XVIII. ON CHROMATIC NUMBER OF GRAPHS AND SET SYSTEMS

P. Erdős and A. Hajnal

Mathematical Institute, Hungarian Academy of Sciences

B.Rothchild

University of California, Los Angeles

§ 1. Introduction

The aim of this note is to correct a mistake the first two authors made in [1]. Set theoretical notation will be standard otherwise we will use the graph theoretical notation described in [1].

One of the main results of [1] Corollary 5.6 states that every graph of chromatic number $> \omega$ contains complete bipartite graphs [i, ω ,] for $i < \omega$.

At the end of our paper in 12.1 we claimed the following generalization of this result for uniform set systems.

If $\mathcal{H} = \langle h, H \rangle$ is a uniform set system with $\chi(\mathcal{H}) = k$ $2 \leq k < \omega$, $\beta \geq \omega$ then either the colouring number of \mathcal{H} is at most β or there is $H' \subset H$, $|H'| = \beta^+$ such that $|\bigcap H'| \geq k - i$. For k = 2 this is a trivial consequence of e.g. [1] 5.6. In [1] we omitted the "proof". We verified the result for $\chi(\mathcal{H}) = \chi = \beta^+$ and thought that the induction method described in [1] § 4 yields the general result. However, this is not true and we are going to state a correct version of the theorem.

To have a brief notation we introduce a relation $R(\alpha, \beta, \gamma, \kappa, \iota)$.

K(H)=k either there is H'CH , H'I=& with $| \cap H' | \geq i$ or $Chr(\mathcal{R}) \leq \beta$. The false theorem claimed that $\mathcal{R}(\prec,\beta,\beta^*,\kappa,\kappa-1)$ holds for B = W, 2=K < W , and for every X <u>Theorem 1.</u> Let $\beta = \omega_{g}$, $3 \le k < \omega$. Then holds for $\measuredangle = \beta^+$ R(x, B, B+, K, K-1) holds for $\alpha \in \omega_{\epsilon+k-2}$ $R(\alpha, \beta, \beta^{\dagger}, k, 2)$ Put $\exp(\beta) = \beta$, $\exp(\beta) = 2^{\exp(\beta)}$ for $k < \omega$ On the other hand we have Theorem 2. Let $B = \omega_{\xi}$, $3 \le k < \omega$, $2 \le i \le k - 1$ and put $\alpha = (\exp_{(\beta)})^+$ Then R(«,B,2,k,i) is false. If we now denote by $f(\beta, k, i)$ the minimal α , for which $R(\alpha, \beta, 2, \kappa, i)$ is false for $\beta \ge \omega$, $3 \le k < \omega$ $2 \le i \le k-1$ then assuming G.C.H. we obtain the following Corollary:

$$f(B_1 k_1 2) = \omega_{\xi+k-1}$$

 $f(B_1 k_1 k_1) = \omega_{\xi+2}$

$$f(B,K,i) \leq W_{\xi+k-i+1}$$
 for $2 \leq i \leq k-1$

We have an example to show that the upper estimate is not best possible.

<u>Theorem 3</u>. Assume $k = \begin{pmatrix} \ell \\ t \end{pmatrix}$, $\alpha = \begin{pmatrix} \exp_{\ell-1}(\beta) \end{pmatrix}^+$, k > 1 $i = \begin{pmatrix} \ell-1 \\ t \end{pmatrix} + l$. Then $R(\alpha, \beta, 2, k, i)$ is false. As a corollary if G.C.H. is assumed and $\beta = \omega_{\xi}$ we get

$$f(\beta, k, \binom{\ell-1}{t}+1) \leq \omega_{\xi+t}$$

E.g. in case k=6, l=4 we get

$$f(\beta_1, 6, 4) \leq \omega_{\xi+2} \qquad \text{while } k-i+1=3$$

Note that assuming G.C.H. the simplest unsolved problem is the following:

Does $R(w_{2}, \omega, 2, 5, 3)$ hold?

We can not determine $f(\beta_i \kappa_i i)$ for other values of i', however with Galvin the first two authors have a number of similar but more complicated results giving sharp upper estimations for the chromatic number of uniform set systems not containing certain types of finite subsystems. These will appear in a forthcoming triple paper of Erdős, Hajnal and Galvin.

Before we turn to the proofs we mention a few other problems which led us to discover our mistake.

