Ramsey Numbers for Cycles in Graphs

J. A. Bondy and P. Erdös
University of Waterloo, Waterloo, Ontario, Canada

Received January 28, 1972

Given two graphs G_{1}, G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer m such that, for any partition $\left(E_{1}, E_{2}\right)$ of the edges of K_{m}, either G_{1} is a subgraph of the graph induced by E_{1}, or G_{2} is a subgraph of the graph induced by E_{2}. We show that

$$
\begin{aligned}
R\left(C_{n}, C_{n}\right) & =2 n-1 \text { if } n \text { is odd, } \\
R\left(C_{n}, C_{2 r-1}\right) & =2 n-1 \text { if } n>r(2 r-1), \\
R\left(C_{n}, C_{2 r}\right) & =n+r-1 \text { if } n>4 r^{2}-r+2, \\
R\left(C_{n}, K_{r}\right) & \leqslant n r^{2} \text { for all } r, n, \\
R\left(C_{n}, K_{r}\right) & =(r-1)(n-1)+1 \text { if } n \geqslant r^{2}-2, \\
R\left(C_{n}, K_{r}^{t+1}\right) & =t(n-1)+r \text { for large } n .
\end{aligned}
$$

1. Introduction

We are here concerned with undirected graphs that are finite and have no loops or multiple edges. Let G be such a graph; we write $V(G)$ for the vertex set of G, and $E(G)$ for the edge set of $G ;|V(G)|$ is the order of G, $|E(G)|$ the size of G. If $E^{\prime} \subseteq E(G), E^{\prime}$ will also denote the partial subgraph of G with edge set $E^{\prime} . C_{n}$ denotes the cycle of length n, K_{n} the complete graph of order n, and $K\left(r_{1}, \ldots, r_{t}\right)$ the complete t-partite graph with parts of cardinalities r_{1}, \ldots, r_{t}; when each $r_{i}=r$ this will be written $K_{r}{ }^{t}$.

Let k be finite and let

$$
m \rightarrow\left(G_{1}, \ldots, G_{k}\right)
$$

signify the truth of the statement: for any partition $\left(E_{1}, \ldots, E_{k}\right)$ of $E\left(K_{m}\right)$ there is an $i, 1 \leqslant i \leqslant k$, such that G_{i} is a subgraph of E_{i}. It follows from Ramsey's theorem that, for any collection of graphs G_{1}, \ldots, G_{k}, there is a finite m such that $m \rightarrow\left(G_{1}, \ldots, G_{k}\right)$. We denote the least such m by $R\left(G_{1}, \ldots, G_{k}\right)$.

The Ramsey function R has been studied in detail for complete graphs G_{i}, although exact values are generally unknown. Chvátal and Harary
[3,4] determined $R\left(G_{1}, G_{2}\right)$ for all G_{1}, G_{2} of order at most four, and Chartrand and Schuster [2] have shown that

$$
\begin{aligned}
& R\left(C_{n}, C_{3}\right)=\left\{\begin{array}{lr}
6, & n=3, \\
2 n-1, & n>3,
\end{array}\right. \\
& R\left(C_{n}, C_{4}\right)= \begin{cases}6, & n=4, \\
7, & n=5, \\
n+1, & n>5,\end{cases} \\
& R\left(C_{n}, C_{5}\right)=2 n-1, n>2, \\
& R\left(C_{6}, C_{6}\right)=8 .
\end{aligned}
$$

