ON THE STRUCTURE OF EDGE GRAPHS

BÉLA BOLLOBĀS and PAUL ERDŐS

Every graph appearing in this note is a finite edge graph without loops and multiple edges. Denote by $G(n, m)$ a graph with n vertices and m edges. $K_{r}(t)$ denotes a graph with r groups of t vertices each, in which two vertices are connected if and only if they belong to different groups.

By dividing n vertices into $r-1$ almost equal groups and connecting the points in different groups one obtains a graph on n vertices with $((r-2) / 2(r-1)+\sigma(1)) n^{2}$ edges which does not contain a $K_{r}(1)$. On the other hand, it was shown by Erdős and Stone [7] that $((r-2) / 2(r-1)+\varepsilon) n^{2}(\varepsilon>0)$ edges assure already the existence of a $K_{r}(t)$, where $t \rightarrow \infty$ as $n \rightarrow \infty$. This result is the most essential part of the theorems on the structure of extremal graphs, see e.g. [3], [4], [6], [9].

Let us formulate the result of Erdős and Stone more precisely. Given n, r and ε, put $m=\left[((r-2) / 2(r-1)+\varepsilon) n^{2}\right]([x]$ denotes the integer part of $x)$ and define

$$
g(n, r, \varepsilon)=\min \left\{t: \text { every } G(n, m) \text { contains a } K_{r}(t)\right\} .
$$

Erdős and Stone proved that if n is large enough then

$$
\left(l_{r-1}(n)\right)^{\frac{1}{2}} \leqslant g(n, r, \varepsilon),
$$

where l_{s} denotes the s times iterated logarithm. They also stated that for any fixed $\delta>0$ and large enough n the same method gives

$$
\left(l_{r-1}(n)\right)^{1-\delta} \leqslant g(n, r, \varepsilon)
$$

In [7] Erdős and Stone also expected that $l_{r-1}(n)$ is, in fact, the proper order of $g(n, r, \varepsilon)$ if ε is small enough. For $r=2$ this was stated in [1]. In [2] Erdős announced that given $\varepsilon>0$ and $r \geqslant 2$ there exists a constant $c^{\prime}>0$ such that

$$
c^{\prime}(\log n)^{1 /(r-1)}<g(n, r, \varepsilon),
$$

and thought that $g(n, r, \varepsilon)$ will turn out to be of order $(\log n)^{1 /(r-1)}$.
The aim of this note is to show that for $r>2$ the situation is rather different from what seemed likely. The two theorems we prove (of which the second is an easy exercise in the vein of [5]) show that for any r and $0<\varepsilon<1 / 2(r-1)$ there are constants c_{1} and $c_{2}>0$ such that

$$
c_{1} \log n \leqslant g(n, r, \varepsilon) \leqslant c_{2} \log n
$$

if n is sufficiently large and $c_{2} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
The following lemma is needed in the proof of Theorem 1.

Lemma 1. Let G be a graph with n vertices. Suppose G does not contain a $K_{r}(t)$ but it contains a $K_{r-1}(q)$, say \tilde{K}. Put $N=n-(r-1) q$. Then G has at most

$$
((r-2) q+t) N+2 q N^{1-(1 / t)}
$$

edges of the form (x, y), where x is a vertex of \tilde{K} and y is a vertex of $G-\tilde{K}$.
For the sake of convenience we use the notation $C(a, b)=\binom{a}{b}$. Let $q \geqslant t$ and $r \geqslant 2$ be natural numbers. Suppose $S=\bigcup_{1}^{r-1} S_{i},\left|S_{i}\right|=q,|S|=(r-1) q$. Call a set $K \subset S$ a K_{t}-set if $\left|K \cap S_{i}\right|=t$ for all i. We prove Lemma 1 in the following equivalent form.

