SOME EXTREMAL PROPERTIES CONCERNING TRANSITIVITY IN GRAPHS

R. C. ENTRINGER (Albuquerque), P. ERDÓS (Budapest) and C. C. HARNER

Abstract

(Albuquerque) ${ }^{\text {t }}$

In this note we consider only non-trivial labelled oriented graphs, i.e. digraphs D having at least one are, no loops, and for each pair of points ℓ and b of D at most one of the arcs $a b$ and $b a$ is in $D . D$ is transitive if are ac is in D whenever arcs $a b$ and $b c$ are in D. We investigate the number of arcs of the largest transitive subgraph contained in a (round robin) tournament, i.e. a complete oriented graph. Denote by $F(n)$ the greatest integer so that every tournament on n points contains a transitive subgraph of $F(n)$ arcs. We will prove

$$
\frac{1}{4}\binom{n}{2}<F(n)<\frac{1}{4}\binom{n}{2}+(\alpha+2 \mid \overline{2}) n^{\frac{3}{2}}
$$

where c any constant greater than $\left.2^{-\frac{5}{4}} \right\rvert\, \overline{\log 2}$.
A set of ares in a tournament T is called consistent if the set does not contain an oriented cycle or in other words if it is possible to relabel the points in such a way that if the are $u_{i} u_{j}$ is in T then $i>j$. Clearly every transitive subgraph is consistent but the converse is not true. Denote by $f(n)$ the greatest integer so that every tournament on n points contains a set of $f(n)$ consistent arcs. Erdős and Moon proved [1]

$$
\frac{1}{2}\binom{n}{2}+c_{1} n<f(n)<\frac{1}{2}\binom{n}{2}+\left(\frac{1}{2}+o(1)\right)\left(n^{3} \log n\right)^{\frac{1}{2}}
$$

where c_{1} is a suitable positive constant.
The lower bound has been improved to $\frac{1}{2}\binom{n}{2}+c_{2} n^{\frac{3}{2}}$ by Joel Spencer in a recent article [2].

We will call the graph D dibipartite if the vertices of D can be split into two sets A and B so that every are of D is from a point of A to a point of B.

Our first theorem is not concerned with transitivity, however it is essential for the proof of a later result. In this theorem c_{3} and c_{4} are suitably chosen positive constants.

[^0]Theorem 1. For all tournaments T_{n} on n points, with $o\left(2_{3}^{\binom{n}{2}}\right.$) exceptions, the largest dibipartite subgraph of T_{n} contains less than $\frac{1}{4}\binom{n}{2}+\alpha n^{\frac{3}{2}}$ arcs where α is any constant greater than $2^{-\frac{5}{4}} \sqrt{\log 2}$.

Proof. Let $t(n)$ be the number of tournaments T_{n} containing a dibipartite subgraph with more than $\frac{1}{4}\binom{n}{2}+\alpha n^{\frac{3}{2}}$ arcs. Then since there are at most $\binom{n}{r}\binom{r(n-r)}{t} 2^{\binom{r}{2}+\binom{n-r}{2}}$ tournaments T_{n} containing a dibipartite subgraph with t arcs originating from a set of r points of T_{n} and terminating in the remaining set of $n-r$ points we have for n sufficiently large

$$
\begin{aligned}
& t(n) \leqq \sum_{0 \leq r \leq n} \sum_{t \geq \frac{1}{4}\binom{n}{2}+\alpha n^{3 / 2}}\binom{n}{r}\binom{r(n-r)}{t} 2^{\binom{r}{2}+\binom{n-r}{2}} \leq \\
& \leq \underset{(2-\sqrt{2}) n \leq 4 r \leq(2+\sqrt{2}) n}{n \max ^{n+\binom{r}{2}+\binom{n-r}{2}} \sum_{t \geq \frac{n^{2}}{8}+\beta n^{\frac{3}{2}}}\binom{r(n-r)}{t}} .
\end{aligned}
$$

where β is any constant satisfying $2^{-\frac{5}{4}} \sqrt{\log 2}<\beta<\alpha$. We set $m=r(n-r)$, let γ be any constant satisfying $2^{\frac{1}{4}} \sqrt{\log 2}<\gamma<2 \sqrt{2} \beta$ and from Stirling's formula obtain