In this paper we investigate $R\left(C_{n}, C_{r}\right)$ for arbitrary $r \leqslant n$. It was conjectured by W. G. Brown that, for $n>n_{0}(r)$,

$$
2 n-1 \rightarrow\left(C_{n}, C_{r}\right) .
$$

We prove this (with $n_{0}(r)=\frac{1}{2}\left(r^{2}+r\right)$); it follows easily that, for odd r and $n>\frac{1}{2}\left(r^{2}+r\right)$,

$$
R\left(C_{n}, C_{r}\right)=2 n-1 .
$$

It seems likely that, for $n>3$ and all $r \leqslant n, 2 n-1 \rightarrow\left(C_{n}, C_{r}\right)$, but we can only prove at present that

$$
2 n-1 \rightarrow\left(C_{n}, C_{n}\right), \quad n>3 .
$$

We also show that, for $n>4 r^{2}-r+2$,

$$
R\left(C_{n}, C_{2 r}\right)=n+r-1 .
$$

More generally we prove that, for $n>n_{1}(r, t)$,

$$
R\left(C_{n}, K_{r}^{t+1}\right)=t(n-1)+r .
$$

This implies that, for $n>n_{2}(r)\left(=n_{1}(1, r-1)\right)$,

$$
R\left(C_{n}, K_{r}\right)=(r-1)(n-1)+1
$$

In fact we prove directly that the above holds for $n \geqslant r^{2}-2$. Finally we show that, for arbitrary r and n,

$$
n r^{2} \rightarrow\left(C_{n}, K_{r}\right) .
$$

2. Preliminary Lemmas

Let $G\left(r_{1}, \ldots, r_{t}\right)$ denote the complete graph of order $\sum_{i=1}^{t} r_{i}$ with edge partition $\left(E_{1}, E_{2}\right)$ such that $E_{2} \cong K\left(r_{1}, \ldots, r_{t}\right)$.

Lemma 1. $\quad R\left(C_{n}, C_{2 r-1}\right)>2 n-2$.
Proof. $G(n-1, n-1)$ contains no C_{n} in E_{1} and no $C_{2 r-1}$ in E_{2}.

Lemma 2. $\quad R\left(C_{n}, K_{r}^{t+1}\right)>t(n-1)+r-1$.
Proof. $G\left(n_{1}, \ldots, n_{t}, s_{1}, \ldots, s_{r-1}\right)$, where $n_{i}=n-1,1 \leqslant i \leqslant t$, and $s_{i}=1,1 \leqslant i \leqslant r-1$, contains no C_{n} in E_{1} and no K_{r}^{t+1} in E_{2}.

Lemma 3 (Erdös and Gallai [5]). If G is a graph of order n and size at least $\frac{1}{2}((c-1)(n-1)+1)$, then G contains a cycle of length at least c.

Lemma 4 (Bondy [1]). If G is a graph of order n and size at least $\frac{1}{4}\left(n^{2}+1\right)$, then G contains cycles of all lengths $l, 3 \leqslant l \leqslant \frac{1}{2}(n+3)$.

Lemma 5 (Erdös and Stone [6]). If G is a graph of order n and size at least $\frac{1}{2} n^{2}(1-1 /(t-1)+\epsilon)$, where $n>n(t, r, \epsilon)$, then G contains a $K_{r}{ }^{t}$.

Lemma 6. Let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{n}\right)$ such that E_{1} contains a C_{m}, where $m \geqslant 6$. Then
(i) if E_{2} contains no K_{r} there is a cycle of length $c, m-2 r+3 \leqslant$ $c<m$, in E_{1} (provided $m \geqslant 2 r$),
(ii) if E_{2} contains no C_{r} there is a cycle of length $c^{\prime}, m-3 \leqslant c^{\prime}<m$ in E_{1} (provided $m \geqslant r$).

Proof. Let $C=\left(x_{1}, \ldots, x_{m}\right)$ be a cycle of length m in G.
(i) Consider the vertices $x_{1}, x_{3}, \ldots, x_{2 r-1}$. Since E_{2} contains no K_{r}, some pair (x_{i}, x_{j}) of these vertices must be joined by an edge of E_{1}. Then E_{1} contains the cycle $\left(x_{1}, x_{2}, \ldots, x_{i}, x_{j}, x_{j+1}, \ldots, x_{m}\right)$ of length at least $m-2 r+3$.
(ii) Some $\left(x_{i}, x_{i+2}\right),\left(x_{i}, x_{i+3}\right)$ or $\left(x_{i}, x_{i+4}\right)$ must be in E_{1}, for otherwise it is easily seen that E_{2} contains a C_{r}. It follows that E_{1} contains a C_{m-3}, a C_{m-2}, or a C_{m-1}.