Lemma 1'. Let A_{1}, \ldots, A_{N} be (not necessarily distinct) subsets of S, such that every K_{i}-set is contained in at most $t-1$ sets A_{i}. Then

$$
\sum_{1}^{N}\left|A_{i}\right| \leqslant((r-2) q+t) N+2 q N^{1-(1 / t)}
$$

Proof. Suppose $\left|A_{i}\right| \geqslant(r-2) q+t$ for $i \leqslant M$ and $\left|A_{i}\right|<(r-2) q+t$ for $i>M$. For $i \leqslant M$ and $j \leqslant r-1$ put $\left|A_{i} \cap S_{j}\right|=a_{i j}$. Then $a_{i j} \geqslant t$ and A_{i} contains $\prod_{j=1}^{r-1} C\left(a_{i j}, t\right)$ K_{t}-sets. Therefore, by the assumption,

$$
\sum_{i=1}^{M} \prod_{j=1}^{r-1} C\left(a_{i j}, t\right) \leqslant(t-1)(C(q, t))^{r-1} .
$$

Putting $a_{i}=\sum_{j=1}^{r-1} a_{i j}-(r-2) q$, one has

$$
\prod_{i=1}^{r-1} C\left(a_{i j}, t\right) \geqslant(C(q, t))^{r-2} C\left(a_{i}, t\right)
$$

so

$$
\sum_{i=1}^{M} C\left(a_{i}, t\right) \leqslant(t-1) C(q, t)
$$

As $C(x, t)$ is a convex function of x, on putting $a=\sum_{1}^{M} a_{i} / M$, this implies

$$
M C(a, t) \leqslant(t-1) C(q, t) .
$$

Thus

$$
\begin{aligned}
& a \leqslant(t-1)^{1 / t} q M^{-1 / t}+t<2 q M^{-1 / t}+t, \\
& \sum_{1}^{M}\left|A_{i}\right|<2 q M^{-1 / t}+M t+M(r-2) q .
\end{aligned}
$$

Since

$$
\sum_{M+1}^{N}\left|A_{i}\right| \leqslant(N-M)((r-2) q+t)
$$

the lemma follows.

Theorem 1. Let $r \geqslant 2$ be an integer and let $\varepsilon>0$. Then there exists $k=k(\varepsilon, r)>0$ such that if n is sufficiently large and $m \geqslant((r-2) / 2(r-1)+\varepsilon) n^{2}$ then every $G(n, m)$ contains a $K_{r}(t)$ with $t \geqslant[k \log n]$.

Proof. Let $r=2$. We show that any $k<-1 / \log (2 \varepsilon)$ will do for $k(\varepsilon, 2)$. For put $j=j(n)=[k \log n]$ and suppose that there are arbitrary large values of n for which there is a graph $G(n, m)$ without a $K_{2}(j)$, where $m \geqslant \varepsilon n^{2}$. Then by a result of Kővári, Sós and Turán [8] (improved by Znám [10]),

$$
\varepsilon n^{2} \leqslant \frac{1}{2}(j-1)^{1 / j} n^{2-(1 / j)}+\frac{1}{2} j n .
$$

That is, after dividing by $\frac{1}{2} n^{2-(1 / j)}$, we obtain that for any $\eta>1$ there is an arbitrary large n, such that

$$
2 \varepsilon n^{1 / j} \leqslant \eta,
$$

which contradicts the choice of k. This proves the result for $r=2$.
To prove the result for $r>2$ we use induction on r. Suppose the theorem holds for $r=r^{\prime}-1$ and take $r=r^{\prime}$. For the sake of convenience we denote by $\widetilde{G}_{\varepsilon}(n)$ a graph with n vertices and at least $n^{2}((r-2) / 2(r-1)+\varepsilon)$ edges. If x is any positive real number, we also put $\tilde{K}_{r}(x)=K_{r}([x])$, where $[x]$ is the smallest integer not less than x. We suppose that $\varepsilon<1 / 2(r-1)$, for otherwise there is nothing to prove.

