SOME EXTREMAL PROPERTIES CONCERNING TRANSITIVITY IN GRAPHS

R. C. ENTRINGER (Albuquerque), P. ERDŐS (Budapest) and C. C. HARNER

(Albuquerque)¹

In this note we consider only non-trivial labelled oriented graphs, i.e. digraphs D having at least one arc, no loops, and for each pair of points a and b of D at most one of the arcs ab and ba is in D. D is *transitive* if arc ac is in D whenever arcs ab and bc are in D. We investigate the number of arcs of the largest transitive subgraph contained in a (round robin) tournament, i.e. a complete oriented graph. Denote by F(n) the greatest integer so that every tournament on n points contains a transitive subgraph of F(n) arcs. We will prove

$$rac{1}{4} inom{n}{2} < F(n) < rac{1}{4} inom{n}{2} + (z+2 \mid \overline{2}) n^{rac{3}{2}}$$

where c any constant greater than $2^{-\frac{5}{4}} | \overline{\log 2}$.

A set of arcs in a tournament T is called consistent if the set does not contain an oriented cycle or in other words if it is possible to relabel the points in such a way that if the arc $u_i u_j$ is in T then i > j. Clearly every transitive subgraph is consistent but the converse is not true. Denote by f(n) the greatest integer so that every tournament on n points contains a set of f(n) consistent arcs. ERDŐS and MOON proved [1]

$$\frac{1}{2} \binom{n}{2} + c_1 n < f(n) < \frac{1}{2} \binom{n}{2} + \left(\frac{1}{2} + o(1)\right) \left(n^3 \log n\right)^{\frac{1}{2}}$$

where c_1 is a suitable positive constant.

The lower bound has been improved to $\frac{1}{2}\binom{n}{2} + c_2 n^{\frac{3}{2}}$ by Joel Spencer in a recent article [2].

We will call the graph D dibipartite if the vertices of D can be split into two sets A and B so that every arc of D is from a point of A to a point of B.

Our first theorem is not concerned with transitivity, however it is essential for the proof of a later result. In this theorem c_3 and c_4 are suitably chosen positive constants.

¹Research supported by the United States Atomic Energy Commission.

THEOREM 1. For all tournaments T_n on n points, with $o(2^{\binom{n}{2}})$ exceptions, the largest dibipartite subgraph of T_n contains less than $\frac{1}{4} \binom{n}{2} + \alpha n^{\frac{3}{2}}$ arcs where α is any constant greater than $2^{-\frac{5}{4}}\sqrt{\log 2}$.

PROOF. Let t(n) be the number of tournaments T_n containing a dibipartite subgraph with more than $\frac{1}{4} \binom{n}{2} + \alpha n^{\frac{3}{2}}$ arcs. Then since there are at most $\binom{n}{r} \binom{r(n-r)}{t} 2^{\binom{r}{2} + \binom{n-r}{2}}$ tournaments T_n containing a dibipartite subgraph with tarcs originating from a set of r points of T_n and terminating in the remaining set of n-r points we have for n sufficiently large

$$t(n) \leq \sum_{0 \leq r \leq n} \sum_{t \geq \frac{1}{4} \binom{n}{2} + \alpha n^{3/2}} \binom{n}{r} \binom{r(n-r)}{t} 2^{\binom{r}{2} + \binom{n-r}{2}} \leq \\ \leq \max_{(2-\sqrt{2})n \leq 4r \leq (2+\sqrt{2})n} 2^{n+\binom{r}{2} + \binom{n-r}{2}} \sum_{t \geq \frac{n^2}{8} + \beta n^{\frac{3}{2}}} \binom{r(n-r)}{t}$$

where β is any constant satisfying $2^{-\frac{5}{4}}\sqrt{\log 2} < \beta < \alpha$. We set m = r(n-r), let γ be any constant satisfying $2^{\frac{1}{4}}\sqrt{\log 2} < \gamma < 2\sqrt{2}\beta$ and from Stirling's formula obtain

