ON THE STRUCTURE OF EDGE GRAPHS

BÉLA BOLLOBÁS AND PAUL ERDŐS

Every graph appearing in this note is a finite edge graph without loops and multiple edges. Denote by G(n, m) a graph with n vertices and m edges. $K_r(t)$ denotes a graph with r groups of t vertices each, in which two vertices are connected if and only if they belong to different groups.

By dividing *n* vertices into r-1 almost equal groups and connecting the points in different groups one obtains a graph on *n* vertices with $((r-2)/2(r-1)+\sigma(1))n^2$ edges which does not contain a $K_r(1)$. On the other hand, it was shown by Erdős and Stone [7] that $((r-2)/2(r-1)+\varepsilon)n^2(\varepsilon > 0)$ edges assure already the existence of a $K_r(t)$, where $t \to \infty$ as $n \to \infty$. This result is the most essential part of the theorems on the structure of extremal graphs, see e.g. [3], [4], [6], [9].

Let us formulate the result of Erdős and Stone more precisely. Given *n*, *r* and ε , put $m = \left[((r-2)/2(r-1)+\varepsilon)n^2 \right]$ ([x] denotes the integer part of x) and define

$$g(n, r, \varepsilon) = \min \{t : \text{every } G(n, m) \text{ contains a } K_r(t)\}.$$

Erdős and Stone proved that if n is large enough then

$$(l_{r-1}(n))^{\frac{1}{2}} \leq g(n, r, \varepsilon),$$

where l_s denotes the s times iterated logarithm. They also stated that for any fixed $\delta > 0$ and large enough n the same method gives

$$(l_{r-1}(n))^{1-\delta} \leq g(n, r, \varepsilon).$$

In [7] Erdős and Stone also expected that $l_{r-1}(n)$ is, in fact, the proper order of $g(n, r, \varepsilon)$ if ε is small enough. For r = 2 this was stated in [1]. In [2] Erdős announced that given $\varepsilon > 0$ and $r \ge 2$ there exists a constant c' > 0 such that

$$c'(\log n)^{1/(r-1)} < g(n, r, \varepsilon),$$

and thought that $g(n, r, \varepsilon)$ will turn out to be of order $(\log n)^{1/(r-1)}$.

The aim of this note is to show that for r > 2 the situation is rather different from what seemed likely. The two theorems we prove (of which the second is an easy exercise in the vein of [5]) show that for any r and $0 < \varepsilon < 1/2(r-1)$ there are constants c_1 and $c_2 > 0$ such that

$$c_1 \log n \leq g(n, r, \varepsilon) \leq c_2 \log n$$

if *n* is sufficiently large and $c_2 \rightarrow 0$ as $\varepsilon \rightarrow 0$.

The following lemma is needed in the proof of Theorem 1.

Received 1 January, 1973; revised 1 April, 1973.

[BULL. LONDON MATH. Soc., 5 (1973), 317-321]

LEMMA 1. Let G be a graph with n vertices. Suppose G does not contain a $K_r(t)$ but it contains a $K_{r-1}(q)$, say \tilde{K} . Put N = n - (r-1)q. Then G has at most

$$((r-2)q+t)N+2qN^{1-(1/t)}$$

edges of the form (x, y), where x is a vertex of \tilde{K} and y is a vertex of $G - \tilde{K}$.

For the sake of convenience we use the notation $C(a, b) = \begin{pmatrix} a \\ b \end{pmatrix}$. Let $q \ge t$ and

 $r \ge 2$ be natural numbers. Suppose $S = \bigcup_{i=1}^{r-1} S_i$, $|S_i| = q$, |S| = (r-1)q. Call a set $K \subset S$ a K_i -set if $|K \cap S_i| = t$ for all *i*. We prove Lemma 1 in the following equivalent form.

LEMMA 1'. Let $A_1, ..., A_N$ be (not necessarily distinct) subsets of S, such that every K_i -set is contained in at most t-1 sets A_i . Then

$$\sum_{1}^{N} |A_{i}| \leq ((r-2)q+t)N + 2qN^{1-(1/t)}.$$

Proof. Suppose $|A_i| \ge (r-2)q + t$ for $i \le M$ and $|A_i| < (r-2)q + t$ for i > M. For $i \le M$ and $j \le r-1$ put $|A_i \cap S_j| = a_{ij}$. Then $a_{ij} \ge t$ and A_i contains $\prod_{j=1}^{r-1} C(a_{ij}, t)$ K_t -sets. Therefore, by the assumption,

$$\sum_{i=1}^{M} \prod_{j=1}^{r-1} C(a_{ij}, t) \leq (t-1) (C(q, t))^{r-1}.$$

Putting $a_i = \sum_{j=1}^{r-1} a_{ij} - (r-2)q$, one has

$$\prod_{j=1}^{r-1} C(a_{ij}, t) \ge (C(q, t))^{r-2} C(a_i, t),$$

so

$$\sum_{i=1}^{M} C(a_i, t) \leq (t-1) C(q, t)$$

As C(x, t) is a convex function of x, on putting $a = \sum_{i=1}^{M} a_i/M$, this implies

$$MC(a, t) \leq (t-1)C(q, t).$$

Thus

$$\begin{split} a &\leq (t-1)^{1/t} q M^{-1/t} + t < 2q M^{-1/t} + t \\ \sum_{i=1}^{M} |A_i| &< 2q M^{-1/t} + Mt + M(r-2)q. \end{split}$$

Since

$$\sum_{M+1}^{N} |A_{i}| \leq (N-M)((r-2)q+t),$$

the lemma follows.

