SOME EXTREMAL PROBLEMS ON r-GRAPHS

W. G. Brown, P. Erdös, and V. T. Sos

1. Introduction.

By an r-graph we mean a fixed set of vertices together with a class of unordered subsets of this fixed set, each subset containing exactly r elements and called an r-tuple. In the language of Berge [2] this is a simple uniform hypergraph of rank r. The concept becomes interesting only for $r>1$: for $r=2$ we obtain ordinary (i.e., Michigan) graphs. We shall represent an r-graph by a capital Latin letter followed by a superscripted (r), as $H^{(r)}$. If in some context this symbol is followed by (n) or (n, m), as $H^{(r)}(n)$ or $H^{(r)}(n, m)$, this will mean that $H^{(r)}$ has exactly n vertices and, in the second case, at least m -tuples; thus n will always be an integer, but m reed not be. Any of the foregoing notations, when applied to the symbol for a family of r-graphs, will be intended to apply to all members of the family: for example, if $H^{(r)}$ is a family of r-graphs, and we write $H^{(r)}(n)$, we shall be saying
that every member of $H(r)$ has exactly n vertices. The letter G will be reserved for a general r-graph: in the sense that we may write "any $G^{(r)}(n ; m)$ " when we mean "any r-graph having n vertices and at least m r-tuples"; it will not be used as the name of a specific r-graph. As another example, if we use the symbol $H^{(r)}(n)$ defined above, we are saying that every member of the family $H^{(r)}$ is a $G^{(r)}(n)$. The superscripted (r) will sometimes be omitted from the symbol for a family of r-graphs, but will normally be included in the symbol for a specific rgraph -- except possibly when $r=2$.

For any fixed family H of r-graphs and any positive integer n, the extremal number ex(n; H) is the largest integer for which there exists a $G^{(r)}(n, t)$ containing no member of H as a sub-r-graph. More precisely, H is a family of isomorphism classes of r-graphs, none of which contains an rgraph, which may be extended, possibly by adjoining new vertices and.or new r-tuples, to yield this ${ }_{G}{ }^{(r)}(n, t)$. In the case of graphs, $r=2$, much work has been done on extremal numbers. As usual, K_{t} denotes the complete graph with t vertices. Turán [11] generalized a result of Mantel-Wythoff [g] by
evaluating ex(n; $\left\{K_{t}^{(2)}\left(t,\binom{t}{2}\right)\right\}$) for every t. Numerous other results, both exact and asymptotic, have since been discovered for graphs: indeed, for every family H of graphs, $n^{-2} \operatorname{ex}(n ; H)$ approaches a known limit [8] as n approaches infinity, the value of the limit depending only on the minimum of the chromatic numbers of members of H; descriptions of general extremal results for graphs may be found in [5] etc. In [4] we investigated several problems for $r=3$. For example, we studied the asymptotic behavior of ex(n; $T^{(3)}$) where $T^{(3)}$ is the class of all triangulations of the sphere -- thereby generalizing the trivial statement that any graph $G^{(2)}(n ; n)$ contains a polygon.

Let $G^{(r)}(n, m)$ denote the class of all $G^{(r)}(n, m)$. In this paper we shall denote $\operatorname{ex}\left(n ; G^{(r)}(k, h)\right)$ by $f^{(r)}(n ; k, s)-1$. Thus $f^{(r)}(n ; k, s)$ denotes the smallest for which every $G^{(r)}(n, t)$ contains at least one $G^{(r)}(k, s)$. This problem was studied for graphs in [5] and for $r=3$ in [4]. In the former case, many exact values are known, as well as asymptotic information; in the latter case, there are many gaps -- even for small values of k. We shall give examples of some known results for $r=2$ and
$r=3$. The main result of this paper consists of the determination of a lower bound for $f^{(r)}(n ; k, s)$. The method of proof is that called by one of us [6] "probabilistic" -- we employ a counting argument to prove the existence of r-graphs containing no $G^{(r)}(k, s)$ and having the desired number of r-tuples, but we make no attempt to exhibit the r-graphs explicitly. The tound we obtain is not always best possible, but does in some cases improve on our earlier results for $r=3$.

The letter $c, p o s s i b l y ~ s u b s c r i p t e d, ~ w i l l ~ b e ~$ reserved for positive constants which appear in inequalities for extremal numbers. We shall not be concerned with best possible values for such constants.
2. Some known values of $f^{(2)}(n ; k, s)$

We shall not attempt an exhaustive discussion here, but refer the reader to [5] remarking, however, that some of the results there stated have been improved upon by various authors. We discuss below the behavior when $s \leq k$.

$$
\text { First, for the range } s<k \text {, }
$$

$$
f^{(2)}(n ; k, s)= \begin{cases}s & s \leq k / 2 \\ l+[n(2 s-k) / 2 s-k+1] & k / 2<s<k\end{cases}
$$

