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In this note we consider only non-trivial laballed oriented graphs, i .e .
digraphs D having at least one arc, no loops, and for each pair of points at
and b of D at most one of the arcs ab and ba is in D. D is trrm .sitire if arc ac.
i s in D whenever arcs ab and be are in D . We investigate the number of arcs
of the largest transitive subgraph contained in a (round robin) tournament,
i .e . a complete oriented graph . Denote by F(n) the greatest integer so that
every tournament on n points contains a transitive subgraph of F(n) arcs . ~Ve
will prove
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where c any constant greater than 2 6 log 2 .
A set of arcs in a tournament T is called consistent if the set does not

contain an oriented cycle or in other words if' it is possible to relabel the points
in such a way that if the arc it,aj is in T then i ;>- . j . Clearly every transitive
subgraph is consistent but the converse is not true . Denote by f(e) the greatest
integer so that every tournament on n points contains a set of f(rz) consistent
arcs. Em)6s and MooN proved [1]
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where c, is a suitable positive constant .
i

The lower bound has been unproved to - n I

T e

112 by Joel SPENCI I
in a recent article [2] .
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We will call the graph D dibipartil'e if the v rtiees of 1) can be split into

two sets A and B so that every are of D is from a point of A to a point of B .
Our first theorem is not concerned with tram-itivity. however it is essen-

tial for the proof of a later result . In this theorem e3 and c4 are suitably chosen
positive constants .

1 Research supported by the United States Atomic Unergy Commission .
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THEOREM 1 . For all tournaments Tn on n points, with o~2 (2) ) exceptions,
3

the largest dibipartite subgraph of T n contains less than 1 ~n +ant arcs where a
5

	

4 l2 '
is any constant greater than 2 4 G log 2 .

PROOF. Let 1(n) be the number of tournaments T n containing a dibipartite
3n~

subgraph with more than
4 I

+ xn2 arcs. Then since there are at most

n r(n r ) () + n-r

r, ~ t J
2 o ( 2 ) tournaments Tn containing a dibipartite subgraph with t

arcs originating from a set of r points of Tn and terminating in the remaining
set of n, r points we have for n sufficiently large
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x. We set in = r(n--r),
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let y be any constant satisfying 24 G log 2 - y

	

2 V 2 i and from Stirling's
formula olltain
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The e-xponential ex pre,5sions base e follow from the inequalities log 1+x < -- 2x,

As a consequence we have, since
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THEORE NL 2 . For all tournaments T„ on n points, with o(2` 2I ) exceptions,
if Tn contains a Ira.tasitive subgraph. S with f(n) arcs then S contains a dibipartite

3

subgraph with more than f(n) - 2 V2 n2 arcs .
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PsooF . We may assume that no point of S has more than V 2n arcs to it

from points of S and more than l, 2n arcs from it to points of S . To see this let s
be a point of S with arcs r;s, 1 < i p and std , 1 G j q in S. By transitivity
of S each are r ;tj is also in S so there are at most
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such tournaments . Consequently
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Suppose now T„ contains a transitive subgraph S having f(n) arcs, the
points of which may be partitioned into subsets U, V and TV where U is the

set of those points of S having arcs to more than ~' 2n points of S, V is the set of

those points of S having arcs from more than j 2n points of S, and W is the
set of those points of S having at most J' 2n arcs to points of S and at most J!'2n
arcs from points of S . Now since there are at most l' 2n I U I arcs in S to points
of U, at most I , 2n V arcs in S from points of V, at most L 2)2,1 W arcs in
S to points of W and at most ~ 2n W I arcs in S from points of W there are

3

more than f(n)

	

2 G 2 -áa2 arcs in xS" fri-ni points of U to points of V thus forming
the required dibipartite subgraph of S .

These two results combine to give us

THEOREM 3 . The largest transitive subgraph of a non-trivial oriented graph
D contains more than a fourth of the arcs of D . For all tournaments T n on n points,

with o (2(2) ) exceptions, the largest transitive subgraph of Tn contains fewer than
1 n
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(x --í- 2 ~'2)n2 arcs where x is any constant greater than 2 4 l rlog 2 .

PROOF . It is easily shown by induction on the number of points that
more than half the edges of a not , í rivial undirected graph are contained in a

bipartite subgraph . Hence more than a fourth of the arcs of D are contained
in a dibipartite subgraph and this gives the first assertion of the theorem .

1 n
To prove the second hart let T„ be a tournament with more than -

4 2 +
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2 ~, 2)n' arcs in a transitive subgraph . Then by Theorem 2 T n contains a
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dibipartite subgraph with more than -

	

+ x n2 arcs but by Theorem 1 there
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are at most o(2 2 ) such Tn .

Our final theorem provides an interesting result which should be com-

pared to Theorem 2 .
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THEOREM 4 . The largest dibipartite subgraph of a non-trivial transitive
graph T contains more than half the arcs of T and this bound is best .

PROOF. Let OT be the set of those points of T whose outdegree is equal
to or larger than their indegree and h- be the set of remaining points . We will
show by induction on the number n of points of T that more than half its arcs
are from a point in OT to a point in IT . 7'h is is trivial if n -= 2 .

We will use the fact that removal of a point and its incident arcs froth
a transitive graph results in a transitive graph . We will also frequently use the
following property concerning indegree (id) and outdegree (od) which we shall
call Property t . Hare ab is in a transitive graph then od(a) > 1 -- od(b) and
1 --~ id (a)

	

id(b) .

Assume n j 2 and the assertion holds for all non-trivial transitive graphs
with fewer than n points . We consider two cases :

(i) . There is a point p of T for which id())) = 1 4- od(p) = 1 - a. . Let
U be T with p and its incident arcs removed . Then, Since T is transitive, U
is non-trivütl and transitive . AVe wish to show a) O U OT and b) IU SIT fl) }
for then equality will hold in a) and b) and the theorem will follow in this
case, front the inductive hypothesis and the fact that p is in IT and, by Prop-
erty t, each are to p is front a point in OT .

To prove a) let r be a point of O,- . 'No-,v either 7, and p are not adjacent
and hence r is in O"; or, by Property t . are rp is in T in which case, again by
Property t, id(r) - a and o(l(r) -- a -,-- l and hence r is in OU . The inclusion of
h) is proved in a similar manner .

(ii) . There is no point p of T for which id(p) --- 1 + od(p) . In this case
we choose a point q in 0T which is not adjacent to any points of OT and desi -
nme by ti' the graph remaining when q and its incident arcs are deleted from
T . Stich a q must exist since T has no cycles . Our hypotheses guaa antee that V
is not trivial . It suffices now to show a) OV

	

OT

	

{q} and b) IV

	

IT .
To prove a) let r / q be a point of 0 7 - . Then either r and p are not adja-

cent and hence r is in O„ or rq is in T in which case, by Property t, od(r) > 1 - --
od(q)

	

id(q) > 1 + id(r) mud hence r is in 0,,- .

To prove b) let r be a point of IT . Then id(r)

	

2 + od(r) and r hnst be
in I V .

To show the bound is best consider the transitive tournament T, 2 on

n, points . There are at most i n I -
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points of T„ to the remaining 7t -a points, and so the largest dibipartite sub-

graph of T, conianls at most
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