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CHAPTER 12

Problems and Results on Combinatorial Number Theory

P . ERDŐS
Hungarian Academy of Sciences, Budapest, Hungary

I will discuss in this paper number theoretic problems which are of combina-
torial nature. I certainly do not claim to cover the field completely and the
paper will be biased heavily towards problems considered by me and my
collaborators . Combinatorial methods have often been used successfully
in number theory (e.g . sieve methods), but here we will try to restrict ourselves
to problems which themselves have a combinatorial flavor . I have written
several papers in recent years on such problems and in order to avoid making
this paper too long, wherever possible, will discuss either problems not
mentioned in the earlier papers or problems where some progress has been
made since these papers were written .

Before starting the discussion of our problems I give a few of the principal
papers where similar problems were discussed and where further literature
can be found.

I . P. Erdös, On unsolved problems, Publ. Math . Inst . Hung. Acad. 6 (1961) 229-254 ;
Some unsolved problems, Michigan Math . J. 4 (1957) 291-300 .

II . P. Erdös, Remarks on number theory IV and V. Extremal problems in number
theory I and II Mat . Lapok 13 (1962) 28-38; 17 (1966) 135-166. See also : P. Erdös, Proc .
Symp. Pure Math ., vol . 8 (Am. Math . Soc ., Providence, R .I .), pp. 181-189 .

III . P . Erdös, Some recent advances and current problems in number theory, Lectures on
modern mathematics, vol . III (L . Saaty, ed .), pp. 196-244 .
IV. P. Erdös, Some extremal problems in combinatorial number theory, Math. Essays

dedicated to A . J . Macintyre (H . Shankar, ed . ; Ohio Univ . Press, Athens, Ohio, 1971),
pp. 123-133 .
V. P. Erdös, Some problems in number theory, Computers in Number Tlieory (Academic

Press, London, 1971), pp . 406-414 .
VI. H. Halberstam and K . F . Roth, Sequences (Oxford Univ . Press, London, 1966) .
VII. A. Stöhr, Gelöste and ungelöste Fragen über Basen der natürlichen Zahlenreihe I

and II, J. Reine Angew . Math . 194 (1955) 40-65, 111-140.

Many interesting unsolved problems of a combinatorial and number
theoretic nature are mentioned in the proceedings of the meetings on number
theory held in Boulder, Colorado, in 1959 and 1963 . See also a forthcoming
book of Croft and Guy .
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1 . Denote by rk(n) the maximum number of integers not exceeding n which
do not contain an arithmetic progression of k terms . The first publication
on rk (n) was due to Turán and myself (Erdős and Turán [1936]) . We were lead
to this problem by the following two facts : rk(n) < zn for n > n o(k) would im-
mediately imply the well known theorem of Van der Waerden that if we split
the integers into two classes, then at least one class contains arbitrarily long
arithmetic progressions . If we could prove rk(n) < 7r(n) (7r(n) is the number of
primes not exceeding n) for every k if n > n o (k), we would obtain that there
are arbitrarily long arithmetic progressions among the primes . Unfortunately,
none of these results have been proved so far. The best inequalities for r 3 (n)
are due to Behrend [1946] and Roth [1953] :

nl-c ' /(1agn)-f < r3(n) < c 2n/log log n .

A weaker lower bound has been proved earlier by Salem and Spencer .
L. Moser constructed an infinite al < . . . of integers not containing an

arithmetic progression of three terms so that for every n

Y 1 > n i-c/(log n)

a ;-<n

Moser also raised the following interesting problem : Denote by f3(n) the
largest integer so that one can find f(n) lattice points in the n-dimensional
cube

{xlr), . . ., x(r) }, xir) is 0, 1 or 2, 1 < l < n ; 1 < r < f3 (n)
no three of which are on a straight line . Clearly f3(n) > r3 (3n) . Moser showed
that

f3(n) > c3n/ ,,In

	

(1 .1)
and asks : is it true that f3(n) = o(3n) ? (1 .1) has never been improved . It is easy
to see that limf3 (n)/3n exists . One can easily generalize this question when the
x, can take k integral values, but nothing seems to be known .

The following problem is due to Straus : Let a, < . . . < ak 5 x be such
that no a; is the arithmetic mean of any subset of the a's consisting of two or
more elements . Put max k = F(x) . We have

exp (2 log x)= < F(x) < cx .

	

(1 .2)

The lower bound in (1 .2) is due to Straus [1967] and the upper bound to
Erdős and Straus [1970] (these papers contain other related problems and
results on combinatorial number theory). Straus conjectures that in (1 .2)
the lower bound is the correct one, but even F(x) = o(x 8) seems very difficult
to obtain .

Recently, Szemerédi [1969] (see also Behrend [1946]) proved r4(n) = o(n) ;
his very complicated proof is a masterpiece of combinatorial reasoning .
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Recently, Roth [1970] obtained a more analytical proof of r 4(n) = o(n) . r 5(n) _
o(n) remains undecided . Very recently, Szemerédi proved r,(n) = o(n) .

Rankin [1962] proved that for every k > 3 (exp z = ez)

r k(n) > n exp (-c(log n)1 1 (k-1)

and also investigated the question of the densest sequence of integers
which do not contain a geometric progression of k terms. Riddell
[1969] obtains sharper results, but many interesting questions remain
unsettled .