Lemma 7. Let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{n}\right)$ such that E_{1} contains a cycle C of length m, but no C_{m+1}. If E_{2} contains no K_{r}, then every vertex $x \notin V(C)$ is joined by edges of E_{1} to at most $r-1$ vertices of C.

Proof. Let $C=\left(x_{1}, \ldots, x_{m}\right)$ and suppose that $x \notin V(C)$ is joined to vertices $x_{i_{1}}, \ldots, x_{i_{r}}$ of C (where $i_{1}<i_{2}<\cdots<i_{r}$). Then $\left(x_{i_{j}-1}, x_{i_{k}-1}\right) \in E_{2}$
for all $j, k, 1 \leqslant j<k \leqslant r$, since otherwise E_{1} would contain the $m+1$-cycle

$$
\left(x_{1}, \ldots, x_{i_{j}-1}, x_{i_{k}-1}, x_{i_{k}-2}, \ldots, x_{i_{j}}, x, x_{i_{k}}, x_{i_{k}+1}, \ldots, x_{m}\right) .
$$

But this contradicts the hypothesis that E_{2} contain no K_{r}.

3. Main Results

Theorem 1. $R\left(C_{n}, C_{2 r-1}\right)=2 n-1$ if $n>r(2 r-1)$.
Proof. By Lemma 1, $R\left(C_{n}, C_{2 r-1}\right) \geqslant 2 n-1$. We prove the reverse inequality. Consider a partition $\left(E_{1}, E_{2}\right)$ of $E\left(K_{2 n-1}\right)$ and assume that there is neither a C_{n} in E_{1} nor a $C_{2 r-1}$ in E_{2}. It follows that, by Lemma 4, $\left|E_{2}\right| \leqslant \frac{1}{4}(2 n-1)^{2}$, and hence that

$$
\left|E_{1}\right| \geqslant\binom{ 2 n-1}{2}-\frac{1}{4}(2 n-1)^{2} .
$$

But then, by Lemma 3, E_{1} contains a cycle of length at least $n-1$. By Lemma 6(ii), E_{1} contains a cycle C of length $n-2$ or $n-1$. Let $S=V\left(K_{2 n-1}\right)-V(C)$. Since $|S| \geqslant n$, there are vertices x_{1}, x_{2} in S with the edge $\left(x_{1}, x_{2}\right)$ in E_{2}. Choose further vertices x_{3}, \ldots, x_{r} of S. Now, by Lemma 7, each x_{i} is joined by edges of E_{1} to at most $2 r-2$ vertices of C. It follows that there are at least $n-2-r(2 r-2)$ vertices of C all of which are joined to each x_{i} by edges of E_{2}. But $n>r(2 r-1)$ by hypothesis. So E_{2} contains a $K(r, r-1)$ plus an additional edge, and this in turn contains a $C_{2 r-1}$.

Theorem 2. $2 n-1 \rightarrow\left(C_{n}, C_{n}\right)$ if $n>3$.
Proof. Let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{2 n-1}\right)$ and suppose, without loss of generality, that $\left|E_{1}\right| \geqslant\left|E_{2}\right|$. Then

$$
\left|E_{1}\right| \geqslant \frac{1}{2}\binom{2 n-1}{2}
$$

and so, by Lemma 3, E_{1} contains a cycle of length at least n.
We first show that if one of E_{1} and E_{2} contains a $C_{2 r+1}$ then one of E_{1} and E_{2} also contains a $C_{2 r}(r>2)$. For suppose that $\left(x_{0}, \ldots, x_{2 r}\right)$ is a $C_{2 r+1}$ in E_{1} and that neither E_{1} nor E_{2} contains a $C_{2 r}$. Then, taking indices modulo $2 r+1$,