Let β be a cardinal. Let $H_{\nu}(\beta)$ be the minimal β , for which there is a partition I of length β of $P(\beta)$, i.e. $P(\beta) = \bigcup_{v < \gamma} I_{\nu}$ such that no I_{ν} contains three different sets, $A_{j}B_{j}C$ with $A \cup B = C$

The function H_{\circ} was introduced by Hanson for finite β . Hanson proved

(1)
$$C\sqrt{\beta} < H_{o}(\beta) \leq \frac{\beta}{2} + 2$$
 for $\beta < \omega$

A theorem of Erdős and Komlós implies that in (1) we have $\frac{\beta}{\pi} < H_o(\beta)$ as well.

For $\beta \not > \omega$, G. Elekes proved recently that $H_o(\omega) > \omega$ See [2]. For more problems arising here see [3]. Later Erdős considered the following similar problem. Let $H_1(\beta)$ be the smallest δ for which there is $\mathcal{P}(\beta) = \bigcup_{v < \delta} I_v$ such that there are no distinct $A, B, C, D \in \mathcal{P}(\beta)$ in the same I_v satisfying

(2)
$$A \cup B = C$$
, $A \cap B = D$

For finite β a theorem of Erdős and Kleitman gives

$$C_{1} \beta^{1/4} < H_{1}(\beta) < C_{2} \beta^{1/2}$$

Meditation shows that $R(2^{\beta}, \gamma, 2, 4, 3)$ implies $H_{i}(\beta) \leq \phi$ hence, by the false "theorem", $H_{i}(\beta) \leq \psi$ for every β . Investigation of $H_{i}(\beta)$ led us finally to the simple proof of Theorem 2.

It is worth to remark that by the above consideration and by Theorem 1 we have

(3) $2^{\beta} = \beta^{+}$ implies $H_{1}(\beta) = \beta$ for $\beta \ge \omega$

 $H_1(\mathcal{B})$ will be studied in the forthcoming Erdős-Galvin-Hajnal paper as well.

§ 2. Proofs

Proof of Theorem 1. Let $\mathcal{H} = \langle h, H \rangle$ be a uniform set system with $\alpha(\mathcal{H}) = \alpha$, $\alpha(\mathcal{H}) = k$ and assume $2 \leq i \leq k-1$, $\beta < \alpha$ and

(4) $|\cap H'| < \iota$ for H'CH, $|H'| = \beta^+$

It follows easily from the Lemmas stated in $\begin{bmatrix} 1 \end{bmatrix}$ § 4 that then there is a sequence B_{ξ} , $\xi < \alpha$ of disjoint subsets of α , satisfying the following conditions

(5)
$$|B_{\xi}| < \alpha$$
 for $\xi < \alpha$. $\bigcup B_{\xi} = h$

(6) If
$$C_{\xi} = \bigcup_{\eta < \xi} \mathcal{B}_{\eta}$$
, $X \in H$, $|X \cap C_{\xi}| \ge i$

then $\chi < C_{\xi}$ for $\xi < \varkappa$,

To prove statement (i) of Theorem 1. let $\alpha = \beta^+$, i = k - iThen, by (5), $|B_{\xi}| \leq \beta$ for $\xi < \alpha$. Then there are sets D_{ν} , $\nu < \beta$ such that $h = \bigcup D_{\nu}$ and $|D_{\nu} \cap B_{\xi}| \leq i$ for $\nu < \beta$, $\xi < \alpha$. Then, by (6), $X \notin D_{\nu}$ for $X \in H$ otherwise there is a maximal ξ with $X \cap B_{\xi} = \{u\}$ for some u, and $X - \{u\} < C_{\xi}$, $|X - \{u\}| = k - i$ implies $u \in C_{\xi}$ a contradiction. Hence $Chr(\mathcal{H}) \leq \beta$

To prove part (ii) we apply induction on \mathcal{A} . We assume that (ii) is true for every \mathcal{H}' with $\mathcal{A}(\mathcal{H}') < \mathcal{A}, \mathcal{X}(\mathcal{H}') = \ell, 3 \leq \ell < \omega$ Since $\mathcal{R}(\mathcal{B}, \mathcal{B}, ...)$ is true we may assume $\mathcal{B} < \mathcal{A} \leq \omega_{\xi+\kappa-2}$ and that (4), (5) and (6) hold with $\ell \geq 2$ and we have to prove $Chr(\mathcal{H}) \leq \beta$.