Riddell [1969] defines 9k(n) as the largest integer so that among any n
real numbers one can always find gk(n) of them which do not contain an
arithmetic progression of k terms. It is not hard to see that without loss of
generality we can always assume that the real numbers are in fact positive
integers . r 3(5) = 4, but Riddell showed 93(5) = 3 (from the set 1, 3, 4, 5, 7
one can select only 3 integers not containing an arithmetic progression of
three terms) . r 3(14) = 8, but Riddell recently showed 9 3(14) < 7 (he feels
that 93(14) = 7). Riddell, with the help of a computer, showed that any
subset of 8 elements of

0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18

contains an arithmetic progression of three terms, thus 9 3(14) < 7 .
Trivially, 9k(n) < rk(n), and we cannot disprove that for large n, g3(n) = r 3 (n) .

Riddell proved very simply that g 3 (n) > c,,/n and for k > 3, gk (n) > cn1-(2/k )
Riddell and I recently slightly improved this, e .g ., we showed g 4 (n) > cnf . It
seems certain that 9 3(n) > n 1- E for every E if n > n o (E), but even the proof
of lim 9 3 (n)lnf = oo seems to present difficulties. (Szemerédi just writes that
he proved g 3(n) > n 1- E .)

The following problem might be of interest in this connection : Let fk(n),
k > 3, be the largest integer so that there is a sequence of integers a l <
<a,, which contains fk(n) arithmetic progressions of three terms but no
progression of k terms. It is easy to see that f,.(3 n) > 5n-1 and G. Simmons
considerably improved this estimate . We proved that for every k > 3

lint logf(n)/log n = c k
n-+ .o

exists, but we do not know if c k < 2 . In fact, we do not know iff4(n) = o(n2 ) .
Kleitman and I observed that 1, 2, 3 and 1, 3, 4, 5, 7 are essentially the

only sets of integers where every pair is contained in a three term arithmetic
progression . It is not clear to us at this moment if there are sequences
a 1 , . . ., a„ which do not form an arithmetic progression but where every pair
is contained in some arithmetic progression other than arithmetic progressions
of even length and even difference with the middle integer (this example is
due to Jeffrey Lagaris) .
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Denote by P(n, k) (Riddell [1969]) the largest integer so that amongst n
points in k-dimensional space one can always find P(n, k) which do not
contain an isosceles triangle. Clearly P(n, 1) = g 3 (n) . It is not hard to prove
by induction with respect to k that

P(n, k) > Wk ,
but it is not easy to determine (or estimate) the best value of 8k . I expect
P(n, 2) < n' -c . In fact, it seems probable that amongst the lattice points
(x, y), 0 < x, y < n, x, y integer, one cannot select n2- E of them which do
not determine an isosceles triangle . A technique used by Guy and myself
(Erdős and Guy [1959]) seems to give that one can give cn such points - I
would guess that one can give more than n l + c for some c > 0 .

As far as I know, questions of the following type have not yet been investi-
gated : Let there be given cn2 lattice points (xi, yi) (0 < xi,yi < n) . Is it
true that they determine four vertices of a square whose sides are parallel
to the axes? Clearly many generalizations are possible which we leave to the
reader. Improving a previous result of Rennie Abbott and Hanson recently
proved that one can give ni°gs/ 1og 3 lattice points (x i , y i), 0 < x„ yi < n which
do not contain four vertices of a square whose sides are parallel to the axes .
Very recently Aytai found n2-E such lattice points .

Before ending this chapter, I mention a problem considered in Riddell
[1969]. Let a l < . . . < a„ be any set of real numbers. Denote by 1(n) the
largest integer so that one can always find 1(n) of them, ai„ . . ., air , r >, 1(n)
so that all the sums ai, +ai ;z , 1 '< j ' < j2 < r are distinct . It is known that

cn3 < 1(n) 5 (1 + o(1))na.

	

(1 .3)
In (1 . 3), probably the upper bound is the right one . Szemerédi and Komlós

proved a slightly weaker upper bound cn=. Many generalizations are poss-
ible for more than two summands or vectors in higher dimensions .

2 . The theorem of Van der Waerden states that there is a smallest integer
f(n) so that if we split the integers from 1 to f(n) into two classes, at least one
contains an arithmetic progression of n terms. Van der Waerden obtains a
very poor upper bound for f(n) and it would be very desirable to obtain a
more reasonable upper bound for it . The best lower bound for f(n) is due
to Berlekamp [1968] who proved f(p) > p2P, sharpening previous results of
Rado, Schmidt and myself. It would be very interesting to decide whether
f(n) < c" holds for a certain constant c .

Perhaps the following modification of the problem is more amenable to
attack : Denote by f(c, n), I < c < 1, the smallest integer so that if we split
the integers from 1 to f(c, n) into two classes, there is an arithmetic progression
of n terms so that at least cn of its terms belong to the same class . f(l, n)
clearly equals f(n) . By probability methods it is not hard to show that for
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every c > 2, f(c, n) > (1 +s ' )" . I never could get a good upper bound for
f(c, n) . Perhapsf(c, n) < c", atleastif c is sufficiently close to i (Erdős [1963]) .

A related problem was considered by Roth [1964, 1967] . Let g(n) _ ±1
be an arbitrary number theoretic function . Put

F(x) = min max ~~ g(a+kd)~,
e(")

where the maximum is to be taken over all arithmetic progressions whose
terms are positive integers not exceeding x and the minimum is to be taken
over all the functions g(n) _ ± 1 . Roth proved that

F(x) > cxá
and conjectured F(x) > xA_E for every s > 0 if x > xo(s) .
Y. Spencer recently proved

log log x
F(x) < cx~

tog x '
he uses probabilistic methods, his proof will be published soon . These
results will also be treated in the forthcoming booklet of Y. Spencer and
myself on probabilistic methods in combinatorial analysis .