$$
\begin{gathered}
\sum_{t \geq \frac{n^{2}}{8}+\beta n^{\frac{3}{2}}}\binom{r(n-r)}{t} \leq \sum_{t \geq \frac{m}{2}+\gamma m^{\frac{3}{4}}}\binom{m}{t} \leq \frac{c_{3} \sqrt{m} 2^{m}}{\left(1-4 \gamma^{2} m^{-\frac{1}{2}}\right)^{\frac{m+1}{2}}}\left(\frac{1-2 \gamma m^{-\frac{1}{4}}}{1+2 \gamma m^{-\frac{1}{4}}}\right)^{\gamma m^{\frac{2}{4}}} \leq \\
\leq \frac{c_{3} \sqrt{m} 2^{m}}{e^{-2 \gamma^{2} \sqrt{m}-9 \gamma^{4}}} e^{-4 \gamma^{v} \sqrt{m}}
\end{gathered}
$$

The exponential expressions base e follow from the inequalities $\log \frac{1-x}{1+x}<-2 x$, $x^{2}<1$ and $1-x>e^{-x-x^{2}}, 0<x<\frac{1}{2}$. As a consequence we have, since $r(n-r) \geq \frac{n^{2}}{8}$

$$
t(n) \leq c_{4} n^{2} 2^{\binom{n}{2}+n-2 \gamma^{2} \sqrt{r(n-r)} \log , e}=o\left(2^{\binom{n}{2}}\right)
$$

Theorem 2. For all tournaments T_{n} on n points, with o(2 $2^{\binom{n}{2}}$) exceptions, if T_{n} contains a transitive subgraph S with $f(n)$ arcs then S contains a dibipartite subgraph with more than $f(n)-2 \sqrt{2} n^{\frac{3}{2}}$ arcs.

Proof. We may assume that no point of S has more than $\sqrt{2 n}$ arcs to it from points of S and more than $\sqrt{2 n}$ ares from it to points of S. To see this let s be a point of S with arcs $r_{i} s, 1 \leq i \leq p$ and $s t_{j}, \mathbf{1} \leq j \leqq q$ in S. By transitivity of S each arc $r_{i} l_{j}$ is also in S so there are at most

$$
n\binom{n-1}{p}\binom{n-1-p}{q} 2^{\binom{n}{2}-p-q-p q} \leq n 2^{\binom{n}{2}+2 n-p-q-p q}
$$

such tournaments. Consequently

$$
\sum_{\sqrt{2 n} \leq p, q \leq n} n 2^{\binom{n}{2} 2 n-p-q-p q} \leq n^{3} 2^{\binom{n}{2}-\sqrt{2 n}}=o\left(2^{\binom{n}{2}}\right) .
$$

Suppose now T_{n} contains a transitive subgraph S having $f(n)$ arcs, the points of which may be partitioned into subsets U, V and W where U is the set of those points of S having arcs to more than $\sqrt{2 n}$ points of S, V is the set of those points of S having arcs from more than $\rceil 2 n$ points of S, and W is the set of those points of S having at most $\sqrt{2 n}$ ares to points of S and at most $\sqrt{2 n}$ arcs from points of S. Now since there are at most $\sqrt{2 n}|U|$ arcs in S to points of U, at most $\sqrt{2 n}|V| \operatorname{arcs}$ in S from points of V, at most $\sqrt{2 n}|W|$ arcs in S to points of W and at most $\sqrt{2 n}|W|$ arcs in S from points of W there are more than $f(n)-2 \sqrt{2} n^{\frac{3}{2}}$ arcs in S frem points of U to points of V thus forming the required dibipartite subgraph of S.

These two results combine to give us
Theorem 3. The largest transitive subgraph of a non-trivial oriented graph D contains more than a fourth of the arcs of D. For all tournaments T_{n} on n points, with o $\left(2^{\binom{n}{2}}\right.$)exceptions, the largest transitive subgraph of T_{n} contains fewer than $\frac{1}{4}\binom{n}{2}+(\alpha+2 \sqrt{2}) n^{\frac{3}{2}}$ arcs where α is any constant greater than $2^{-\frac{5}{4}} \sqrt{\log 2}$.

Proof. It is easily shown by induction on the number of points that more than half the edges of a non-trivial undirected graph are contained in a bipartite subgraph. Hence more than a fourth of the arcs of D are contained in a dibipartite subgraph and this gives the first assertion of the theorem.