$$\begin{split} \sum_{t \ge \frac{n^2}{8} + \beta n^{\frac{3}{2}}} \binom{r(n-r)}{t} \le \sum_{t \ge \frac{m}{2} + \gamma m^{\frac{3}{4}}} \binom{m}{t} \le \frac{c_3 \sqrt{m} \ 2^m}{\left(1 - 4 \ \gamma^2 \ m^{-\frac{1}{2}}\right)^{\frac{m+1}{2}}} \left(\frac{1 - 2 \gamma m^{-\frac{1}{4}}}{1 + 2 \gamma m^{-\frac{1}{4}}}\right)^{\gamma m^{\frac{3}{4}}} \le \\ \le \frac{c_3 \sqrt{m} \ 2^m}{e^{-2\gamma^* \sqrt{m} - 9\gamma^*}} e^{-4\gamma^* \sqrt{m}}. \end{split}$$

The exponential expressions base e follow from the inequalities $\log \frac{1-x}{1+x} < -2x$,

 $x^2 < 1$ and $1 - x > e^{-x - x^2}$, $0 < x < \frac{1}{2}$. As a consequence we have, since $r(n-r) \ge \frac{n^2}{8}$

$$t(n) \leq c_4 n^2 2^{\binom{n}{2} + n - 2\gamma^* \sqrt{r(n-r)}\log e} = o(2^{\binom{n}{2}}).$$

THEOREM 2. For all tournaments T_n on n points, with $o(2^{\binom{n}{2}})$ exceptions, if T_n contains a transitive subgraph S with f(n) arcs then S contains a dibipartite subgraph with more than $f(n) - 2\sqrt{2n^2}$ arcs.

ENTRINGER, ERDŐS, HARNER: TRANSITIVITY IN GRAPHS

PROOF. We may assume that no point of S has more than $\bigvee 2n$ arcs to it from points of S and more than $\bigvee 2n$ arcs from it to points of S. To see this let s be a point of S with arcs $r_i s$, $1 \leq i \leq p$ and sl_j , $1 \leq j \leq q$ in S. By transitivity of S each arc $r_i l_j$ is also in S so there are at most

$$n inom{n-1}{p} inom{n-1-p}{q} 2^{inom{n}{2}-p-q-pq} \leq n \ 2^{inom{n}{2}+2n-p-q-pq}$$

such tournaments. Consequently

$$\sum_{\sqrt{2n} \leq p,q \leq n} n \ 2^{\binom{n}{2}2n - p - q - pq} \leq n^3 \ 2^{\binom{n}{2} - \sqrt{2n}} = o(2^{\binom{n}{2}}).$$

Suppose now T_n contains a transitive subgraph S having f(n) arcs, the points of which may be partitioned into subsets U, V and W where U is the set of those points of S having arcs to more than $\sqrt{2n}$ points of S, V is the set of those points of S having arcs from more than $\sqrt{2n}$ points of S, and W is the set of those points of S having at most $\sqrt{2n}$ arcs to points of S and at most $\sqrt{2n}$ arcs from points of S. Now since there are at most $\sqrt{2n} | U | \arcsin S$ to points of U, at most $\sqrt{2n} | V |$ arcs in S from points of V, at most $\sqrt{2n} | W |$ arcs in S to points of W and at most $\sqrt{2n} | W |$ arcs in S from points of W there are more than $f(n) - 2\sqrt{2n^2}$ arcs in S from points of U to points of V thus forming the required dibipartite subgraph of S.

These two results combine to give us

THEOREM 3. The largest transitive subgraph of a non-trivial oriented graph D contains more than a fourth of the arcs of D. For all tournaments T_n on n points, with $o(2^{\binom{n}{2}})$ exceptions, the largest transitive subgraph of T_n contains fewer than $\frac{1}{4}\binom{n}{2} + (\alpha + 2\sqrt{2})n^{\frac{3}{2}}$ arcs where α is any constant greater than $2^{-\frac{5}{4}}\sqrt{\log 2}$.

PROOF. It is easily shown by induction on the number of points that more than half the edges of a non-trivial undirected graph are contained in a bipartite subgraph. Hence more than a fourth of the arcs of D are contained in a dibipartite subgraph and this gives the first assertion of the theorem.

