Vol. 14, No. 1, February 1973 Printed in Belgium

Ramsey Numbers for Cycles in Graphs

J. A. BONDY AND P. ERDÖS

University of Waterloo, Waterloo, Ontario, Canada Received January 28, 1972

Given two graphs G_1 , G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer *m* such that, for any partition (E_1, E_2) of the edges of K_m , either G_1 is a subgraph of the graph induced by E_1 , or G_2 is a subgraph of the graph induced by E_2 . We show that

 $\begin{aligned} R(C_n, C_n) &= 2n - 1 & \text{if } n \text{ is odd,} \\ R(C_n, C_{2r-1}) &= 2n - 1 & \text{if } n > r(2r - 1), \\ R(C_n, C_{2r}) &= n + r - 1 & \text{if } n > 4r^2 - r + 2, \\ R(C_n, K_r) &\leq nr^2 & \text{for all } r, n, \\ R(C_n, K_r) &= (r - 1)(n - 1) + 1 & \text{if } n \geq r^2 - 2, \\ R(C_n, K_{r}^{+1}) &= t(n - 1) + r & \text{for large } n. \end{aligned}$

1. INTRODUCTION

We are here concerned with undirected graphs that are finite and have no loops or multiple edges. Let G be such a graph; we write V(G) for the vertex set of G, and E(G) for the edge set of G; |V(G)| is the order of G, |E(G)| the size of G. If $E' \subseteq E(G)$, E' will also denote the partial subgraph of G with edge set E'. C_n denotes the cycle of length n, K_n the complete graph of order n, and $K(r_1, ..., r_t)$ the complete t-partite graph with parts of cardinalities $r_1, ..., r_t$; when each $r_i = r$ this will be written K_r^t .

Let k be finite and let

$$m \rightarrow (G_1, ..., G_k)$$

signify the truth of the statement: for any partition $(E_1, ..., E_k)$ of $E(K_m)$ there is an $i, 1 \leq i \leq k$, such that G_i is a subgraph of E_i . It follows from Ramsey's theorem that, for any collection of graphs $G_1, ..., G_k$, there is a finite m such that $m \to (G_1, ..., G_k)$. We denote the least such m by $R(G_1, ..., G_k)$.

The Ramsey function R has been studied in detail for complete graphs G_i , although exact values are generally unknown. Chvátal and Harary

[3, 4] determined $R(G_1, G_2)$ for all G_1, G_2 of order at most four, and Chartrand and Schuster [2] have shown that

$$R(C_n, C_3) = \begin{cases} 6, & n = 3, \\ 2n - 1, & n > 3, \end{cases}$$
$$R(C_n, C_4) = \begin{cases} 6, & n = 4, \\ 7, & n = 5, \\ n + 1, & n > 5, \end{cases}$$
$$R(C_n, C_5) = 2n - 1, & n > 2,$$
$$R(C_6, C_6) = 8.$$

In this paper we investigate $R(C_n, C_r)$ for arbitrary $r \leq n$. It was conjectured by W. G. Brown that, for $n > n_0(r)$,

$$2n-1 \rightarrow (C_n, C_r).$$

We prove this (with $n_0(r) = \frac{1}{2}(r^2 + r)$); it follows easily that, for odd r and $n > \frac{1}{2}(r^2 + r)$,

$$R(C_n, C_r) = 2n - 1.$$

It seems likely that, for n > 3 and all $r \le n$, $2n - 1 \rightarrow (C_n, C_r)$, but we can only prove at present that

$$2n-1 \to (C_n, C_n), \qquad n > 3.$$

We also show that, for $n > 4r^2 - r + 2$,

$$R(C_n, C_{2r}) = n + r - 1.$$

More generally we prove that, for $n > n_1(r, t)$,

$$R(C_n, K_r^{t+1}) = t(n-1) + r.$$

This implies that, for $n > n_2(r)$ (= $n_1(1, r - 1)$),

$$R(C_n, K_r) = (r-1)(n-1) + 1.$$

In fact we prove directly that the above holds for $n \ge r^2 - 2$. Finally we show that, for arbitrary r and n,

$$nr^2 \rightarrow (C_n, K_r).$$

2. PRELIMINARY LEMMAS

Let $G(r_1, ..., r_t)$ denote the complete graph of order $\sum_{i=1}^t r_i$ with edge partition (E_1, E_2) such that $E_2 \cong K(r_1, ..., r_t)$.