Many years ago, Cohen asked the following question . Determine or
estimate a function f(d) so that if we split the integers into two classes, at
least one class contains for infinitely many values of d an arithmetic progres-
sion of length f(d) . I showed f(d) < cd. To see this, let a be a quadratic
irrationality, say ,/5 . n belongs to the first class if the fractional part of na is
less than z and in the second class otherwise . From the well known fact that
la-p/ql > c 1/g l , it easily follows that f(d) < cd. I have not been able to
show that f(d) < sd for sufficiently small s and I have not succeeded in
getting a lower estimation for f(d) . Van der Waerden's theorem certainly
implies that f(d)

	

oo .
Let g(n) _ ± 1 be an arbitrary number theoretic function. Cantor,

Schreiber, Straus and I [II] proved that there is such a g(n) for which
m

Y g(a+kb)
k=1

max
a^1_<b<d

< h(d)

for a certain function h(d). Van der Waerden's theorem implies h(d) -+ oo as
d -+ oo . We showed h(d) < (cd)! . We have no good lower bound for h(d)
and are not sure how good our upper bound is . As far as I know the following
related more general question is still unsolved : Let

Ak=talk)< . . .},k=1,2, . . .
be infinitely many infinite sequences of integers . Does there exist a function
F(d) (which depends on the sequences Ak) so that for a suitable g(n) _ ± 1

M

max

	

g(a~ k)) < F(d)?
m,1,<k_<d '=1

It seems certain that the answer is affirmative .
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I conjectured more than thirty years ago that if f(n) _ + 1 and f(n) is
multiplicative then

n

lim - Y, f (k)
n=oo n k=1

exists and is 0 if and only if If (P)= - 1 1/p = oo. Wintner observed that the
conjecture fails if we only assume l f(n)l = I and f(n) is multiplicative .
Wirsing [1967] proved (and generalized) my conjecture and Halász [1968]
obtained a still more general result .

Finally, I would like to mention an old conjecture of mine : let f(n) _ ± 1
be an arbitrary number theoretic function . Is it true that to every c there is a
d and an m so that

m

I f(kd) > c?
k=1

I have made no progress with this conjecture .
Sanders and Folkman proved the following result (which also follows

from earlier results of Rado [1933]) : For every n there is a g(n) so that if we
split the integers not exceeding g(n) into two classes, there always is a
sequence a 1 < . . . < a n so that all the sums

n
E ja i , ri = 0 or 1 (not all e i = 0)

i=1

belong to the same class . As far as I know there are no good upper or lower
bounds for g(n) . The result of Sanders and Folkman also follows from the
general theorems of Graham and Rotschild .

Graham and Rotschild ask the following beautiful question : split the
integers into two classes . Is there always an infinitive sequence so that all
the finite sums

Y E i a i , c i = 0 or 1 (not all e i = 0)

	

(2.1)
all belong to the same class? It is not even known if there is an infinite
sequence so that all the sums (2.1) with Y, s i = k, k = 1, 2, . . ., belong to
the same class where the class may depend on k.

This problem seems very difficult . As far as I know, the following simpler
question is also unsolved : Does there exist an infinite sequence a 1 < . . . so
that all the numbers

a„ i = 1,2, . . . and a i +a;, 1 < i < j<oo
all belong to the same class? Galvin recently asked the following question :
Does there exist a sequence a 1 • • • a„, a 1 < n so that all the numbers a 1 <
< a n and a i +aj, 1 < i < j < n belong to the same class?

3. Denote by f(k, x) the largest integer r so that there is a sequence a 1 <

< ar < x no k + 1 of which are pairwise relatively prime . It seems certain that
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we obtain f(k, x) by considering the set of multiples of the first r primes .
The proof seems to present unexpected difficulties - recently, Szemerédi
states that he proved this conjecture for sufficiently large r .

A more general conjecture would be : Denote by f(ps , k, x) the largest
integer r so that there is a sequence a, < . . . < a, < x all prime factors of
the a's are >, p, and no k+ 1 of them are relatively prime . One would expect
to obtain f(ps , k, x) by considering the set of integers not exceeding x of the
form ps+i t, 1 < i < k, where all prime factors of t are >, p,+i. I have not even
been able to show this for k = 1 and all s .

A problem of Graham and myself states : Let a, < . . . < ak = n, (a i , ai )
= 1 . What is the maximum of k? A reasonable guess seems to be that max k
either equals n/p where p is the smallest prime factor of n or it is the number
of integers of the form 2t, t < zn, (t, n) = 1. (See a forthcoming paper of
Graham and myself in Acta Arithmetica.)

4 . Let a, < . . . < ak < x . Assume that no r (r > 3) a's have pairwise
the same greatest common divisor . Put max k = f,(x) . I proved f,(x) < x- 'I
(Erdős [1964a]). This was improved to x?+E by Abbott and Hanson [1970] .
In Erdős [1964a], I showed that

f3(x) > exp (c , log x/log log x)
and I stated in Erdős [1964a] that it is likely that

f3(x) < exp (cz 109 x/log log x) . (4 .1)
(4.1) is intimately connected with the following purely combinatorial
problem of Erdős and Rado [1960] : Let g,(n) be the smallest integer with the
following property : Let IA il = n, 1 < i < g,(n) ; then there are always r A's
which have pairwise the same intersection. Rado and I proved g,(n) < cnn!
and conjectured

g,(n) < c;. (4.2)

(4.2) would have many applications in combinatorial number theory .
It is easy to see that (4.2) if true is best possible apart from the value of c, .
Abbott [1966] improved our upper and lower bounds for gr(n), but no real
progress has been made with the conjecture (4.2) .

