BOUNDS FOR THE r-th COEFFICIENTS OF CYCLOTOMIC POLYNOMIALS

P. ERDÕS AND R. C. VAUGHAN

1. Introduction

We consider the cyclotomic polynomials

$$
\begin{equation*}
\Phi_{m}(z)=\prod_{\substack{m=1 \\(m, n)-1}}^{n}(z-e(m / n)) \tag{1}
\end{equation*}
$$

where $e(\alpha)=e^{2 \pi i \alpha}$, and write Φ_{n} in the form

$$
\begin{equation*}
\Phi_{n}(z)=\sum_{r=0}^{\phi(n)} a_{r}(n) z^{r}, \tag{2}
\end{equation*}
$$

where ϕ is Euler's function.
Bounds for $a_{r}(n)$ in terms of n have been obtained by a number of people $[1,3,4$, $5,6,12,13,14,16$]. Bateman [2] has shown that

$$
\left|a_{r}(n)\right|<\exp \left(n^{c / \log \log \eta}\right)
$$

and Erdős $[7,8]$ has shown that this is best possible.
Mirsky has mentioned in conversation that it is possible to obtain a bound for $a_{r}(n)$ which is independent of n. Moreover, Möller [15; (9) and Satz 3] has shown that

$$
\begin{equation*}
\left|a_{r}(n)\right| \leqslant p(r)-p(r-2), \tag{3}
\end{equation*}
$$

where $p(m)$ is the number of partitions of m, and also that

$$
\begin{equation*}
\max _{n}\left|a_{r}(n)\right|>r^{m}\left(r \geqslant r_{0}(m)\right) . \tag{4}
\end{equation*}
$$

There is clearly a close connection between the size of $a_{r}(n)$ and the values $\Phi_{n}(z)$ takes as $|z| \rightarrow 1-$. Thus we first of all prove

Theorem 1. For each z with $|z|<1$ we have

$$
\begin{equation*}
\left|\Phi_{n}(z)\right|<\exp \left(\tau(1-|z|)^{-1}+C_{1}(1-|z|)^{-3 / 4}\right), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=\prod_{p}\left(1-\frac{2}{p(p+1)}\right) . \tag{6}
\end{equation*}
$$

Although this cannot be far from the truth, we suspect that the right hand side of (5) should be

$$
\exp \left(o\left((1-|z|)^{-1}\right)\right)
$$

as $|z| \rightarrow 1-$.
Our main theorem is

Received 1 September, 1972.

Theorem 2. We have

$$
\begin{equation*}
\left|a_{r}(n)\right|<\exp \left(2 \tau^{1 / 2} r^{1 / 2}+C_{2} r^{3 / 8}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{r}(n)\right|>\exp \left(C_{3}\left(\frac{r}{\log r}\right)^{1 / 2}\right)\left(r>r_{0}\right) \tag{8}
\end{equation*}
$$

Clearly (8) is much sharper than (4). By (6) we have $\tau<\frac{1}{2}$, and by a classical result of Hardy and Ramanujan [10] we have

$$
\log (p(r)-p(r-2)) \sim \pi \sqrt{ }\left(\frac{2}{3}\right) r^{1 / 2}
$$

as $r \rightarrow \infty$. Thus we see that (7) is stronger than (3).
In view of our remark following Theorem 1, we expect that

$$
\begin{equation*}
\max _{n}\left|a_{r}(n)\right|<\exp \left(o\left(r^{1 / 2}\right)\right) \tag{9}
\end{equation*}
$$

as $r \rightarrow \infty$. We also believe that (8) should hold for $\lim \sup a_{r}(n)$ and $-\lim \inf a_{r}(n)$, but we have been unable to prove this for all r. If we write $r=2^{m} t$ where t is odd, then we can combine our proof of (8) with the relationship

$$
\Phi_{2 m+I_{n}}(z)=\Phi_{n}\left(-z^{2 m}\right) \quad(n \text { odd })
$$

to obtain the lower bound

$$
\exp \left(C_{3}\left(\frac{t}{\log t}\right)^{1 / 2}\right)\left(t>t_{0}\right)
$$

in each case, but this is weaker if m is large.
A question suggests itself in connection with this. If $f_{X}(n)$ is the number of partitions of n into primes between X and $2 X$, then how large does n have to be before f_{X} is a monotone increasing function of n ? Possibly $n \gg X$ will suffice.