$$
\begin{aligned}
& \left(x_{i}, x_{i+1}\right) \in E_{1}, \\
\Rightarrow \quad\left(x_{i}, x_{i+2}\right) \in E_{2}, & 0 \leqslant i \leqslant 2 r \\
\Rightarrow & 0 \leqslant 2 r
\end{aligned}
$$

since the $2 r$-cycle $\left(x_{0}, x_{1}, \ldots, x_{i}, x_{i+2}, x_{i+3}, \ldots, x_{2 r}\right) \notin E_{1}$,

$$
\Rightarrow \quad\left(x_{i}, x_{i+4}\right) \in E_{1}, \quad 0 \leqslant i \leqslant 2 r,
$$

since the $2 r$-cycle $\left(x_{i}, x_{i+4}, x_{i+6}, \ldots, x_{i-2}\right) \notin E_{2}$,

$$
\Rightarrow \quad\left(x_{i}, x_{i+3}\right) \in E_{2}, \quad 0 \leqslant i \leqslant 2 r,
$$

since the $2 r$-cycle $\left(x_{i}, x_{i+3}, x_{i+4}, \ldots, x_{i-2}, x_{i+2}, x_{i+1}\right) \notin E_{1}$. But then E_{2} contains the $2 r$-cycle

$$
\left(x_{2 r-1}, x_{1}, x_{3}, \ldots, x_{2 r-5}, x_{2 r-2}, x_{2 r-4}, \ldots, x_{2}, x_{2 r}, x_{2 r-3}\right)
$$

Now suppose that one of E_{1} and E_{2}, say E_{1}, contains a $C_{2 r}(2 r>n)$ but that neither E_{1} nor E_{2} contains a $C_{2 r-1}$. (Clearly if this is never the case then, by the above remarks, either E_{1} or E_{2} contains a C_{n} as desired.) Let $\left(x_{1}, \ldots, x_{2 r}\right)$ be this $C_{2 r}$. Then, taking indices modulo $2 r$,

$$
\left(x_{i}, x_{i+1}\right) \in E_{1}, \quad 1 \leqslant i \leqslant 2 r
$$

and so, as before,

$$
\left(x_{i}, x_{i+2}\right) \in E_{2}, \quad 1 \leqslant i \leqslant 2 r .
$$

Moreover $\left(x_{i}, x_{i+2 k}\right) \in E_{2}, 1 \leqslant i \leqslant 2 r, 1 \leqslant k \leqslant r-1$. For if $\left(x_{i}, x_{i+2 k}\right) \in E_{1}$, then

$$
\left(x_{i-1}, x_{i+2 k-2}\right) \in E_{2},
$$

since the $2 r-1$-cycle

$$
\left(x_{i}, x_{i+2 k}, x_{i+2 k+1}, \ldots, x_{i-1}, x_{i+2 k-2}, x_{i+2 k-3}, \ldots, x_{i+1}\right) \notin E_{1},
$$

and also

$$
\left(x_{i+1}, x_{i+2 k+2}\right) \in E_{2}
$$

since the $2 r-1$-cycle

$$
\left(x_{i}, x_{i+2 k}, x_{i+2 k-1}, \ldots, x_{i+1}, x_{i+2 k+2}, x_{i+2 k+3}, \ldots, x_{i-1}\right) \notin E_{1} .
$$

But then E_{2} contains the $2 r-1$-cycle

$$
\left(x_{i+1}, x_{i+3}, \ldots, x_{i-1}, x_{i+2 k-2}, x_{i+2 k-4}, \ldots, x_{i+2 k+2}\right),
$$

a contradiction.
We now have the following situation: the sets

$$
X_{1}=\left\{x_{1}, x_{3}, \ldots, x_{2 r-1}\right\}, \quad \text { and } \quad X_{2}=\left\{x_{2}, x_{4}, \ldots, x_{2 r}\right\}
$$

