On the values of Euler's φ-function

by

P. Erdös (Budapest) and R. R. Hall (Heslington)

Introduction. Let M denote the set of distinct values of Euler's φ-function, that is, $m \in M$ if and only if

$$
m=\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

for some positive integer n. Let $m_{1}, m_{2}, m_{3}, \ldots$ be the elements of M arranged in increasing sequence.

Our main object in this paper is to estimate the sum

$$
V(x)=\sum_{m_{i} \leqslant x} 1
$$

from above. Note that $V(x) \geqslant \pi(x)$, for M includes the sequence $\{p-1\}$, and it was shown by Erdös [1] that for each positive ε,

$$
V(x)=O\left(\frac{x}{\log ^{1-\varepsilon} x}\right)
$$

We prove the following
Theorem. For each $B>2 \sqrt{2 / \log 2 \text {, }}$ we have that

$$
V(x)=O(\pi(x) \exp \{B \sqrt{\log \log x}\})
$$

We have not yet found a comparable estimate from below; we remark that it may be shown that

$$
V(x)=\Omega\left(\pi(x)(\log \log x)^{t}\right)
$$

for every fixed t, and we hope to study this further perhaps in a later paper.

An interesting problem is to investigate the gaps in the sequence $\left\{m_{i}\right\}$. Since this includes the sequence $\{p-1\}$, we have that

$$
m_{i+1}-m_{i}=O\left(m_{i}^{\alpha}\right)
$$

for every $\alpha>3 / 5$ by Montgomery's estimate [2] for the difference between consecutive primes. It is clear that our theorem gives

$$
m_{i+1}-m_{i}=\Omega\left(\frac{\log m_{i}}{\exp \left\{B \sqrt{\left.\log \log m_{i}\right\}}\right.}\right)
$$

for every $B>2 \sqrt{2 / \log 2}$, and it is possible that in fact

$$
m_{i+1}-m_{i}=\Omega\left(\log m_{i}\right),
$$

although we cannot prove this. We now give the proof of our main result.
Lemma 1. Let $\omega(n)$ denote the number of prime factors of n counted according to multiplicity. Then the number of integers $n \leqslant x$ for which

$$
\omega(n) \geqslant \frac{2}{\log 2} \log \log x
$$

is $O(\pi(x) \log \log x)$.
Proof. Let $\omega^{\prime}(n)$ denote the number of odd prime factors of n, and $v(n)$ the number of distinct prime factors. Then for all y,

$$
(1+y)^{\omega^{\prime}(n)}=\sum_{d \backslash n}^{\prime} y^{v(d)}(1+y)^{\omega(d)-v(d)}
$$

where Σ^{\prime} denotes a sum restricted to odd d. Hence for real, non-negative y,

$$
\sum_{n \leqslant x}(1+y)^{\omega^{\prime}(n)} \leqslant x \sum_{d \leqslant x}^{\prime} \frac{y^{v(d)}}{d}(1+y)^{\omega^{(d)}(d) v(d)} \leqslant x \prod_{3 \leqslant p \leqslant x}\left(1+\frac{y}{p-1-y}\right)
$$

provided $y<2$. This does not exceed

$$
x(\log x)^{y} \exp \left(\frac{A}{2-y}\right)
$$

where A is an absolute constant. Setting $y=t-1$ we have that

$$
\sum_{n \leqslant x} t^{\omega^{\prime}(n)} \leqslant x(\log x)^{t-1} \exp \left(\frac{A}{3-t}\right)
$$

provided $1 \leqslant t<3$, and we deduce that for this range of values of t,

$$
\sum_{\substack{n \leq x \\ \omega^{\prime}(n) \geqslant t \log \log x}} 1 \leqslant x(\log x)^{t-1-t \log t} \exp \left(\frac{A}{3-t}\right)
$$