LEMMA 1. $R(C_n, C_{2r-1}) > 2n-2$.

Proof. G(n-1, n-1) contains no C_n in E_1 and no C_{2r-1} in E_2 .

LEMMA 2. $R(C_n, K_r^{t+1}) > t(n-1) + r - 1.$

Proof. $G(n_1, ..., n_t, s_1, ..., s_{r-1})$, where $n_i = n - 1$, $1 \le i \le t$, and $s_i = 1, 1 \le i \le r - 1$, contains no C_n in E_1 and no K_r^{t+1} in E_2 .

LEMMA 3 (Erdös and Gallai [5]). If G is a graph of order n and size at least $\frac{1}{2}((c-1)(n-1)+1)$, then G contains a cycle of length at least c.

LEMMA 4 (Bondy [1]). If G is a graph of order n and size at least $\frac{1}{4}(n^2+1)$, then G contains cycles of all lengths $l, 3 \leq l \leq \frac{1}{2}(n+3)$.

LEMMA 5 (Erdös and Stone [6]). If G is a graph of order n and size at least $\frac{1}{2}n^2(1-1/(t-1)+\epsilon)$, where $n > n(t, r, \epsilon)$, then G contains a K_r^{t} .

LEMMA 6. Let (E_1, E_2) be a partition of $E(K_n)$ such that E_1 contains a C_m , where $m \ge 6$. Then

(i) if E_2 contains no K_r there is a cycle of length $c, m - 2r + 3 \le c < m$, in E_1 (provided $m \ge 2r$),

(ii) if E_2 contains no C_r there is a cycle of length $c', m - 3 \le c' < m$ in E_1 (provided $m \ge r$).

Proof. Let $C = (x_1, ..., x_m)$ be a cycle of length m in G.

(i) Consider the vertices $x_1, x_3, ..., x_{2r-1}$. Since E_2 contains no K_r , some pair (x_i, x_j) of these vertices must be joined by an edge of E_1 . Then E_1 contains the cycle $(x_1, x_2, ..., x_i, x_j, x_{j+1}, ..., x_m)$ of length at least m - 2r + 3.

(ii) Some (x_i, x_{i+2}) , (x_i, x_{i+3}) or (x_i, x_{i+4}) must be in E_1 , for otherwise it is easily seen that E_2 contains a C_r . It follows that E_1 contains a C_{m-3} , a C_{m-2} , or a C_{m-1} .

LEMMA 7. Let (E_1, E_2) be a partition of $E(K_n)$ such that E_1 contains a cycle C of length m, but no C_{m+1} . If E_2 contains no K_r , then every vertex $x \notin V(C)$ is joined by edges of E_1 to at most r - 1 vertices of C.

Proof. Let $C = (x_1, ..., x_m)$ and suppose that $x \notin V(C)$ is joined to vertices $x_{i_1}, ..., x_{i_r}$ of C (where $i_1 < i_2 < \cdots < i_r$). Then $(x_{i_i-1}, x_{i_r-1}) \in E_2$

48

for all $j, k, 1 \leq j < k \leq r$, since otherwise E_1 would contain the m + 1-cycle

$$(x_1, ..., x_{i_j-1}, x_{i_k-1}, x_{i_k-2}, ..., x_{i_j}, x, x_{i_k}, x_{i_k+1}, ..., x_m).$$

But this contradicts the hypothesis that E_2 contain no K_r .

3. MAIN RESULTS

THEOREM 1. $R(C_n, C_{2r-1}) = 2n - 1$ if n > r(2r - 1).