I stated in Erdős [1964a] that (4.2) would imply (4.1) . Abbott pointed
out to me that (4.2) does not seem to suffice . The following slightly stronger
conjecture is easily seen to imply (4 .1) : Let gr(n) be the smallest integer so that
if u„ 1 < i < gr(n), are integers satisfying

u i = fl p~j,

	

Jai = n

	

(pi prime, ai > 0 integer)
i

then there are always r u's, say ui„ . . ., ui,, which have pairwise the same
greatest common divisor d and (ui ;/d, d) = 1, 1 < j < r . The method of
Rado and myself gives g~(n) < crh!, and it seems likely that

g'(n) < c' .

	

(4.3)
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Let a, < . . . < ak < n, k > cn . Is it true that for n > no (c) there are
always three a's which have pairwise the same least common multiple? I do
not know the answer to this question, but showed that there do not have to
be four a's which have pairwise the same least common multiple [IV] .

Let a, < . . . < ak < n, k > cn . Is it true that there always is an m so that
pa i = m (p prime) has at least three solutions? If the answer would be yes
then the least common multiple of the three a's would be m (since it is easy to
see that one could assume (p, a i) = 1). LRuzsa (a 16-year-old Hungarian
mathematician) found the following simple construction of a sequence
a, < . . . < ak < n, k > cn so that the equation pa i = m has at most two
solutions . Consider the set of all squarefree numbers of the form

g,q2 . . . q, qi+1 > 2q i , i = 1, . . ., r-1 ;

	

r = 1, 2 . . . .

	

(4.4)

It is easy to see that the density of the integers (4 .4) is positive . Therefore
there are cn of them in the interval (Zn, n) and it is easy to see that for this
set of integers pa i = m has at most two solutions .
Assume that pa i = m has at most r solutions. Then clearly

n 21 I 1
< r

	

1 < cr log n
a, n ai P-n p

	

m=1 m

I do not know whether (4.5) can be improved .
Let a, < . . . < ak < n be such that for every m, pa i = m has at most one

solution (i .e., the numbers {pa i } are all distinct) . It can be shown that there is
a c so that

max k = n exp(-(1 +o(1))c(log n log log n)l) .

5 . R. L. Graham posed the following interesting problem : Let 1 S a, <
. . . < an be n integers . Prove

max

	

' > n .

	

(5.1)
15í.j-n (ai, aj)

Szemerédi proved that (5 .1) holds if n = p . It is easy to see that in this case
either a i - aj (mod p), or a i - 0 (mod p) and aj # 0 (mod p) for two indices
i 0 j (we can of course assume that not all the a's are multiples of p) . (5 .1)
now follows easily. For composite n, the proof of (5 .1) seems to present
difficulties .

Winterle [1970] proved (5.1) if a, is a prime . Marcia and Schönheim [1969]
proved that if the a's are squarefree then there are at least n distinct ratios
of the form a,l(ai , a j ), thus (5 .1) follows.

1 c, r log n
- <

a,-<n ai
(4.5)

log log n
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Denote by h(n) the greatest integer so that there are at least h(n) distinct
ratios of the form (5.1) . Szemerédi and I showed

n < h(n) < n' -" .

	

(5.2)

It would be interesting to improve (5 .2) . The determination of

lim
log h(n)

n = oo log n

will perhaps not be too difficult .

6 . On covering congruences. A system of congruences

a i(mod n i), n, < . . . < nk

	

(6.1)

is called covering if every integer satisfies at least one of the congruences
(6.1) . The simplest covering system is : 0 (mod 2), 0 (mod 3), 1 (mod 4), 5
(mod 6), 7 (mod 12) . I asked if for every n, there is a covering system (6 .1) .
n, = 20 is the largest number for which this is known . This is an unpublished
result of Choi . An affirmative answer to my question would imply that for
every k there is an arithmetic progression no term of which is of the form
2'+u, where a has at most k distinct prime factors .

It is easy but not quite trivial to prove that for a covering congruence
I:k=, 1/n i > 1 (Erdős [1950] ; L. Mirsky and D. Newman) . It is easy to see
that this is best possible if n, = 3 or n, = 4. Selfridge and I feel that for
n, > 4, Yk= i 1/n i > l+cn , where cn , -* oo as n, .

It is not known if there is a covering system where all the moduli are odd .
As far as I know, it has never been proved that for every c there is an m so
that o(m)/m > c, but one can not form a covering system from the divisors
of m. It would be nice to have a usable necessary and sufficient condition on
the sequence n, < . . . < nk which would decide whether they can be the
moduli of a covering set, but perhaps this is too much to hope for . Selfridge
informs me that it is easy to see that the nk can not all be squarefree integers
having at most two prime factors and very likely the same result holds for
three prime factors .

Selfridge and Dewar investigated the following problems : An infinite
system

a i (mod n i ), n, < . . .

	

(6.2)

is called covering if every integer satisfies at least one of the congruences
(6 .2) and the density of integers which do not satisfy any of the first k
congruences of (6.2) goes to 0 as k -> oo . This can clearly be done if Y 1/n i
= oo . A system (6.2) is called perfect if every integer satisfies exactly one of
the congruences (6 .2) .

Recently, several interesting results were obtained on covering congruences
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by Burshtein and Schónheim [1970] and Znám [1969], some of which
are not yet published . The recent thesis of C . E. Krukenberg (Urbana,
Illinois) also contains many interesting results and also many numerical
examples of covering systems and a fairly complete literature on the subject .
Several problems and results on this subject are also stated in [V] . Here 1
just want to state one more problem which is also stated in [V] but which is
still far from being completely solved ; so perhaps it deserves to be restated.
A system of congruences (6.1) is called disjoint if no integer satisfies two

of them. Let n k < x and put max k = f(x) . Stein and I conjectured that
f(x) = o(x) ; Szemerédi and I proved this . In fact we showed

x exp

	

c, (log x log log x).) < f(x) < (log
x)`'

	

(6.3)

In the proof of the lower bound, Stein collaborated . The lower bound
seems to give the true order of magnitude of f(x), but by our method the
upper bound can not be improved (Erdős and Szeméredi [1968]) .