THEOREM 1. Let $r \ge 2$ be an integer and let $\varepsilon > 0$. Then there exists $k = k(\varepsilon, r) > 0$ such that if n is sufficiently large and $m \ge ((r-2)/2(r-1)+\varepsilon)n^2$ then every G(n,m)contains a $K_r(t)$ with $t \ge [k \log n]$.

Proof. Let r = 2. We show that any $k < -1/\log(2\varepsilon)$ will do for $k(\varepsilon, 2)$. For put $j = j(n) = [k \log n]$ and suppose that there are arbitrary large values of n for which there is a graph G(n, m) without a $K_2(j)$, where $m \ge \varepsilon n^2$. Then by a result of Kővári, Sós and Turán [8] (improved by Znám [10]),

$$\varepsilon n^2 \leq \frac{1}{2} (j-1)^{1/j} n^{2-(1/j)} + \frac{1}{2} jn.$$

That is, after dividing by $\frac{1}{2}n^{2-(1/j)}$, we obtain that for any $\eta > 1$ there is an arbitrary large *n*, such that

$$2 \varepsilon n^{1/j} \leq \eta$$

which contradicts the choice of k. This proves the result for r = 2.

To prove the result for r > 2 we use induction on r. Suppose the theorem holds for r = r' - 1 and take r = r'. For the sake of convenience we denote by $\tilde{G}_{\varepsilon}(n)$ a graph with n vertices and at least $n^2((r-2)/2(r-1)+\varepsilon)$ edges. If x is any positive real number, we also put $\tilde{K}_r(x) = K_r([x])$, where [x] is the smallest integer not less than x. We suppose that $\varepsilon < 1/2(r-1)$, for otherwise there is nothing to prove.

By the induction hypothesis there exists a positive number e_r , depending on r, such that every $\tilde{G}_{\varepsilon}(n)$ contains a $\tilde{K}_{r-1}(q(n))$, where $q(n) = e_r \log n$. We shall show that every $\tilde{G}_{\varepsilon}(n)$ contains a $\tilde{K}_r(\varepsilon(r-1)/4q(n)) = \tilde{K}_r(d_r \varepsilon \log n) = \tilde{K}_r(t(n))$ if n is large enough.

Suppose that, contrary to this assertion, there are arbitrarily large values of n for which some $\tilde{G}_{\varepsilon}(n)$ does not contain a $K_r(t(n))$. Given any N, let

$$G_0 = \tilde{G}_{\varepsilon}(n) \equiv \tilde{G}_{\varepsilon}(n_0), n_0 \ge N/\varepsilon,$$

be such a graph. Define a sequence of graphs $G_0 \supset G_1 \supset \ldots, G_k = \tilde{G}_{\varepsilon}(n_k)$, as follows. If G_k has a vertex x_k of degree less than $n_k(r-2/r-1+\varepsilon)$, put $G_{k+1} = G_k - x_k$. One can easily check that for $k \ge n - \varepsilon n$ the graph G_k would be the complete graph, so the sequence must stop with a graph $G_k = \tilde{G}_{\varepsilon}(n_k)$, where $n_k \ge \varepsilon n \ge N$. Furthermore, $\tilde{G}_{\varepsilon}(n_k)$ does not contain a $K_r(t(n))$ so it does not contain a $K_r(2t(n_k))$ either if N is large enough (e.g. if $t(N) \le 2t(N/\varepsilon)$).

Consequently there are arbitrarily large values of n for which some graph $\tilde{G} = \tilde{G}_{\varepsilon}(n)$ does not contain a $\tilde{K}_r(2t(n))$ and has only vertices of degree at least $n(r-2/r-1+\varepsilon)$. Put q = q(n), t = 2t(n). Then \tilde{G} contains a $\tilde{K}_{r-1}(q)$, say \tilde{K}_{r-1} but does not contain a $\tilde{K}_2(t)$ and so by the result of Kővári, Sós and Turán [8] there are at most

$$A = \binom{r-1}{2} q^2 + (r-1) \{ \frac{1}{2} (t-1)^{1/t} q^{2-1/t} + \frac{1}{2} qt \}$$

edges in the subgraph spanned by \tilde{K}_{r-1} . Furthermore, by the lemma, at most $B = ((r-2)q+t)(n-(r-1)q)+2qn^{1-1/t}$ edges connect \tilde{K}_{r-1} to $\tilde{G}-\tilde{K}_{r-1}$. Finally, as every vertex of \tilde{G} has degree at least $n(r-2/r-1+\varepsilon)$, we must have

$$2A+B \ge (r-1)qn (r-2/r-1+\varepsilon),$$

and so

$$2qn^{1-(1/t)} + (r-1)q^2 + tn \le (r-1)\varepsilon qn.$$

As this inequality does not hold if n is sufficiently large, the theorem is proved.