each span complete subgraphs in E_{2}. Every edge from X_{1} to X_{2} is in E_{1}, except that all but two edges incident with one vertex may be in E_{2}. If n is even then, since E_{1} contains a $K(r-1, r)$ with $2 r>n$, a fortiori E_{1}
contains a C_{n}; so assume that n is odd. Now it is clear that no vertex in $V\left(K_{2 n-1}\right)-X_{1}-X_{2}$ can be joined to both a vertex of X_{1} and a vertex of X_{2} by edges of E_{1}, for then E_{1} would contain a C_{n}. It follows that every vertex of $V\left(K_{2 n-1}\right)-X_{1}-X_{2}$ must be joined by edges of E_{2} to all of X_{1} or to all of X_{2}. Since there are $2(n-r)-1$ vertices in $V(G)-X_{1}-X_{2}$, at least $n-r$ of these vertices must be joined by edges of E_{2} to every vertex of either X_{1} or X_{2}, say X_{1}. But then E_{2} contains a C_{n}, and the theorem is proved.

Together with Lemma 1 this implies the
Corollary. $\quad R\left(C_{n}, C_{n}\right)=2 n-1$, if n is odd.
Theorem 3. $R\left(C_{n}, K_{r}^{t+1}\right)=t(n-1)+r$, if $n>n_{1}(r, t)$.
Proof. By induction on t. We first prove that, for $n>n_{1}(r, 1)$,

$$
R\left(C_{n}, K_{r}^{2}\right)=n+r-1 .
$$

The method is similar to that of Theorem 1. By Lemma 2 it suffices to show that $R\left(C_{n}, K_{r}^{2}\right) \leqslant n+r-1$. Let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{n+r-1}\right)$, and assume that there is no C_{n} in E_{1} and no $K_{r}{ }^{2}$ in E_{2}. By Lemma 5, $\left|E_{2}\right| \leqslant \frac{1}{2} \epsilon(n+r-1)^{2}$, for $n>n(2, r, \epsilon)$, and hence $\left|E_{1}\right| \geqslant \frac{1}{2} c n^{2}$, for some positive constant c and all $n>n(2, r, \epsilon)$. It follows from Lemma 3 that there is a cycle of length at least $c n$ in E_{1} and hence, by Lemma 6, a cycle C of length less than n but at least $c^{\prime} n$, for some positive constant c^{\prime}. Since there is no K_{r}^{2} in E_{2} there is no $K_{2 r}$ in E_{2}, and, applying Lemma 7 , we find, when $c^{\prime} n \geqslant 2 r^{2}, r$ vertices of $V\left(K_{n+r-1}\right)-V(C)$ joined by edges of E_{2} to r vertices of C. Hence, putting

$$
n_{1}(r, t)=\max \left(\frac{2 r^{2}}{c^{\prime}}, n(2, r, \epsilon)\right)
$$

we obtain the desired contradiction.
Suppose the theorem is true for $t-1$, and let (E_{1}, E_{2}) be a partition of $E\left(K_{t(n-1)+r}\right)$. By the same argument, if there is no K_{r}^{t+1} in E_{2}, then there is a cycle of length less than n but greater than $c_{1} n$ in E_{1}. By the induction hypothesis, there is a $K_{r}{ }^{t}$ in E_{2}, disjoint from this cycle. Applying Lemma 7, if $c_{1} n \geqslant \operatorname{tr}((t+1) r-1)+r$, we find a K_{r}^{t+1} in E_{2}.

Theorem 3 can be strengthened to

$$
R\left(C_{n}, K\left(r_{1}, \ldots, r_{t+1}\right)\right)=t(n-1)+r, \quad \text { if } \quad n>n_{1}^{\prime}(r, t),
$$

where $r_{i}=r, 1 \leqslant i \leqslant t$, and $r_{t+1}=\epsilon(r, t) n$. We omit details.
It is worth noting that Theorem 3 does not hold for all $r \leqslant n$, even in the case $t=1$. For $R\left(C_{n}, K_{n}{ }^{2}\right)>3(n-1)$ as is seen by the graph $G(n-1, n-1, n-1)$.