To prove the second part let T_n be a tournament with more than $\frac{1}{4} {n \choose 2} + \sqrt{-3}$

 $(\alpha + 2\sqrt{2})n^{\frac{3}{2}}$ arcs in a transitive subgraph. Then by Theorem 2 T_n contains a dibipartite subgraph with more than $\frac{1}{4}\binom{n}{2} + \alpha n^{\frac{3}{2}}$ arcs but by Theorem 1 there are at most $o(2^{\binom{n}{2}})$ such T_n .

Our final theorem provides an interesting result which should be compared to Theorem 2. THEOREM 4. The largest dibipartite subgraph of a non-trivial transitive graph T contains more than half the arcs of T and this bound is best.

PROOF. Let O_T be the set of those points of T whose outdegree is equal to or larger than their indegree and I_T be the set of remaining points. We will show by induction on the number n of points of T that more than half its arcs are from a point in O_T to a point in I_T . This is trivial if n = 2.

We will use the fact that removal of a point and its incident arcs from a transitive graph results in a transitive graph. We will also frequently use the following property concerning indegree (id) and outdegree (od) which we shall call Property t. If arc ab is in a transitive graph then $od(a) \ge 1 + od(b)$ and $1 + id(a) \le id(b)$.

Assume n > 2 and the assertion holds for all non-trivial transitive graphs with fewer than n points. We consider two cases:

(i). There is a point p of T for which id(p) = 1 + od(p) = 1 + a. Let U be T with p and its incident arcs removed. Then, since T is transitive, U is non-trivial and transitive. We wish to show a) $O_U \supseteq O_T$ and b) $I_U \supseteq I_T - \{p\}$ for then equality will hold in a) and b) and the theorem will follow in this case, from the inductive hypothesis and the fact that p is in I_T and, by Property t, each arc to p is from a point in O_T .

To prove a) let r be a point of O_T . Now either r and p are not adjacent and hence r is in O_U or, by Property t, arc rp is in T in which case, again by Property t, $id(r) \leq a$ and $od(r) \geq a + 1$ and hence r is in O_U . The inclusion of b) is proved in a similar manner.

(ii). There is no point p of T for which $\operatorname{id}(p) = 1 + \operatorname{od}(p)$. In this case we choose a point q in O_T which is not adjacent to any points of O_T and designate by V the graph remaining when q and its incident arcs are deleted from T. Such a q must exist since T has no cycles. Our hypotheses guarantee that Vis not trivial. It suffices now to show a) $O_V \supseteq O_T - \{q\}$ and b) $I_V \supseteq I_T$.

To prove a) let $r \neq q$ be a point of O_T . Then either r and p are not adjacent and hence r is in O_V or rq is in T in which case, by Property t, $od(r) \geq 1 + od(q) \geq id(q) \geq 1 + id(r)$ and hence r is in O_V .

To prove b) let r be a point of I_T . Then $id(r) \ge 2 + od(r)$ and r must be in I_V .

To show the bound is best consider the transitive tournament T_n on n points. There are at most $\binom{n}{2} - \binom{a}{2} - \binom{n-a}{2}$ arcs from a subset of a points of T_n to the remaining n-a points, and so the largest dibipartite subgraph of T_n contains at most $\frac{1}{2}\left(1+\frac{1}{n-1}\right)$ of the arcs of T_n .

REFERENCES

 P. ERDŐS and J. W. MOON, On sets of consistent arcs in a tournament, Canad. Math. Bull. 8 (1965), 269-271.

[2] J. SPENCER, Optimal ranking of tournaments, Networks 1 (1971), 135-138.

(Received July 23, 1970)

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF NEW MEXICO ALBUQUERQUE, NEW MEXICO 87106 U.S.A.

MTA MATEMATIKAI KUTATÓ INTÉZETE H-1053 BUDAPEST, REÁLTANODA U. 13-15. HUNGARY

SANDIA CORPORATION ALBUQUERQUE, NEW MEXICO 87115 U.S.A.