Proof. By Lemma 1, $R(C_n, C_{2r-1}) \ge 2n - 1$. We prove the reverse inequality. Consider a partition (E_1, E_2) of $E(K_{2n-1})$ and assume that there is neither a C_n in E_1 nor a C_{2r-1} in E_2 . It follows that, by Lemma 4, $|E_2| \le \frac{1}{4}(2n-1)^2$, and hence that

$$|E_1| \ge {\binom{2n-1}{2}} - \frac{1}{4}(2n-1)^2.$$

But then, by Lemma 3, E_1 contains a cycle of length at least n - 1. By Lemma 6(ii), E_1 contains a cycle C of length n - 2 or n - 1. Let $S = V(K_{2n-1}) - V(C)$. Since $|S| \ge n$, there are vertices x_1 , x_2 in S with the edge (x_1, x_2) in E_2 . Choose further vertices $x_3, ..., x_r$ of S. Now, by Lemma 7, each x_i is joined by edges of E_1 to at most 2r - 2 vertices of C. It follows that there are at least n - 2 - r(2r - 2) vertices of C all of which are joined to each x_i by edges of E_2 . But n > r(2r - 1) by hypothesis. So E_2 contains a K(r, r - 1) plus an additional edge, and this in turn contains a C_{2r-1} .

THEOREM 2. $2n - 1 \rightarrow (C_n, C_n)$ if n > 3.

Proof. Let (E_1, E_2) be a partition of $E(K_{2n-1})$ and suppose, without loss of generality, that $|E_1| \ge |E_2|$. Then

$$|E_1| \ge \frac{1}{2} \binom{2n-1}{2}$$

and so, by Lemma 3, E_1 contains a cycle of length at least n.

We first show that if one of E_1 and E_2 contains a C_{2r+1} then one of E_1 and E_2 also contains a C_{2r} (r > 2). For suppose that $(x_0, ..., x_{2r})$ is a C_{2r+1} in E_1 and that neither E_1 nor E_2 contains a C_{2r} . Then, taking indices modulo 2r + 1,

$$(x_i, x_{i+1}) \in E_1, \qquad 0 \leqslant i \leqslant 2r,$$

$$\Rightarrow (x_i, x_{i+2}) \in E_2, \qquad 0 \leqslant i \leqslant 2r,$$

since the 2*r*-cycle $(x_0, x_1, ..., x_i, x_{i+2}, x_{i+3}, ..., x_{2r}) \notin E_1$,

 $\Rightarrow (x_i, x_{i+4}) \in E_1, \qquad 0 \leq i \leq 2r,$

since the 2*r*-cycle $(x_i, x_{i+4}, x_{i+6}, ..., x_{i-2}) \notin E_2$,

$$\Rightarrow (x_i, x_{i+3}) \in E_2, \qquad 0 \leqslant i \leqslant 2r,$$

since the 2*r*-cycle $(x_i, x_{i+3}, x_{i+4}, ..., x_{i-2}, x_{i+2}, x_{i+1}) \notin E_1$. But then E_2 contains the 2*r*-cycle

$$(x_{2r-1}, x_1, x_3, ..., x_{2r-5}, x_{2r-2}, x_{2r-4}, ..., x_2, x_{2r}, x_{2r-3}).$$

Now suppose that one of E_1 and E_2 , say E_1 , contains a $C_{2r}(2r > n)$ but that neither E_1 nor E_2 contains a C_{2r-1} . (Clearly if this is never the case then, by the above remarks, either E_1 or E_2 contains a C_n as desired.) Let $(x_1, ..., x_{2r})$ be this C_{2r} . Then, taking indices modulo 2r,

$$(x_i, x_{i+1}) \in E_1, \quad 1 \leq i \leq 2r,$$

and so, as before,

$$(x_i, x_{i+2}) \in E_2$$
, $1 \leq i \leq 2r$.