7 . Heilbronn and I conjectured that if n is any integer and a l , . . ., a k ,
k > c~ln, are k distinct residues mod n then

k

Y E i a i - 0 (mod n),

	

ei = 0 or I (not all Ei are 0)
i= l

P . ERDŐS
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is always solvable . This conjecture has recently been proved by Szemerédi
[1970] . The right value of c is perhaps ~/2 . Szemerédi's proof works for Abelian
groups having n elements . The result may hold for non-Abelian groups too,
but this is not yet settled .

A theorem of Ginsburg, Ziv and myself states (Mann [1967]) : Let Gn be an
Abelian group of n elements and let a 1i . . ., a, n _ 1 be 2n- 1 elements of G n (of
course they are not all distinct) . Then the 0 element of Gn can be represented
in the form

2n- 1

Y E i a i ,
n

Y E i = n,

	

Ei=0or1 .
i=1

	

i-=1

This result holds perhaps for non-Abelian groups too, but this has not been
settled .

I would like to mention two interesting problems of Graham : Let a l , . . ., ap
be p not necessarily distinct residues mod p . Assume that if

P

Eia i =- 0 (mod p),

	

E i = 0 or I
i= 1

then YP , E i = r. Does it then follow that there are at most two distinct resi-
dues amongst the a's?

Let a l , . . ., ak be k distinct residues mod p, k < p . Is it true that there is a
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permutation ail , . . ., ai k so that none of the sums ai l + • • • +a,,, 1 < r < k
are - (mod p) ? Graham proved this if k = p-1, but the general case is
not yet settled.

Rényi and I proved the following result (Erdős and Rényi [1965]) : Let G„ be
an Abelian group of n elements (n large). Let k > log n/log 2+c log log n .
Then for all but o((k)) choices of k elements a,, . . ., ak of G„ all elements of
Gn can be written in the form J:k=, E,al, E j = 0 or 1 . It seems likely that the
summand c log log n cannot be replaced by o(log log n), but as far as I know,
nothing has been done in this direction .

We also proved that if

k>2
log 2+o

	

c
g

then for all but o((k)) choices of a,, . . ., ak the number of representations of
every element of G in the form Jk_, E,a„ E j = 0 or 1 is (1 +o(1))2k/n . It is not
impossible that this result remains true for k > (1 +0(1)) log n/log 2 .

Some progress in this direction has been made by Miech [1967] and Bognár
[1972]. Rényi and I proved (unpublished) that if k > (1 +0(1)) log n/log 2
then for all but o(Q)) choices of a,, . . ., ak every element has at least
(I+0(1))2k/n representations in the form Yk=, j a i , but we have not succeeded
in getting an upper bound .

For further problems and results of this kind see [V] and [VI] ; also a forth-
coming paper of Eggleton and myself (Acta Arithmetica) and for a compre-
hensive treatment Mann [1965] .

8. Some problems in additive number theory . Not very much progress
has been made on these problems and they have been published several
times, but because of their attractiveness it is worthwhile to repeat them
(see [I], [III]) .

1 . Let 0 < a, < . . . < a, < 2k be a sequence of integers so that all the
sums I:;_, - ja i , E j = 0 or 1, are distinct . L. Moser and I both asked : Can r be
greater than k+ 1 . This was answered affirmatively by Conway and Guy for
every k > 21 . It is not known if r = k+3 is possible .
Let now 0 < a, < . . . < a, < x, and1;= I E la„ Ei = 0 or 1, are all distinct .

Put f(x) = max r. Is it true that

log x
f(x) - log 2

+o(i) .

	

(8 .1)

It is trivial that

log x log log x
AX)(x) < log 2 +- log 2

	 +0(1) .
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L. Moser and I (Erdős [1955]) proved that

f(x) <
log x

+
log log x

log 2

	

2 log 2
+0(1) .

	

(8.2)

I offered (and still offer) 300 dollars for a proof or disproof of (8.1) . I
would pay something for any improvement of (8.2) . Graham recently asked :
Does (8.1) remain true if we only require the ai to be positive,

1 < al < . . . < ar S x, ai+1 - ai > 1,
and any two of the sums ~~_, siai, si = 0 or 1 differ by at least one? (8 .2)
remains true .

2. Let al < . . . < a k < x be a sequence of integers . Assume that all the
sums

r
Y s i a j .,

	

si = 0 or 1,

	

1 5 j 1 < . . . < Jr 5 k,
i=1

are all distinct . Put max k = fr (x) . Turán and I proved f2 (x) < x= + cxi, and
recently Lindstrom proved (Krückeberg [1961])

f2(x) S x=+x-1+1 .
Recently, Szemerédi proved f2(x) < x= + o(xO . That f2(x) > (1-s)x-f for
every s > 0 if x > xo(s) easily follows from the classical result of Singer on
difference sets (as observed by Chowla and myself) . Turán and I conjectured

P. ERDŐS CH . 12

x=X
(8.4) has never been proved for r > 2 and is a very attractive conjecture .
I offer 100 dollars for a proof or disproof.

Let now a l < . . . be an infinite sequence so that all the sums a i +aj are
distinct (i .e ., A is a BZ sequence of Sidon). It is easy to see that there is a B2
sequence for which ak < ck3 for every k . It seems certain to me that there is a
B2 sequence a, < . . . satisfying a k < k2+e for every s if k > ko , but as far as
I know, nobody constructed a B2 sequence satisfying a k = o(k 3 ) . (I offer
25 dollars for this and 50 for ak < k2+E .) Rényi and I proved by probabilistic
methods that to every s there is a c so that there is a sequence a k < k2+e so
that the number of solutions of n = a i +a; is less than cE (see [VI]) .

