gon or k independent points is
not greater than

(g)

	

(~`)2~m )+ ' ( 1-1/2~k>)L(k1) < 2 ml(1-1/2~k))L(kl) 2(m)

which we may prove is less than 2(m), for 1 sufficiently large. We need
merely show that
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2 • ml (1-1/2(2)) 1 ' 1k' < 1 .

Cancelling, we get

n2 (1-c3 )e 4 l < 1 ,

where c 3 and c4 depend only on k, and for a proper choice of ck,

m < 2ek 1 guarantees this . But this means that among the 2 (m ) graphs on
m < 2e k 1 points there are some all of whose 1-subsets contain both a
complete k-gon and k independent points . Since Fk (2, l) is the largest
cardinality for such graphs

Fk (2, l) >_
2ek1

,

and the lemma is proved .

As a final remark, we note that using essentially the same technique
as above, we may show that if k, + k 2 = r + 3, then for l sufficiently
large

N(l, k l : 1, k 2 ; r) > 2e ' 12 ,

where cl depends only on max (k l , k 2 ) . This bound is probably very
poor, however. By somewhat more complicated methods, we can prove
that

N(l, k 1 ; 1, k 2 ; r) < 2er l ,

for r > r(c), c r < e if k, + k2 = r + 2 . We hope to return to this and
other related questions in another paper .
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