Next, set $u=2 / \log 2<3$. If $\omega(n) \geqslant u \log \log x$ and $2^{k} \mid n$, we must have $\omega^{\prime}(n) \geqslant u \log \log x-k$. The number of integers $n \leqslant x$ for which
$k \geqslant \frac{1}{2} u \log \log x$ is $O(x / \log x)$ and so

$$
\sum_{\substack{n \leq x \\ \omega(n) \geqslant u \log \log x}} 1 \leqslant \sum_{0 \leqslant k \leqslant t u \log \log x} \sum_{\substack{m \leqslant x / 2^{k} k \\ \omega^{\prime}(m) \geqslant u \log \log x-k}} 1+O\left(\frac{x}{\log x}\right) .
$$

Set $k=h \log \log x$ so that h varies in the range $\left[0, \frac{1}{2} u\right]$. Certainly $1 \leqslant u-h<3$, and so the inner sum on the right is

$$
\ll \pi(x)(\log x)^{(u-h)-(u-h) \log (u-h)-h \log 2} \ll \pi(x)
$$

since the maximum value of the exponent of $\log x$ is zero. Summing over $k \leqslant u \log \log x$ we obtain our result.

Lemma 2. The number of integers $n \leqslant x$ which have no prime factor exceeding

$$
x^{1 / 6 \log \log x}
$$

is

$$
O(\pi(x) \log \log x) .
$$

Proof. We divide the integers $n \leqslant x$ into two classes. If $n \leqslant \sqrt{x}$ or $\omega(n) \geqslant u \log \log x, n$ belongs to the first class. Otherwise it belongs to the second class.

By Lemma 1, the number of integers in the first class is $O(\pi(x) \log \log x)$. If n belongs to the second class, its largest prime factor p must satisfy

$$
p^{u \log \log x}>\sqrt{x}
$$

Since $u<3$ this gives the result.
Proof of the Theorem. There exists an absolute constant c such that for all $n \geqslant 1$,

$$
n / \varphi(n) \leqslant c \log \log 3 \varphi(n) .
$$

Let $l=c \log \log 3 x$, so that if $\varphi(n) \leqslant x$, then $n \leqslant x l$.
Let m be a value of q not exceeding x. Either $\omega(m) \geqslant u \log \log x$, or $m=\varphi(n)$ where $n \leqslant x l$ and $\omega\{\varphi(n)\}<u \log \log x$. Therefore

$$
V(x) \leqslant \sum_{\substack{m \leqslant x \\ \omega(m) \geqslant u \log \log x}} 1+\sum_{\substack{n \leq x l \\ \omega\{\varphi(n)\}<u \log \log x}} 1 .
$$

The first sum is $O(\pi(x) \log \log x)$ by Lemma 1, and it remains to study the second. Note that $l \geqslant 1$ for $x \geqslant 1$, moreover that for $x>e^{e}$, which we may assume, the function

$$
x^{1 / 6 \log \log x}
$$

is increasing. We may therefore restrict our attention to those n in the second sum with at least one prime factor larger than this; by Lemma 2
the number of integers $n \leqslant x l$ not counted is

$$
O\left(\pi(x)(\log \log x)^{2}\right)
$$

In the remaining sum, we may write $n=m p$ where

$$
p>x^{1 / 6 \log \log x}, \quad m<l x^{1-1 / 6 \log \log x} .
$$

Then

$$
\begin{aligned}
V(x) & \leqslant \sum_{\omega\{\varphi(m)\}<u \log \log x} \pi\left(\frac{x l}{m}\right)+O\left(\pi(x)(\log \log x)^{2}\right) \\
& \ll \frac{x(\log \log x)^{2}}{\log x} \sum_{\omega\{\varphi(m)\}<u \log \log x} \frac{1}{m} .
\end{aligned}
$$

We do not restrict the size of m in this sum, as the series is convergent, as we will show.

Consider the function

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{\omega\{\varphi(n)\}}}{n}
$$

We are only concerned with real z in the range $0 \leqslant z<1$, and we show that for these values of z the series is convergent. Incidentally, it is therefore absolutely convergent, and so $f(z)$ is well-defined, for $|z|<1$. The behaviour of this series on the unit circle $|z|=1$ is an interesting and complicated problem.