There is a B2 sequence for which (Krückeberg [1961])

lim inf a < ,,/2 .

	

(8.5)
k-oo

f2(x) = x1+o(1) . (8 .3)
I offer 250 dollars for the proof or disproof of (8 .3) .

Bose and Chowla proved that for every r
fr(x) i (I +o(1))x 1 ' r ,

and they conjecture that
lim f'(x)/x 1!r = 1 (8 .4)
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It is not known if ,/2 can be decreased, perhaps it can be replaced by l .
On the other hand, for a B Z sequence [VII]

lim sup 2 ak

	

> 0.
h-oo

	

k log k

Let al < . . . be any sequence of integers . Denote by f(n) the number of
solutions of n = a i +a; . Turán and I conjectured that if f(n) > 0 for all n
then

lim sup f(n) = oo .

	

(8 .6)
n-X

Perhaps ak < ck2 suffices to imply (8.6) . 1 offer 250 dollars for (8.6) . The
multiplicative analogue of (8 .6) I succeeded to prove (Erdős [1964b]) .

Let a l < . . . be an infinite sequence of integers . Assume that no a is the
distinct sum of other a's. Then the a's have density 0 and Z 1/a i < o0

(Erdős [1962]) .
Let a l < . . . < an be n distinct numbers ; L. Moser and I proved that the

number solutions of (see [II])
n

t = Y E i ai,

	

Ei = 0 Or 1,

	

(8.7)
i=1

is less than c2n (log n)=/n= . We conjectured that it is in fact less than c2n/n-i
(which apart from the value of c is best possible) . Sárközi and Szemerédi
[1965] proved this conjecture . It seems that the number of solutions of

n

	

n
t =

	

E iai,

	

Ei = 1,
i=1

	

i=1
(8.8)

is less than c2n/n 2 (where c is an absolute constant independent of t, 1, n and
our sequence) . (8 .8) has never been proved.

It is likely that for n = 2m+1 the number of solutions of (8.7) is largest
when the a's are the integers in (-m, +m), but this has never been proved
(Van Lint [1967]) .

9 . I first mention a few special problems considered in [II], especially those
where some progress has been made . Let a l < . . . < an be n real numbers
all different from 0 . Denote by f(n) the largest integer so that for every
sequence a l , . . ., an one can always select k = f(n) of them, ai„ . . ., ai,, so
that

a iJ. i

	

_+aiJ. , 0 aiJ.3 ,

	

I '<- J1 -< Jz < h < k.

	

(9.1)

It is not hard to see that f(n) > 3n . This is almost certainly not best
possible but Klarner and Hilton showed f(n) < Zn even if we exclude

JI = i2-
Independently of this, Diananda, Yap, Rhentulla and Street considered
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in several papers the problem of determining in an Abelian group of order n
the maximal sum free set, i .e ., the largest set for which (9 .1) holds. The most
difficult case is when all prime factors of n are - 1 (mod 3), and in this case
there are several unsolved problems . For a complete literature on this subject,
see the two forthcoming papers of H . P. Yap, `Maximal sum free sets in
finite abelian groups I and II,' Bull. Austral. Math. Soc .

Denote by g(n) the largest number such that from every sequence of n
numbers one can always select g(n) of them with the property that no sum
of two distinct integers of this subsequence belongs to the original sequence .
It is known that

c log n < g(n) < n2/5+E

	

(9.2)

The lower bound is due to Klarner, the upper bound to S. L. G. Choi .
(Choi's paper is not yet published but will soon appear .)

The lower bound in (9.2) can probably be improved very much .
In Choi's paper the following interesting problem is raised : A set C of

natural numbers is said to be admissible relative to a set of natural numbers B
if the sum of two distinct elements of C is always outside B. Let B be any set
of integers in (2n, 4n) and let C be a maximal admissible subset of (n, 2n)
relative to B. Put

f(n) = min (ICI+IBI) .
B

Choi conjectures f(n) < n +E, but can only show f(n) < cn . Choi's conjecture
perhaps could be proved by probabilistic arguments, but I have not succeeded
in this .

Denote by h(n) the largest integer so that from any set of n integers one
can always find a subset of h(n) integers with the property that any two sums
formed from the elements of the subset are equal only if they have the same
number of summands. We have

c,n-f < h(n) < c,n=

The upper bound is due to Straus [1966] . Recently, Choi proved h(n) >
c(n log n)= ; his proof will soon appear .

Denote by 1(n) the largest integer so that from any set a l , . . ., a„ of real
numbers one can always select 1(n) of them, a;,, . . ., ai,, k > 1(n), so that no
ai; is the distinct sum of other ai,'s . I observed 1(n) > V(Zn) ; this was improved
by Choi to 1(n) > (1 +c)Vn . Probably 1(n)/,In oo, but Choi's method does
not even seem to give 1(n) > 2 Jn . I claimed 1(n) = o(n), but have difficulties
in reconstructing my proof. Probably 1(n) < n l holds for some c > 0 .

Several very interesting problems on additive number theory are discussed
in the papers of Rohrbach and Stöhr [VII] . Here I would like to mention one
problem of Rohrbach : Let 0 < a, < . . . < a, < n be a sequence of integers so
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that every integer 0 < m < n can be written in the form a,+a; . Put g(n) _
min k. Rohrbach observed :

V2n < g(n) < 2,/n .

He proved g(n) > (1 +e)V2n for some e > 0 ; Moser improved this result
but his e is still very small . Rohrbach conjectured g(n) = 2vn+o(1). We are
very far from being able to prove this .