Moreover $(x_i, x_{i+2k}) \in E_2$, $1 \le i \le 2r$, $1 \le k \le r-1$. For if $(x_i, x_{i+2k}) \in E_1$, then

$$(x_{i-1}, x_{i+2k-2}) \in E_2$$
,

since the 2r - 1-cycle

 $(x_i, x_{i+2k}, x_{i+2k+1}, ..., x_{i-1}, x_{i+2k-2}, x_{i+2k-3}, ..., x_{i+1}) \notin E_1$

and also

 $(x_{i+1}, x_{i+2k+2}) \in E_2$,

since the 2r - 1-cycle

$$(x_i, x_{i+2k}, x_{i+2k-1}, ..., x_{i+1}, x_{i+2k+2}, x_{i+2k+3}, ..., x_{i-1}) \notin E_1$$

But then E_2 contains the 2r - 1-cycle

$$(x_{i+1}, x_{i+3}, ..., x_{i-1}, x_{i+2k-2}, x_{i+2k-4}, ..., x_{i+2k+2}),$$

a contradiction.

We now have the following situation: the sets

$$X_1 = \{x_1, x_3, ..., x_{2r-1}\},$$
 and $X_2 = \{x_2, x_4, ..., x_{2r}\}$

each span complete subgraphs in E_2 . Every edge from X_1 to X_2 is in E_1 , except that all but two edges incident with one vertex may be in E_2 . If n is even then, since E_1 contains a K(r-1, r) with 2r > n, a fortiori E_1

contains a C_n ; so assume that *n* is odd. Now it is clear that no vertex in $V(K_{2n-1}) - X_1 - X_2$ can be joined to both a vertex of X_1 and a vertex of X_2 by edges of E_1 , for then E_1 would contain a C_n . It follows that every vertex of $V(K_{2n-1}) - X_1 - X_2$ must be joined by edges of E_2 to all of X_1 or to all of X_2 . Since there are 2(n-r) - 1 vertices in $V(G) - X_1 - X_2$, at least n - r of these vertices must be joined by edges of E_2 to every vertex of either X_1 or X_2 , say X_1 . But then E_2 contains a C_n , and the theorem is proved.

Together with Lemma 1 this implies the

COROLLARY. $R(C_n, C_n) = 2n - 1$, if n is odd.

THEOREM 3. $R(C_n, K_r^{t+1}) = t(n-1) + r$, if $n > n_1(r, t)$.

Proof. By induction on t. We first prove that, for $n > n_1(r, 1)$,

 $R(C_n, K_r^2) = n + r - 1.$

The method is similar to that of Theorem 1. By Lemma 2 it suffices to show that $R(C_n, K_r^2) \leq n + r - 1$. Let (E_1, E_2) be a partition of $E(K_{n+r-1})$, and assume that there is no C_n in E_1 and no K_r^2 in E_2 . By Lemma 5, $|E_2| \leq \frac{1}{2}\epsilon(n + r - 1)^2$, for $n > n(2, r, \epsilon)$, and hence $|E_1| \geq \frac{1}{2}cn^2$, for some positive constant c and all $n > n(2, r, \epsilon)$. It follows from Lemma 3 that there is a cycle of length at least cn in E_1 and hence, by Lemma 6, a cycle C of length less than n but at least c'n, for some positive constant c'. Since there is no K_r^2 in E_2 there is no K_{2r} in E_2 , and, applying Lemma 7, we find, when $c'n \geq 2r^2$, r vertices of $V(K_{n+r-1}) - V(C)$ joined by edges of E_2 to r vertices of C. Hence, putting

$$n_1(r, t) = \max\left(\frac{2r^2}{c'}, n(2, r, \epsilon)\right),$$

we obtain the desired contradiction.

Suppose the theorem is true for t - 1, and let (E_1, E_2) be a partition of $E(K_{t(n-1)+r})$. By the same argument, if there is no K_r^{t+1} in E_2 , then there is a cycle of length less than n but greater than c_1n in E_1 . By the induction hypothesis, there is a K_r^t in E_2 , disjoint from this cycle. Applying Lemma 7, if $c_1n \ge tr((t+1)r-1) + r$, we find a K_r^{t+1} in E_2 .