To prove the second part let T_{n} be a tournament with more than $\frac{1}{4}\binom{n}{2}+$ $(\alpha+2 \sqrt{2}) n^{\frac{3}{2}}$ arcs in a transitive subgraph. Then by Theorem $2 T_{n}$ contains a dibipartite subgraph with more than $\frac{1}{4}\binom{n}{2}+\alpha n^{\frac{3}{2}}$ arcs but by Theorem 1 there are at most $o\left(2^{\binom{n}{2}}\right)$ such T_{n}.

Our final theorem provides an interesting result which should be compared to Theorem 2.

Theorem 4. The largest dibipartite subgraph of a non-trivial transitive graph T contains more than half the arcs of T and this bound is best.

Proof. Let O_{T} be the set of those points of T whose outdegree is equal to or larger than their indegree and I_{T} be the set of remaining points. We will show by induction on the number n of points of T that more than half its arcs are from a point in O_{T} to a point in I_{T}. This is trivial if $n=2$.

We will use the fact that removal of a point and its incident arcs from a transitive graph results in a transitive graph. We will also frequently use the following property concerning indegree (id) and outdegree (od) which we shall call Property t. If arc $a b$ is in a transitive graph then $\operatorname{od}(a) \geq 1+\operatorname{od}(b)$ and $1+\mathrm{id}(a) \leq \mathrm{id}(b)$.

Assume $n>2$ and the assertion holds for all non-trivial transitive graphs with fewer than n points. We consider two cases:
(i). There is a point p of T for which $\operatorname{id}(p)=1+\operatorname{od}(p)=1+a$. Let U be T with p and its incident arcs removed. Then, since T is transitive, U is non-trivial and transitive. We wish to show a) $O_{U} \supseteq O_{T}$ and b) $I_{U} \supseteq I_{T}-\{p\}$ for then equality will hold in a) and b) and the theorem will follow in this case, from the inductive hypothesis and the fact that p is in I_{T} and, by Property t , each are to p is from a point in O_{T}.

To prove a) let r be a point of O_{T}. Now either r and p are not adjacent and hence r is in O_{U} or, by Property t, arc $r p$ is in T in which case, again by Property $\mathrm{t}, \mathrm{id}(r) \leq a$ and $\operatorname{od}(r) \geq a+1$ and hence r is in O_{U}. The inclusion of $b)$ is proved in a similar manner.
(ii). There is no point p of T for which $\operatorname{id}(p)=1+\operatorname{od}(p)$. In this case we choose a point q in O_{T} which is not adjacent to any points of O_{T} and designate by V the graph remaining when q and its incident ares are deleted from T. Such a q must exist since T has no cycles. Our hypotheses guarantee that V is not trivial. It suffices now to show a) $O_{V} \supseteq O_{T}-\{q\}$ and b) $I_{V} \supseteq I_{T}$.

To prove a) let $r \neq q$ be a point of O_{T}. Then either r and p are not adjacent and hence r is in O_{V} or $r q$ is in T in which case, by Property $\mathrm{t}, \mathrm{od}(r) \geq 1+$ $\operatorname{od}(q) \geq \mathrm{id}(q) \geq 1+\mathrm{id}(r)$ and hence r is in O_{V}.

To prove b) let r be a point of I_{T}. Then $\mathrm{id}(r) \geq 2+\operatorname{od}(r)$ and r must be in I_{V}.

To show the bound is best consider the transitive tournament T_{n} on n points. There are at most $\binom{n}{2}-\binom{a}{2}-\binom{n-a}{2}$ arcs from a subset of a points of T_{n} to the remaining $n-a$ points, and so the largest dibipartite subgraph of T_{n} contains at most $\frac{1}{2}\left(1+\frac{1}{n-1}\right)$ of the arcs of T_{n}.

REFERENCES

[1] P. Erdős and J. W. Moon, On sets of consistent ares in a tournament, Canad. Math. Bull. 8 (1965), $269-271$.
[2] J. Spencer, Optimal ranking of tournaments, Networks 1 (1971), 135-138.
(Received July 23, 1970)

```
DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF NEW MEXICO
AlBuqUERQ UE, NEW MEXICO }8710
U.S.A.
MTA MATEMATIKAI KUTATÓ INTÉZETE
H-1053 BUDAPEST,
REÁLTANODA U. 13-15.
HUNGARY
SANDIA CORPORATION
ALBUQUERQUE, NEW MEXICO }8711
E.S.A.
```


[^0]: ${ }^{1}$ Research supported by the United States Atomic Energy Commission.