10. Let 1 < a, < . . . < ak < x be a sequence of integers so that the
product of any two integers a,a; is distinct . Then

7r(x)+ (l
og x)i-

< max k < ir(x)+(log
x)i-'

	

(10.1)

Perhaps

max k = 7r(x)+(lag
x)

	 +o ((log x)'-

	

(10.2)

for a certain constant c > 0, but I have not been able to prove (10 .2) .
Assume that 1 < a l < . . . < ak < x is such that all products a„

	

ai, are
distinct . Perhaps in this case

max k < ir(x)+cx (I+I/") ,

	

(10.3)
but I could prove this only for r = 2 .

Now let 1 < a, < . . . < ak < x so that all the products

are distinct . Then

perhaps

max k = 7r(x) +n(.,,/x)+o(
log x)

All these questions become very much more difficult if the a's do not have
to be integers . Let, e .g ., 1 < a I < . . . < ak < x be a sequence of real numbers
and assume that Ja,a;- a"asl > 1 . Does (10 .1) remain true ? I can not even prove
k = o(x), though this may be simple, and perhaps I overlook a simple idea .

An old conjecture of mine states : Let 1 < a l < . . . < ak < x, 1 < b I <
. . . < b, 5 y be two sequences of integers . Assume that the products a,b;
are all distinct . Is it true that

z
kl <

cx
?

	

(10.4)
log x

k

Hai',

	

e,=0or1,
i=I

x~
max k < n(x)+c	;

log x
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It is easy to see that if true, (10 .4) is best possible . The weaker result

kl < (log x)a
for some a > 0

is not very hard to prove . (10 .4) was recently proved by Szemerédi .
Is it true that to every a > 0 there is an infinite sequence of integers of

density > 1-s so that two products ai, • • • ai, = a;, • • • as can only hold
if r = s? Selfridge constructed such a sequence of density 1/e . Is it true that
one can give x-o(x) such integers not exceeding x? By taking the integers
not exceeding x having a prime factor > xf, it is easy to see that one can
give x log 2 such integers not exceeding x and that the constant log 2 can be
slightly improved .

For the literature on these questions, see [II] and Erdös [1968, 1964] .

11 . A sequence of integers is called primitive if no one divides any other .
Chapter 5 of [VI] is devoted to the study of primitive sequences . Sárközi,
Szemerédi and I wrote about ten papers on primitive sequences and related
questions (see our paper at the Debrecen meeting of the Bólyai Math . Soc .
1968). The following question which I formulated nearly forty years ago is
still unsolved :

Let 1 < a, < . . . be a sequence of positive numbers . Assume that for
every integer i,j and k

CH . 12

If the a's are integers then (11 .1) means that no a divides any other, and in
this case (11 .3) is an old result of Behrend and (11 .2) is an old result of mine
(see [VI]) . But in the general case I can not even prove that (11 .1) implies
lim inf A(x)lx = 0 (A(x) _ Ya ,< z 1). Recently, Haight [unpublished] proved
that if the a's are rationally independent then (11 .1) implies lim A(x)lx = 0.
An old result of Besicovitch states that if the a's are integers then (11 .1) does
not imply lim A(x)lx = 0 [VI] .

Let a, < . . . be an infinite sequence of integers where no a i divides the
sum of two greater a's . Sárközi and I proved that the a's then have density

Ika i -a;1 > 1 . (11 .1)

Is it then true that

1
< oo (11 .2)

and

i a i log a i

1 < c ogx 9 (11 .3)
ai, a i

	

(log log x)~
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0 and this result is best possible (Erdős and Sárközi [1970]). Probably 1 1/a í
< co holds .
Let a 1 < . . . < a k < x be a sequence of integers where no a divides the

sum of two larger a's . Probably

max k = x13+o(1) .

12 . Let a 1 < a2 < . . . be an infinite sequence of integers . Straus and I
conjectured that there is a sequence of density 0, b 1 < . . . so that every
integer is of the form a i + b; . Lorentz [1954] proved this conjecture . In fact, he
showed that b1 < . . . can be chosen so that for every x

B(x) < c
=log A(k)

	

(12.1)
k1 A(k)

(12 .1) is surprisingly close to being best possible (Erdős [1954]). We will call
b, < . . . the complementary sequence to a 1 <

Lorentz observed that if the a's are the primes then (12 .1) gives B(x) <
c(log x) 3 . I proved that this can be improved to B(x) < c(log x) 2 (Erdős
[1954]). Clearly every complimentary sequence to the primes must satisfy

lim inf
B(x)

>, 1 .

	

(12.2)
log

I am certain that (12.2) can be improved, but I could not even show

lim sup
B(x)

> 1 .
log

In the other direction I could not find a complementary sequence to the
primes satisfying B(x) = o((log x) 2 ) . Further I could not decide whether
there is a complementary sequence to the primes b1 < . . . for which the
number of solutions of n = p+b i is bounded .

I asked : Let a k = 2k. Is there a complementary sequence for which B(x) <
cx/log x? The 17-year-old Ruzsa gave a very ingenious proof that the answer
is affirmative and he also observed that for his sequence the number of
solutions of 2k+b i = n is bounded. Clearly

B(x) >, (1+0(1))
x log 2

g 2
It seems certain that

B(x) > (I+c)x
log 2

	

(12.3)
log 2

must hold for a complementary sequence of the powers of 2, but this has
never been proved . Ruzsa's proof will appear in the Bull . Canad. Math .
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Soc. Ruzsa also finds a sequence a, < . . . with A(x) > c log x so that for
every complementary sequence

cx log log x
B(x) >

	

tog x '

or, (12.1) is best possible in this case . It is not clear that if ak = rk, then there
is a complementary sequence satisfying B(x) < cx/ log x. (By the way,
earlier I referred to Ruzsa as being 16 years old ; this is no contradiction,
since he did the other work one year earlier .)