By the induction hypothesis there exists a positive number e_{r}, depending on r, such that every $\tilde{G}_{z}(n)$ contains a $\tilde{K}_{r-1}(q(n))$, where $q(n)=e_{r} \log n$. We shall show that every $\widetilde{G}_{\varepsilon}(n)$ contains a $\tilde{K}_{r}(\varepsilon(r-1) / 4 q(n))=\widetilde{K}_{r}\left(d_{r} \varepsilon \log n\right)=\widetilde{K}_{r}(t(n))$ if n is large enough.

Suppose that, contrary to this assertion, there are arbitrarily large values of n for which some $\widetilde{G}_{\varepsilon}(n)$ does not contain a $K_{r}(t(n))$. Given any N, let

$$
G_{0}=\widetilde{G}_{\varepsilon}(n) \equiv \widetilde{G}_{\varepsilon}\left(n_{0}\right), n_{0} \geqslant N / \varepsilon,
$$

be such a graph. Define a sequence of graphs $G_{0} \supset G_{1} \supset \ldots, G_{k}=\widetilde{G}_{\varepsilon}\left(n_{k}\right)$, as follows. If G_{k} has a vertex x_{k} of degree less than $n_{k}(r-2 / \mathrm{r}-1+\varepsilon)$, put $G_{k+1}=G_{k}-x_{k}$. One can easily check that for $k \geqslant n-\varepsilon n$ the graph G_{k} would be the complete graph, so the sequence must stop with a graph $G_{k}=\widetilde{G}_{\varepsilon}\left(n_{k}\right)$, where $n_{k} \geqslant \varepsilon n \geqslant N$. Furthermore, $\tilde{G}_{\varepsilon}\left(n_{k}\right)$ does not contain a $K_{r}(t(n))$ so it does not contain a $K_{r}\left(2 t\left(n_{k}\right)\right)$ either if N is large enough (e.g. if $t(N) \leqslant 2 t(N / \varepsilon)$).

Consequently there are arbitrarily large values of n for which some graph $\widetilde{G}=\widetilde{G}_{\varepsilon}(n)$ does not contain a $\tilde{K}_{r}(2 t(n))$ and has only vertices of degree at least $n(r-2 / r-1+\varepsilon)$. Put $q=q(n), t=2 t(n)$. Then \tilde{G} contains a $\tilde{K}_{r-1}(q)$, say \tilde{K}_{r-1} but does not contain a $\tilde{K}_{2}(t)$ and so by the result of Kővári, Sós and Turán [8] there are at most

$$
A=\binom{r-1}{2} q^{2}+(r-1)\left\{\frac{1}{2}(t-1)^{1 / t} q^{2-1 / t}+\frac{1}{2} q t\right\}
$$

edges in the subgraph spanned by \tilde{K}_{r-1}. Furthermore, by the lemma, at most $B=((r-2) q+t)(n-(r-1) q)+2 q n^{1-1 / t}$ edges connect \tilde{K}_{r-1} to $\tilde{G}-\tilde{K}_{r-1}$. Finally, as every vertex of \tilde{G} has degree at least $n(r-2 / r-1+\varepsilon)$, we must have

$$
2 A+B \geqslant(r-1) q n(r-2 / r-1+\varepsilon),
$$

and so

$$
2 q n^{1-(1 / t)}+(r-1) q^{2}+t n \leqslant(r-1) \varepsilon q n .
$$

As this inequality does not hold if n is sufficiently large, the theorem is proved.

Theorem 2. Let $0<\varepsilon<\frac{1}{2}$ and $c>-2 / \log (2 \varepsilon)$. Then for every sufficiently large n there exists a graph $G(n, m)$ not containing a $K_{2}(t)$, where $m=\left[\varepsilon n^{2}\right]$ and $t=[c \log n]$.

Proof. The number of $K_{2}(t)$ graphs on n distinguishable vertices is

$$
C(n, 2 t) C(2 t, t) / 2
$$

and there are $C(n(n-1) / 2-l, m-l)$ graphs with m edges containing a given set of l edges. Thus the result follows if we show that for large enough n one has

$$
C\left(n(n-1) / 2-t^{2}, m-t^{2}\right) C(n, 2 t) C(2 t, t) / 2 C(n(n-1) / 2, \mathrm{~m})<1 .
$$

As the left hand side is bounded by

$$
(n(n-1) / 2)^{-t^{2}} m^{t^{2}} n^{2 t} \leqslant\left(\frac{2 \varepsilon n}{n-1}\right) t^{2} n^{2 t},
$$

which tends to zero since $c>-2 / \log (2 \varepsilon)$, the proof is complete.