Theorem 3 can be strengthened to

$$R(C_n, K(r_1, ..., r_{t+1})) = t(n-1) + r,$$
 if $n > n_1'(r, t),$

where $r_i = r$, $1 \le i \le t$, and $r_{t+1} = \epsilon(r, t)n$. We omit details.

It is worth noting that Theorem 3 does not hold for all $r \leq n$, even in the case t = 1. For $R(C_n, K_n^2) > 3(n-1)$ as is seen by the graph G(n-1, n-1, n-1).

Using more care in the proof of Theorem 3 we obtain the

COROLLARY. $R(C_n, C_{2r}) = n + r - 1$, if $n > 4r^2 - r + 2$.

Proof. By Lemma 4, we can assume that $|E_2| \leq \frac{1}{4}(n+r-1)^2$ and hence that

$$|E_1| \ge {n+r-1 \choose 2} - \frac{1}{4}(n+r-1)^2.$$

It follows that, applying Lemma 3, there is a cycle of length at least $\frac{1}{2}(n + r - 3)$ in E_1 and therefore, by Lemma 6(ii), a cycle of length less than n and at least $\frac{1}{2}(n + r - 3)$ in E_1 . By Lemma 7, if $\frac{1}{2}(n + r - 3) \ge r(2r - 1) + r$, that is, if $n > 4r^2 - r + 2$, there is a K_r^2 in E_2 and hence, a fortiori, a C_{2r} in E_2 .

It has been observed by Gyárfás that $n + r - 1 \rightarrow (C_n, C_{2r})$ does not hold for all 2r < n when n is odd. In fact we see from G(2r - 1, 2r - 1) that

$$4r - 2 \not\rightarrow (C_n, C_{2r}),$$
 if *n* is odd.

Note that, by Theorem 3,

$$R(C_n, K_r) = R(C_n, K_1^r) = (r-1)(n-1) + 1$$

if n is large enough. We now strengthen this.

THEOREM 4.
$$R(C_n, K_r) = (r-1)(n-1) + 1$$
 if $n \ge r^2 - 2$.

Proof. By induction on r. Trivially $R(C_n, K_2) = n$. Suppose the theorem is true for r - 1 and let (E_1, E_2) be a partition of $E(K_N)$, where N = (r - 1)(n - 1) + 1 and $n \ge r^2 - 2$, such that there is neither a C_n in E_1 nor a K_r in E_2 . Then, by Turán's theorem [7],

$$|E_2| \leq \frac{N^2(r-2)}{2(r-1)}$$

and hence

$$|E_1| \ge {\binom{N}{2}} - \frac{N^2(r-2)}{2(r-1)} = \frac{N((r-1)(n-2)+1)}{2(r-1)}.$$

By Lemma 3, there is a cycle of length at least n-1 in E_1 . Since E_1 contains no C_n , by Lemma 6(i) there is a cycle C of length c, $n-2r+4 \le c < n$, in E_1 . Choose c so that it is as large as possible, subject to these bounds. Then $c \ge n-2r+4 > (r-1)^2$. Since $c \le n-1$, $|V(K_N-C)| \ge (r-2)(n-1)+1$ and so, by the induction hypothesis, $E_2 - C$ contains a K_{r-1} , with vertices $x_1, ..., x_{r-1}$. Clearly, because E_2 contains no K_r , each vertex of C must be joined by

an edge of E_1 to at least one x_i . It follows that some x_i is joined by edges of E_1 to at least r vertices of C. But, by Lemma 7, this is impossible. The theorem follows.

For arbitrary n and r we have the following result:

THEOREM 5. $nr^2 \rightarrow (C_n, K_r)$.