When $s=k$ an exact result [9,11] is available
only for $k=3$, where

$$
f^{(2)}(n ; 3,3)=\left[n^{2} / 4\right]+1
$$

Some information is available on the asymptotic behavior of $f^{(2)}(n ; k, k)$. When $k=4$, it follows from a previous result $[3,7]$ that

$$
\lim _{n \rightarrow \infty} n^{-3 / 2} f^{(2)}(n ; 4,4)=1 / 2 .
$$

Erdös has proved the existence of positive constands $\varepsilon_{k}, a_{k}, b_{k}$ such that the inequality

$$
a_{k} n^{1+\varepsilon_{k}}<f^{(2)}(n ; k, k)<b_{k} n^{1+1 /[k / 2]}
$$

holds for all k : indeed, with $\varepsilon_{k}=1 /[k / 2]$ for $k \leq 5$ at least. This stronger lower bound is easily seen to be valid for $k=6,7$ and for $k=10,11$ using graphs derived from families constructed by Benson [1] and Singleton [10].
3. Some known values of $f^{(3)}(n ; k, s)$.

Much of [4] was devoted to a discussion of other structural problems. But we did determine asymptotic bounds for $f^{(3)}(n ; k, s)$ for $k \leq 6$. We reproduce here the list of inequalities proved in Theorem 4 of that paper:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{-2} f^{(3)}(n ; 4,2)=1 / 6 \\
& c_{3} n^{3}<f^{(3)}(n ; 4,3)<f^{(3)}(n ; 4,4) \\
& f^{(3)}(n ; 5,2)=[n / 3]+1 \\
& c_{4^{n}}{ }^{2}<f^{(3)}(n ; 5,3)<c_{5^{n}} n^{2} \\
& c_{6} n^{5 / 2}<f^{(3)}(n ; 5,4)<c_{7} n^{5 / 2} \\
& c_{8} n^{3}<f^{(3)}(n ; 5,5)<\ldots<f^{(3)}(n ; 5,10) \\
& f^{(3)}(n ; 6,2)=2 \\
& c_{9} n^{3 / 2}<f^{(3)}(n ; 6,3) \\
& c_{10} n^{2}<f^{(3)}(n ; 6,4)<n^{2} / 4 \\
& f^{(3)}(n ; 6,6)<c_{11^{n}} n^{5 / 2} \\
& c_{13} n^{3}<f^{(3)}(n ; 6,9)<\ldots<f_{12} n^{11 / 4}
\end{aligned}
$$

Perhaps the most interesting question we were unable to answer is whether $f^{(3)}(n ; 6,3)=o\left(n^{2}\right)$. Our main result will provide improved lower bounds for $f^{(3)}(n ; 6,5)$ and $f^{(3)}(n ; 6,6)$; also we shall be able to generalize the pair of inequalities for $f^{(3)}(n ; 6,4)$ to $f^{(3)}(n ; k, k-2)$.
4. A lower bound for $f^{(r)}(n ; k, s)$.

Our main result is now stated.
Theorem. For integers $k>r$ and $s>l$ there exists a positive constant $c_{k, s}$ such that

$$
f^{(r)}(n ; k, s)>c_{k, s^{n}}(r s-k) /(s-1)
$$

Before proceeding with the proof, which uses the so-called "probabilistic" methods of [6], we remark that the exponent of n in the above inequality is not always best possible. It can, however, be shown to be best possible when s - 1 divides rs - k. For example, when $k=5$ and $s=4$ we know that

$$
\begin{aligned}
& f^{(3)}(n ; 5,4)=o\left(n^{5 / 2}\right) \text {, but here we obtain only } \\
& f^{(3)}(n ; 5,4)>\mathrm{cn}^{7 / 3} .
\end{aligned}
$$

Proof of the theorem. Let r, k, s be fixed integers ($k>r, s>1$). Let n be any integer "sufficiently large", and m an integer to be further specified in inequality (1) below. Let V be a fixed set of cardinality n. The set of r-graphs having vertex set V and exactly m-tuples will be denoted by M; it has exactly $\left(\begin{array}{c}n \\ r \\ m\end{array}\right)$ members. For any r-graph $H^{(r)}$ in

M , a subset K of V of cardinality k is called " $H^{(r)}$-bad" if at least s r-tuples of $H^{(r)}$ are contained in K. Denoting by $b\left(H^{(r)}\right.$) the number of $H^{(r)}$ bad subsets of V, we shall choose m so that the following inequality will hold:

$$
\Sigma b\left(H^{(r)}\right) \div\left(\begin{array}{c}
n \tag{1}\\
r \\
m
\end{array}\right) \leq m \div 2\binom{k}{r},
$$