Since $\omega\{\varphi(n)\}$ is additive $z^{\omega\{(n)\}}$ is multiplicative and

$$
f(z)=\prod_{p}\left(1+\frac{z^{\omega(p-1)}}{p-z}\right) \leqslant \exp \sum_{p} \frac{z^{\omega(p-1)}}{p-z}
$$

for $0 \leqslant z<1$, provided the series on the right converges.
We apply the following result of Erdös [1]. For every $\varepsilon>0$ there exists a positive $\delta=\delta(\varepsilon)$ such that the number of primes $p \leqslant x$ for which

$$
|v(p-1)-\log \log x| \geqslant \varepsilon \log \log x
$$

is

$$
O\left(\frac{x}{(\log x)^{1+\delta}}\right)
$$

Let k and H be positive numbers. Then

$$
\sum_{v(p-1) \leqslant k} \frac{1}{p} \leqslant \sum_{p \leqslant H} \frac{1}{p}+\int_{H}^{\infty} \frac{1}{t^{2}}\left(\sum_{\substack{p \leqslant t \\ v(p-1) \leqslant k}} 1\right) d t
$$

We select

$$
H=H(k)=\operatorname{expexp}\left(\frac{k}{1-\varepsilon}\right)
$$

so that in the integrand, the condition $v(p-1) \leqslant k$ implies that

$$
v(p-1) \leqslant(1-\varepsilon) \log \log t .
$$

The integral is therefore convergent, and we have that for $\varepsilon>0$,

$$
\sum_{\nu(p-1) \leqslant k} \frac{1}{p} \leqslant \frac{k}{1-\varepsilon}+C(\varepsilon)
$$

where $C(\varepsilon)$ is independent of k. Therefore for $0 \leqslant z<1$,

$$
\begin{aligned}
\sum_{p} \frac{z^{v(p-1)}}{p} & =\sum_{k=0}^{\infty} z^{k} \sum_{v(p-1)=k} \frac{1}{p}=(1-z) \sum_{k=0}^{\infty} z^{k} \sum_{v(p-1) \leqslant k} \frac{1}{p} \\
& \leqslant(1-z) \sum_{k=0}^{\infty}\left(\frac{k z^{k}}{1-\varepsilon}+C(\varepsilon) z^{k}\right) \leqslant \frac{z}{(1-\varepsilon)(1-z)}+C(\varepsilon) .
\end{aligned}
$$

Since $\omega(p-1) \geqslant \nu(p-1)$, this gives

$$
\sum_{p} \frac{z^{\omega(p-1)}}{p-z} \leqslant \sum_{p} \frac{z^{r(p-1)}}{p}+\sum_{p} \frac{1}{p(p-1)} \leqslant \frac{z}{(1-\varepsilon)(1-z)}+C^{\prime}(\varepsilon)
$$

and so

$$
f(z) \leqslant C^{\prime \prime}(\varepsilon) \exp \left\{\frac{z}{(1-\varepsilon)(1-z)}\right\}, \quad \text { for } \quad 0 \leqslant z<1,
$$

where $C^{\prime}(\varepsilon)$ and $C^{\prime \prime}(\varepsilon)$ depend on ε only. We are now ready to estimate the sum

$$
\sum_{\omega\{\varphi(m)\}<u \log \log x} \frac{1}{m} .
$$

For $z<1$, this does not exceed

$$
f(z) z^{-u \log \log x} .
$$

We may choose z optimally, and we select the value which gives

$$
\left(\frac{z}{1-z}\right)^{2}=(1-\varepsilon) u \log \log x .
$$

Therefore

$$
\sum_{\omega(q(m))<u \log \log x} \frac{1}{m} \leqslant C^{\prime \prime}(\varepsilon) \exp \left\{2 \sqrt{\frac{u \log \log x}{1-\varepsilon}}\right\}
$$

and so for every $B>2 \sqrt{2 / \log 2}$, we have that

$$
V(x)=O(\pi(x) \exp \{B \sqrt{\log \log x}\}) .
$$

This completes the proof.

References

[1] P. Erdös, On the normal number of prime factors of $p-1$ and some related problems concerning Euler's p-function, Quart. Journ. Math. 6 (1935), pp. 205-213.
[2] H. L. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), pp. 346-354.
mathematical institute of the hungarian
ACADEMY OF SCIENCES, Budapest
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF YORK
Heslington, York