Outline of proof. Let (E_1, E_2) be a partition of $E(K_{nr^2})$ and assume that E_1 contains no C_n and that E_2 contains no K_r . Let K be the largest complete subgraph in E_2 , of order p < r. Then each vertex not in K must be joined by an edge of E_1 to at least one vertex of K. It follows that some vertex x of K is joined to a large set S (with |S| = rn) of vertices by edges of E_1 . In the subgraph spanned by S, E_2 contains no K_r and so, by Turán's theorem [7], $|E_1| > \frac{1}{2}rn(n-1)$. By Lemma 3, E_1 contains a path of length n-2 in the subgraph spanned by S. This path, together with the edges from its end-vertices to $x \in V(K)$ gives us a C_n in E_1 .

4. Comments

We have not been able to evaluate $R(G_1, ..., G_k)$ for k > 2 even in the case of cycles. It is easy to see that, when $G_i \cong C_n$, $1 \le i \le k$, and n is odd,

$$R(G_1, ..., G_k) \ge 2^{k-1}(n-1) + 1.$$

On the other hand we can show that, in this case,

$$R(G_1,...,G_k) \leq (k+2)!n.$$

Also of interest would be to find $R(C_n, C_r)$, $R(C_n, K_r)$, and $R(C_n, K_r^2)$ for all values of *n* and *r*. Since, by [4], $R(C_4, K_4) = 10$ it is possible that

$$R(C_n, K_4) = 3n - 2$$
, for all $n > 3$.

And $R(C_6, C_6) = 8$ leads to the conjecture that

$$R(C_{2n}, C_{2n}) = 3n - 1$$
, for all $n > 2$.

Note added in proof. There has been considerable development in the theory of Ramsey numbers since the writing of this paper. R. J. Faudree and R. H. Schelp [8] and, independently, V. Rosta [9], have shown that, except for $R(C_3, C_3)$ and $R(C_4, C_4)$,

$$R(C_m, C_n) = \begin{cases} 2n - 1, \text{ for } 3 \leq m \leq n, m \text{ odd} \\ n + (m/2) - 1, 4 \leq m \leq n, m, n \text{ even} \\ \max\{n + (m/2) - 1, 2n - 1\}, 4 \leq m < n, m \text{ even}, n \text{ odd}. \end{cases}$$

Faudree and Schelp have also shown that

$$R(P_m, P_n) = n + [(m+1)/2] \text{ for } 1 \leq m \leq n,$$

and that

$$R(C_m, P_n) = \begin{cases} 2n+1, 3 \leq m \leq n, m \text{ odd,} \\ n+(m/2), 4 \leq m \leq n, m \text{ even,} \\ m+[(n+1)/2] - 1, 1 \leq n < m, m \text{ even} \ge 4, \\ \max\{m+[n+1/2] - 1, 2n+1\}, 1 \leq n < m, m \text{ odd,} \end{cases}$$

where P_n is a path of length *n*. T. D. Parsons [10] has evaluated $R(C_4, P_n)$ and $R(K_m, P_n)$. ([8] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, submitted to Discrete Mathematics. [9] V. Rosta, submitted to J. Combinatorial Theory. [10] T. D. Parsons, personal communication.)

REFERENCES

- 1. J. A. BONDY, Large cycles in graphs, Discrete Mathematics 1 (1971), 121-32.
- G. CHARTRAND AND S. SCHUSTER, On the existence of specified cycles in complementary graphs, Bull. Amer. Math. Soc. 77 (1971), 995-8.
- V. CHVÁTAL AND F. HARARY, Generalized Ramsey theory for graphs, II, Small diagonal numbers, Proc. Amer. Math. Soc. 32 (1972), 389-94.
- V. CHVÁTAL AND F. HARARY, Generalized Ramsey theory for graphs, III, Small off-diagonal numbers, *Pacific J. Math.* 41 (1972), 335-345.
- 5. P. ERDÖS AND T. GALLAI, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-56.
- P. ERDÖS AND A. H. STONE, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-91.
- 7. P. TURÁN, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-52.

Printed by the St Catherine Press Ltd., Tempelhof 37, Bruges, Belgium.