where the sum is taken over all $H^{(r)} \varepsilon M$, both in (1) and below. Since the left member of this inequality is just the average number of $\mathrm{H}^{(r)}$-bad subsets in graphs in family M, (1) ensures that there exists an r-graph $H_{o}^{(r)}$ in M such that $b\left(H_{0}^{(r)}\right)<m /\binom{k}{r}$. If we omit from $H_{o}^{(r)}$ every r-tuple which occurs in an $H_{o}^{(r)}$-bad k-tuple we may construct a $G^{(r)}(n, m)$ containing no $H_{o}^{(r)}$-bad k-tuple: hence it will follow that

$$
f^{(r)}(n ; k, s) \geq m .
$$

It remains to determine for given n the largest m for which (1) holds. The total number of $H^{(r)}$-bad k-tuples can be counted in the following way: first we fix a k-tuple K, then select s r-tuples consisting entirely of vertices of K, and m - s r-tuples from among the remaining $\binom{n}{r}-s$. Thus

$$
\Sigma b\left(H^{(r)}\right) \leq\binom{ n}{k}\left(\begin{array}{c}
k \\
r \\
r
\end{array}\right)\binom{\binom{n}{r}-s}{m}-s .
$$

and hence
(2) $\Sigma \quad b\left(H^{(r)}\right) \div\left(\begin{array}{c}n \\ r \\ m\end{array}\right) \leq c_{1} n^{k} \frac{\binom{\binom{n}{r}-s}{m}}{\binom{\binom{n}{r}}{m}}$

$$
\leq c_{1} n^{k}\left(\frac{m}{\binom{n}{r}}\right)^{s}
$$

where c_{1} is a constant depending on k, r, and s. The last inequality is a special case of the following:

If $B \leq C \leq A$ then $(C-1) /(A-1)$ is a decreasing
function of 1 and so
$\binom{A-B}{C-B}=\frac{C(C-1) \ldots(C-B+1)}{A(A-1) \ldots(A-B+1)} \leq(C / A)^{B}$.
Inequality (2) will imply (1), provided

$$
c_{1} n^{k}\left(\frac{m}{\binom{n}{r}}\right)^{s}<c_{2} m
$$

i.e., $m^{s-1}<c_{3} n^{r s-k}$; thus we may fix $m=c_{4} n^{(r s-k) /(s-1)}$ thereby proving the theorem.
5. The order of magnitude of $f^{(3)}(n ; k, k-2)$.

By our theorem, $f^{(3)}(n ; k, k-2)>\mathrm{cn}^{2}$. We prove that (constant) $\mathrm{x} \mathrm{n}^{2}$ triples suffice to ensure the existence of a $G^{(3)}(k, k-2)$. Let

$$
G^{(3)}=G^{(3)}\left(n, \frac{1}{3}\left(n\left[\frac{k-2}{k-1} \cdot(n-1)\right]+1\right)\right) .
$$

Then some vertex x has the property that the pairs of vertices which together with x constitute triples of the 3-graph form a

$$
G^{(2)}\left(n-1,\left[\frac{k-2}{k-1}(n-1)\right]+1\right)
$$

on the vertex set of our $G(3)$ with x omitted. By a result quoted in Section 2, such a graph must contain a $G^{(2)}(k-1, k-2)$, hence $G^{(3)}$ contains a $G^{(3)}(k, k-2)$.

We conjecture that $\lim \mathrm{n}^{-2} \mathrm{f}^{(3)}(\mathrm{n} ; \mathrm{k}, \mathrm{k}-2)$ exists, $n \rightarrow \infty$ but have succeeded [4] in proving this only for $\mathrm{k}=4$.

Many interesting new problems arise if we also consider the structure of the graphs $G^{(r)}(k ; s)$ and we have some very preliminary results; but many unsolved problems remain even for $r=2$.
[1] C. Benson, Minimal regular graphs of girth eight and twelve, Canad. J. Math., 18 (1966), 1091-1094.
[2] C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1971.
[3] W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull., 9 (1966), 281-285.
[4] W. G. Brown, P. Erdös, V. T. Sós, On the existence of triangulated spheres in 3-graphs and related problems, Studio Sci. Math. Hungar, to appear.
[5] P. Erdös, Extremal problems in graph theory, Theory of Graphs and Its Applications, (M. Fiedler, ed.) Academic Press, New York, 1964, 29-36.
[6] P. Erdös, Graph theory and probability I, Canad. J. Math., 11 (1959), 34-38.
[7] P. Erdös, A. Rényi, V. T. Sos, On a problem of graph theory, Studio Sci. Math. Hungar., 1 (1966), 215-235.
[8] P. Erdös, M. Simonovits, A limit theorem in graph theory, Studio Sci. Math. Hungar., 1 (1966), 51-57.
[9] W. Mantel (proposer). W. A. Wythoff (author of one solution), Vraagstuk XXVIII, Wiskundige Opgaven met de Oplossingen, 10 (1907), 60.
[10] R. W. Singleton, On minimal graphs of maximum even girth, J. Combinatorial Theory, I (1966), 306-332.
[11] P. Turán, Egy gráfelméleki Szélsöerték-feladatról, Mat. Fiz. Lapok, 48 (1941). 436-452.