By part (i) we may assume k > 3. For XEH let $\xi(X) = \max\{\xi < x : B_{\xi} \cap H \neq \emptyset\}$

$$H_{\xi} = \{ X \in H : \xi(X) = \xi \}, \quad H = \bigcup H_{\xi} \\ \xi < \kappa$$

Then, by (6), $|\chi \cap B_{\xi}| \ge k-1 \ge 3$ for $\chi \in H_{\xi}$. Hence there is a uniform set system $\mathcal{H}_{\xi} = \langle \mathbf{B}_{\xi}, \widehat{H}_{\xi} \rangle$ such that (7) $\mathscr{A}(\mathscr{H}_{\xi}) = |\mathsf{B}_{\xi}| \leq \omega_{\xi+k-3}$ for each $\xi < \mathfrak{A}$, $\mathscr{H}(\mathscr{H}_{\xi}) = k-1$

and there is $Y \in \widehat{H}_{\xi}$, $Y \subset X$ for $X \in H_{\xi}$ Then obviously N H' | < 2 for $H' \subset \widehat{H}_{\xi}$, $|H'| = \beta^+$ Applying the induction hypothesis for the set systems H_{ξ} get that there are sets

we

$$D_{\xi,v} \subset B_{\xi} \qquad \bigcup D_{\xi,v} = B_{\xi}$$

such that $\forall \neq D_{\xi, v}$ for $\forall \in \widehat{H}_{\xi}$, $\xi < \alpha$, $\vee < \beta$. Put $D_{v} = \bigcup D_{\xi, v}$. Then $\bigcup D_{v} = H$ $\xi < \alpha$ Let $v < \beta$, $\chi \in H$. Then $\chi \in H_{\xi}$ for some $\xi < \alpha$ Then by (7) there is $\forall \in \widehat{H}_{\xi}$, $\forall c \chi$ Since $\forall \notin D_{\xi, v}$, $\chi \notin D_{v}$. Hence $Chr(Je) \leq \beta$.

Proof of Theorem 2. Put

$$h = \left[\alpha \right]^{k-i+1}, \quad 2 \leq k-i+1 < k$$

Let $X \in [\mathcal{A}]^k$, $X = \{x_{\circ_1 \cdots}, x_{k-1}\}$, $x_{\circ} < \cdots < x_{k-1}\}$ We define $Z(X) \in [h]^k$ by

$$\overline{Z}(X) = \left\{ \{u_{k}^{i}, \dots, u_{k-i}^{i}\} \in h: j < k \text{ and } u_{i}^{i} = X_{j+i} \mod k \right\}$$
for $v \leq k-i^{2}$

i.e. Z(X) consists of the k intervals of length k-i+iof X considered in the cyclical order $x_0 \prec \cdots \prec x_{k-i} \prec x_{\cdot}$ By $k-i+i \prec k$, |Z(X)| = k. Put $H = \{Z(X): X \in [\alpha]^k \}$ $\exists f = \langle h, H \rangle$. Then $\alpha(\Im f) = \alpha = (exp_{k-i}(\beta))^+$ Let now $X \neq Y \in [\alpha]^k$, then there are $x \in X - Y$, $y \in Y - X$. Hence $|Z(X) - Z(Y)| \ge k-i+i$, $|Z(Y) - Z(X)| \ge k-i+i$

and thus

$$|Z(X) \cap \overline{Z}(Y)| \leq \frac{2k-2(k-i+i)}{2} = i \neq 1$$

Thus $H' \subset H$, |H'| = 2 implies $|\bigcap H'| < i$ We prove $Chr(\mathcal{H}) > \beta$ Let $h = \bigcup D_{v}$ be a partition of h. Then by $h = [\alpha]^{k-i+i} \lor < \beta$ and as a corollary of the Erdős-Rado theorem $(exp_{k-i}(\beta))^{+} \rightarrow (\beta^{+})_{\beta}^{k-i+i}$ there is $X \subset \alpha$, |X| = kwhich is homogeneous, i.e. there is $v < \beta$ such that $[X]^{k-i+i} \subset D_{v}$. But then $\Xi(X) \subset D_{v}$, $\Xi(X) \in H$ for this X. Hence \mathcal{H} has the properties to show that $R(\alpha_{i}\beta_{i},2,\kappa,i)$ is false. As to the proof of Theorem 3, take

$$h = [\alpha]^{t}, H = \{ [X]^{t} : X \in [\alpha]^{e} \}, H = \langle h, H \rangle$$

It follows quite similarly as in the proof of Theorem 2 that \mathcal{H} disproves $R(a, \beta, 2, \kappa, i)$

References

[1] P. Erdős and A. Hajnal, On chromatic number of graphs and set systems, Acta Math. Acad. Sci. Hung. 17(1966)61-99. 2] G. Elekes, On a partition property of infinite subsets of a set. Periodica Math. Hung. to appear. [3] P. Erdős and A. Hajnal, Unsolved and solved problems in set theory, Proceedings of the Berkeley Symposium 1971, to appear.