Using more care in the proof of Theorem 3 we obtain the
Corollary. $\quad R\left(C_{n}, C_{2 r}\right)=n+r-1$, if $n>4 r^{2}-r+2$.
Proof. By Lemma 4, we can assume that $\left|E_{2}\right| \leqslant \frac{1}{4}(n+r-1)^{2}$ and hence that

$$
\left|E_{1}\right| \geqslant\binom{ n+r-1}{2}-\frac{1}{4}(n+r-1)^{2} .
$$

It follows that, applying Lemma 3, there is a cycle of length at least $\frac{1}{2}(n+r-3)$ in E_{1} and therefore, by Lemma 6(ii), a cycle of length less than n and at least $\frac{1}{2}(n+r-3)$ in E_{1}. By Lemma 7, if $\frac{1}{2}(n+r-3) \geqslant$ $r(2 r-1)+r$, that is, if $n>4 r^{2}-r+2$, there is a K_{r}^{2} in E_{2} and hence, a fortiori, a $C_{2 r}$ in E_{2}.

It has been observed by Gyárfás that $n+r-1 \rightarrow\left(C_{n}, C_{2 r}\right)$ does not hold for all $2 r<n$ when n is odd. In fact we see from $G(2 r-1,2 r-1)$ that

$$
4 r-2 \nrightarrow\left(C_{n}, C_{2 r}\right), \quad \text { if } n \text { is odd. }
$$

Note that, by Theorem 3,

$$
R\left(C_{n}, K_{r}\right)=R\left(C_{n}, K_{1}^{r}\right)=(r-1)(n-1)+1
$$

if n is large enough. We now strengthen this.
Theorem 4. $\quad R\left(C_{n}, K_{r}\right)=(r-1)(n-1)+1$ if $n \geqslant r^{2}-2$.
Proof. By induction on r. Trivially $R\left(C_{n}, K_{2}\right)=n$. Suppose the theorem is true for $r-1$ and let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{N}\right)$, where $N=(r-1)(n-1)+1$ and $n \geqslant r^{2}-2$, such that there is neither a C_{n} in E_{1} nor a K_{r} in E_{2}. Then, by Turán's theorem [7],

$$
\left|E_{2}\right| \leqslant \frac{N^{2}(r-2)}{2(r-1)}
$$

and hence

$$
\left|E_{1}\right| \geqslant\binom{ N}{2}-\frac{N^{2}(r-2)}{2(r-1)}=\frac{N((r-1)(n-2)+1)}{2(r-1)}
$$

By Lemma 3, there is a cycle of length at least $n-1$ in E_{1}. Since E_{1} contains no C_{n}, by Lemma 6 (i) there is a cycle C of length c, $n-2 r+4 \leqslant c<n$, in E_{1}. Choose c so that it is as large as possible, subject to these bounds. Then $c \geqslant n-2 r+4>(r-1)^{2}$. Since $c \leqslant n-1,\left|V\left(K_{N}-C\right)\right| \geqslant(r-2)(n-1)+1$ and so, by the induction hypothesis, $E_{2}-C$ contains a K_{r-1}, with vertices x_{1}, \ldots, x_{r-1}. Clearly, because E_{2} contains no K_{r}, each vertex of C must be joined by
an edge of E_{1} to at least one x_{i}. It follows that some x_{i} is joined by edges of E_{1} to at least r vertices of C. But, by Lemma 7, this is impossible. The theorem follows.

For arbitrary n and r we have the following result:
THEOREM 5. $n r^{2} \rightarrow\left(C_{n}, K_{r}\right)$.
Outline of proof. Let $\left(E_{1}, E_{2}\right)$ be a partition of $E\left(K_{n r^{2}}\right)$ and assume that E_{1} contains no C_{n} and that E_{2} contains no K_{r}. Let K be the largest complete subgraph in E_{2}, of order $p<r$. Then each vertex not in K must be joined by an edge of E_{1} to at least one vertex of K. It follows that some vertex x of K is joined to a large set S (with $|S|=r n$) of vertices by edges of E_{1}. In the subgraph spanned by S, E_{2} contains no K_{r} and so, by Turán's theorem [7], $\left|E_{1}\right|>\frac{1}{2} r n(n-1)$. By Lemma 3, E_{1} contains a path of length $n-2$ in the subgraph spanned by S. This path, together with the edges from its end-vertices to $x \in V(K)$ gives us a C_{n} in E_{1}.