THEOREM 2. Let $0 < \varepsilon < \frac{1}{2}$ and $c > -2/\log(2\varepsilon)$. Then for every sufficiently large n there exists a graph G(n, m) not containing a $K_2(t)$, where $m = [\varepsilon n^2]$ and $t = [c \log n]$.

Proof. The number of $K_2(t)$ graphs on *n* distinguishable vertices is

C(n, 2t) C(2t, t)/2

and there are C(n(n-1)/2-l, m-l) graphs with *m* edges containing a given set of *l* edges. Thus the result follows if we show that for large enough *n* one has

$$C(n(n-1)/2 - t^2, m-t^2) C(n, 2t) C(2t, t)/2 C(n(n-1)/2, m) < 1.$$

As the left hand side is bounded by

$$(n(n-1)/2)^{-t^2} m^{t^2} n^{2t} \leq \left(\frac{2\varepsilon n}{n-1}\right) t^2 n^{2t},$$

which tends to zero since $c > -2/\log(2\varepsilon)$, the proof is complete.

Remarks. 1. Denote by $c_r(\varepsilon)$ the supremum of the possible values for $k(\varepsilon, r)$

Then Theorem 2 and the first part of the proof of Theorem 1 show that

$$-1/\log(2\varepsilon) \leq c_2(\varepsilon) \leq -2/\log(2\varepsilon),$$
$$d_r \varepsilon \leq c_r(\varepsilon),$$

where $d_r > 0$ depends only on r.

Remarks. 2. If
$$0 < \varepsilon < \frac{1}{2}(r-1)^2$$
 then $c_r(\varepsilon) \le c_2((r-1)^2 \varepsilon)$
 $\le -2/\log(2(r-1)^2 \varepsilon),$ (1)

so in particular $c_r(\varepsilon) \to 0$ as $\varepsilon \to 0$ for every $r \ge 0$. To prove (1) note that for every $\eta > 0$ we can construct the following graph if *n* is sufficiently large. Take an (r-1)-partite graph on *n* vertices with maximal number of edges (there are [n+i-1/r-1] vertices in the *i*th class). Add $\varepsilon n^2 = (r-1)^2 \varepsilon (n/r-1)^2$ edges to a class of it in such a way that the class contains no $K_2(t)$ if $t \ge (c_2((r-1)^2 \varepsilon) + \eta) \log n/r - 1$. Then the graph obtained in this way has no $K_r(t)$ if

$$t \ge \left(c_2\left((r-1)^2\varepsilon\right) + \eta\right)\log n.$$

Remarks. 3. It is very likely that inequality (1) gives, in fact, the right order of $c_r(\varepsilon)$, i.e. there exists a $c_r^* > 0$ such that

$$-c_r^*/\log\varepsilon \leqslant c_r(\varepsilon) \tag{2}$$

as $\varepsilon \to 0$. For r = 2 inequality (2) follows from Theorem 2, as we have already remarked.

References

- P. Erdős, "On extremal problems of graphs and generalised graphs ", Israel J. Math., 2 (1965) 183–190.
- , "Some recent results on extremal problems in graph theory", Actes des journées d'études sur la théorie des graphes (I.C.C. Dunod, 1967), 117–130.
- , " Of some new inequalities concerning extremal properties of graphs ", Theory of graph, ed. by P. Erdős and G Katona (Acad. Press, N.Y., 1968), 83-98.
- 4. _____, " On some extremal problems of r-graphs ", Discrete Math., 1 (1971), 7-18.
- and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hung. Acad., 5 (1960), 17-61.
- 6. and M. Simonovits, "A limit theorem in graph theory", Studia Sci. Math. Hung. Acad., 1 (1966), 51-57.
- and A. H. Stone, "On the structure of linear graphs", Bull. Amer. Math. Soc., Vol. LII (1946), 1087-1091.
- Kővári, V. T. Sós and P. Turán, "On a problem of Zarankievicz", Coll. Mat., 3 (1954), 50-57.
- M. Simonovits, "A method for solving extremal problems in graph theory, stability problems ", *Theory of Graphs*, ed. by P. Erdős and G. Katona (Acad. Press, N.Y., 1968), 279–319.
- Š. Znám, "Two improvements of a result concerning a problem of K. Zarankiewicz", Colloq. Math., 13 (1965), 255–258.

University of Cambridge

and

Hungarian Academy of Sciences, Budapest.