Remarks. 1. Denote by $c_{r}(\varepsilon)$ the supremum of the possible values for $k(\varepsilon, r)$ Then Theorem 2 and the first part of the proof of Theorem 1 show that

$$
-1 / \log (2 \varepsilon) \leqslant c_{2}(\varepsilon) \leqslant-2 / \log (2 \varepsilon),
$$

and

$$
d_{r} \varepsilon \leqslant c_{r}(\varepsilon),
$$

where $d_{r}>0$ depends only on r.
Remarks. 2. If $0<\varepsilon<\frac{1}{2}(r-1)^{2}$ then $c_{r}(\varepsilon) \leqslant c_{2}\left((r-1)^{2} \varepsilon\right)$

$$
\begin{equation*}
\leqslant-2 / \log \left(2(r-1)^{2} \varepsilon\right), \tag{1}
\end{equation*}
$$

so in particular $c_{r}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ for every $r \geqslant 0$. To prove (1) note that for every $\eta>0$ we can construct the following graph if n is sufficiently large. Take an $(r-1)-$ partite graph on n vertices with maximal number of edges (there are [$n+i-1 / r-1$] vertices in the i th class). Add $\varepsilon n^{2}=(r-1)^{2} \varepsilon(n / r-1)^{2}$ edges to a class of it in such a way that the class contains no $K_{2}(t)$ if $t \geqslant\left(c_{2}\left((r-1)^{2} \varepsilon\right)+\eta\right) \log n / r-1$. Then the graph obtained in this way has no $K_{r}(t)$ if

$$
t \geqslant\left(c_{2}\left((r-1)^{2} \varepsilon\right)+\eta\right) \log n
$$

Remarks. 3. It is very likely that inequality (1) gives, in fact, the right order of $c_{r}(\varepsilon)$, i.e. there exists a $c_{r}^{*}>0$ such that

$$
\begin{equation*}
-c_{r}^{*} / \log \varepsilon \leqslant c_{r}(\varepsilon) \tag{2}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. For $r=2$ inequality (2) follows from Theorem 2, as we have already remarked.

References

1. P. Erdős, " On extremal problems of graphs and generalised graphs ", Israel J. Math., 2 (1965) 183-190.
2. -, " Some recent results on extremal problems in graph theory ", Actes des journées d'études sur la théorie des graphes (I.C.C. Dunod, 1967), 117-130.
3. -_, " Of some new inequalities concerning extremal properties of graphs ", Theory of graph, ed. by P. Erdős and G Katona (Acad. Press, N.Y., 1968), 83-98.
4. - , "On some extremal problems of r-graphs ", Discrete Math., 1 (1971), 7-18.
5. - and A. Rényi, " On the evolution of random graphs", Publ. Math. Inst. Hung. Acad., 5 (1960), 17-61.
6. - and M. Simonovits, "A limit theorem in graph theory", Studia Sci. Math. Hung. Acad., 1 (1966), 51-57.
7. - and A. H. Stone, " On the structure of linear graphs ", Bull. Amer. Math. Soc., Vol. LII (1946), 1087-1091.
8. T. Kővári, V. T. Sós and P. Turán, " On a problem of Zarankievicz ", Coll. Mat., 3 (1954), 50-57.
9. M. Simonovits, "A method for solving extremal problems in graph theory, stability problems ", Theory of Graphs, ed. by P. Erdős and G. Katona (Acad. Press, N.Y., 1968), 279-319.
10. S. Znám, " Two improvements of a result concerning a problem of K. Zarankiewicz ", Colloq. Math., 13 (1965), 255-258.

University of Cambridge
and
Hungarian Academy of Sciences, Budapest.