4. Comments

We have not been able to evaluate $R\left(G_{1}, \ldots, G_{k}\right)$ for $k>2$ even in the case of cycles. It is easy to see that, when $G_{i} \cong C_{n}, 1 \leqslant i \leqslant k$, and n is odd,

$$
R\left(G_{1}, \ldots, G_{k}\right) \geqslant 2^{k-1}(n-1)+1
$$

On the other hand we can show that, in this case,

$$
R\left(G_{1}, \ldots, G_{k}\right) \leqslant(k+2)!n
$$

Also of interest would be to find $R\left(C_{n}, C_{r}\right), R\left(C_{n}, K_{r}\right)$, and $R\left(C_{n}, K_{r}{ }^{2}\right)$ for all values of n and r. Since, by [4], $R\left(C_{4}, K_{4}\right)=10$ it is possible that

$$
R\left(C_{n}, K_{4}\right)=3 n-2, \quad \text { for all } n>3
$$

And $R\left(C_{6}, C_{6}\right)=8$ leads to the conjecture that

$$
R\left(C_{2 n}, C_{2 n}\right)=3 n-1, \quad \text { for all } n>2
$$

Note added in proof. There has been considerable development in the theory of Ramsey numbers since the writing of this paper. R. J. Faudree and R. H. Schelp [8] and, independently, V. Rosta [9], have shown that, except for $R\left(C_{3}, C_{3}\right)$ and $R\left(C_{4}, C_{4}\right)$,

$$
R\left(C_{m}, C_{n}\right)=\left\{\begin{array}{l}
2 n-1, \text { for } 3 \leqslant m \leqslant n, m \text { odd } \\
n+(m / 2)-1,4 \leqslant m \leqslant n, m, n \text { even } \\
\max \{n+(m / 2)-1,2 n-1\}, 4 \leqslant m<n, m \text { even, } n \text { odd. }
\end{array}\right.
$$

Faudree and Schelp have also shown that

$$
R\left(P_{m}, P_{n}\right)=n+[(m+1) / 2] \text { for } 1 \leqslant m \leqslant n,
$$

and that

$$
R\left(C_{m}, P_{n}\right)=\left\{\begin{array}{l}
2 n+1,3 \leqslant m \leqslant n, m \text { odd, } \\
n+(m / 2), 4 \leqslant m \leqslant n, m \text { even, } \\
m+[(n+1) / 2]-1,1 \leqslant n<m, m \text { even } \geqslant 4, \\
\max \{m+[n+1 / 2]-1,2 n+1\}, 1 \leqslant n<m, m \text { odd }
\end{array}\right.
$$

where P_{n} is a path of length n. T. D. Parsons [10] has evaluated $R\left(C_{4}, P_{n}\right)$ and $R\left(K_{m}\right.$, P_{n}). ([8] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, submitted to Discrete Mathematics. [9] V. Rosta, submitted to J. Combinatorial Theory. [10] T. D. Parsons, personal communication.)

References

1. J. A. Bondy, Large cycles in graphs, Discrete Mathematics 1 (1971), 121-32.
2. G. Chartrand and S. Schuster, On the existence of specified cycles in complementary graphs, Bull. Amer. Math. Soc. 77 (1971), 995-8.
3. V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, II, Small diagonal numbers, Proc. Amer. Math. Soc. 32 (1972), 389-94.
4. V. Chítal and F. Harary, Generalized Ramsey theory for graphs, III, Small off-diagonal numbers, Pacific J. Math. 41 (1972), 335-345.
5. P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-56.
6. P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-91.
7. P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-52.