Complementary sequences of the rth powers were studied by L. Moser
[1965], but several interesting unsolved problems remain .

13. Let a, < . . . ; b, < . . . be two infinite sequences of integers. Assume
that every sufficiently large integer is of the form a i +b; . Clearly

lim inf
A(x)B(x)
-	 >~ 1

X

and Hanani conjectured that

lim sup
A(x)B(x)

> 1 .

	

(13.1)
X

Narkiewicz [1960] proved that (13 .1) holds under fairly general conditions, but
Danzer [1964] disproved Hanani's conjecture . Danzer and I then conjectured
that if every n > no is of the form a i +b; and

lim
A(x)B(x) - 1

	

(13.2)
X

then
lim (A(x)B(x)-x) -> co

	

(13.3)
(It is easy to see that (13 .3) does not hold in general) . Sárközi and Szemerédi
recently proved (13.3) ; their proof is not yet published . It is not clear how
fast A(x)B(x) -x must tend to infinity if (13 .2) holds .

14. Before finishing this report, I would like to mention a few miscellaneous
problems and results of a combinatorial flavor . No doubt I will omit many
very interesting questions, but this is inevitable since both space and time and
my memory and judgement are limited .

1 . Let a, < . . . < ak < n be a sequence of integers satisfying
[ai,a,]>n,l<i<j<k .

	

(14.1)
In other words, no m < n is divisible by two or more a's.

I conjectured that

max k = (1+o(1))2 32n
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and that the extremal sequence is given by the numbers 1 < i < (In)f,
(zn)f < 2j < (2n)i . Perhaps these conjectures are trivially true or false and
I overlook an obvious idea .

I further conjectured that (13.1) implies

1
5

31~

	

(14.2)
i= 1 ai

	

30'

with equality only if n = 5, a l = 2, a 2 = 3, a 3 = 5 . Schinzel and Szekeres
proved this conjecture . I thought that (14.1) implies the existence of an
absolute constant c so that there are cn integers m < n which do not divide
any of the a's . To my great surprise this was disproved by Schinzel and
Szekeres . It is probable that (14.1) implies for n > no(E), Yk=, 1/ai < l +e .

Let a l < . . . < ak 5 n satisfying J:k=I 1/ai < c I . It is true that there is a
c 2 so that there are at least n/(log n)C2 integers m not exceeding n which are
not divisible by any of the a's . The example of Schinzel and Szekeres [1959]
shows that apart from the value of c 2 this is best possible if true .
Assume now

k I
Y, - < c l ,

	

(ai , a;) = 1,

	

1 < a i < n .

	

(14.3)
i=1 ai

For what choice of the a's satisfying (14.3), the number of integers
m 5 n not divisible by any a is minimal? Let q, be the greatest prime not
exceeding n and q, > q2 > . . . the consecutive primes in decreasing order .
Put

1

	

1
Y_ - < e I < Y -

	

( 14 .4)
i=, qi

	

i=1 qi •

The q's defined by (14 .4) satisfy (14.3) and it seems to me that (14.4) either
gives the extremal sequence (or at least nearly gives the minimum) . I made
no progress with this question .

2 . A sequence n I < n2 < . . . is called an essential component if for any
sequence 1 = a 1 < . . . of Schnirelman density a, the Schnirelman sum
of the two sequences {ai+n ;} always has density greater than a . I conjectured
that if n i+1/n i > c > 1 then the sequence is never an essential component .

Essential components have been investigated a great deal for the older
literature ; see [VI] and Edrös [1961] . Also in the J. Reine Angew. Math .,
several recent interesting papers appeared, e.g ., Tülnnecke [1960] .

3 . Let 1 = a I < . . . < ao(n) = n-1 be the set of integers relatively prime
to n . An old conjecture of mine states that

0(n)-1

	

n2

l~ (a,.,,-a,)2 < c
0

(n
)

	

(14.5)
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C. Hooley made some progress towards the proof of (14.5), but at the
moment (14.5) is not yet settled. It seems certain that for every k

0( n) - 1

	

n k

(ai+ t - ai)k < ck
0
(n k_  1) •

	

(14.6)
+= t

Hooley in fact proved (14 .6) for k < 2 . I conjectured (14.5) and (14 .6)
more than thirty years ago and never expected it to be so difficult .

4. Let f(n) be the largest integer so that for every 1 < i < f(n) there is a
p iln+i, pi,

	

p i Z for 1 ~ i 1 < i 2 < f(n) .

Grimm conjectured (Am . Math. Monthly, Dec. 1969) that for every j,
f(p) > p;+, -p; • Selfridge and I proved that for all n

f(n) > (I+ 0(1)) log n

	

(14.7)
and for infinitely many n

f(n) < exp c (log n log log log n/log log n)

It would be interesting to find out more about f(n) . Grimm's conjecture if
true will be very hard to prove. Ramachandra just informed me that he
improved (14 .7) to

f(n) > c log n (log log n)1/(log log log n)1 .

5. A problem in set theory lead R . O. Davies and myself to the following
question : Denote by f(n, k) the largest integer so that if there are given in k
dimensional space n points which do not contain the vertices of an isosceles
triangle, then they determine at least f(n, k) distinct distances . Determine or
estimate f(n, k) . In particular, is it true that

f(n, k)
lim	 = ao ?

	

(14.8)
n

(14.8) is unproved even for k = 1 . Straus observed that if 2k >, n then
f(n, k) = n-1 .
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