In $\S \S 2$ and 3 we prove (5) and (7) respectively. Then in $\$ 4$ we establish some lemmas which enable us to prove (8) in $\S 5$.

2. Proof of Theorem 1

It is convenient to note here that

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{d \mid n}\left(1-z^{d}\right)^{\mu(n / d)} \quad(n>1,|z| \neq 1) \tag{10}
\end{equation*}
$$

where μ is Möbius' function. This follows easily from the well known formula

$$
\Phi_{n}(z)=\prod_{d \mid n}\left(z^{4}-1\right)^{\mu(n / d)} \quad(|z| \neq 1)
$$

When $n=1$, (5) is trivial. We thus assume $n>1$ and then on appealing to (10) we obtain, for $|z|<1$,

$$
\begin{aligned}
\left|\Phi_{n}(z)\right| & =\exp \left(\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left|1-z^{d}\right|\right) \\
& =\exp \left(\operatorname{Re} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left(1-z^{d}\right)\right),
\end{aligned}
$$

where we have taken the principal value of the logarithm. Now $\log \left(1-z^{d}\right)$ is regular for $|z|<1$ and has the Taylor expansion

$$
-\sum_{h=1}^{\infty} \frac{z^{h d}}{h}
$$

in this region. We use this and interchange the order of summation to obtain

$$
\begin{equation*}
\left|\Phi_{u}(z)\right|=\exp \left(-\operatorname{Re} \sum_{j=1}^{\infty} \frac{z^{j}}{j} \sum_{d|n, d| j} d \mu\left(\frac{n}{d}\right)\right) \tag{11}
\end{equation*}
$$

By Theorems 271 and 272 of Hardy and Wright [11] we see that the inner sum is Ramanujan's sum $c_{n}(j)$, and we have

$$
\begin{equation*}
\sum_{d|n, d| j} d \mu\left(\frac{n}{d}\right)=\mu\left(\frac{n}{(n, j)}\right) \phi(n) / \phi\left(\frac{n}{(n, j)}\right) . \tag{12}
\end{equation*}
$$

By (10) it is easily seen that

$$
\Phi_{n}(z)=\Phi_{m}\left(z^{n / m}\right)
$$

where

$$
m=\prod_{p \mid n} p
$$

so that to prove the theorem it suffices to assume that n is squarefree. Then, by (12), we have

$$
\left|\sum_{d(n, d \mid j} d \mu\left(\frac{n}{d}\right)\right| \leqslant \phi((n, j)) \leqslant \phi\left(j_{0}\right),
$$

where $j_{0}=\Pi_{p \mid J} p$. Hence, by (11),

$$
\begin{equation*}
\left|\Phi_{n}(z)\right| \leqslant \exp \left(\sum_{j=1}^{\infty} \frac{\phi\left(j_{0}\right)}{j}|z|^{j}\right) \tag{13}
\end{equation*}
$$

Let f be the multiplicative function with $f\left(p^{m}\right)=-(m-1)(p-1)^{2}$. Then

$$
\sum_{d j} f(d) \phi(j / d)=\phi\left(j_{0}\right),
$$

$\sum f(d) d^{-2}$ converges absolutely to $\Pi\left(1-(p+1)^{-2}\right)$, and

$$
\sum_{d>X}|f(d)| d^{-2}<X^{-1 / 4} \Pi\left(1+p^{-3 / 2}\right)<X^{-1 / 4}
$$

Hence

$$
\sum_{j \leqslant X} \frac{\phi\left(j_{0}\right)}{j}=\sum_{d \leqslant X} \frac{f(d)}{d}\left(\frac{X}{d} \prod_{p}\left(1-p^{-2}\right)+O\left((X / d)^{3 / 4}\right)\right)=\tau X+O\left(X^{3 / 4}\right)
$$

A partial summation applied to the sum in (13) establishes (5).

3. Proof of (7)

We use Theorem 1 with $|z|=1-(\tau / r)^{1 / 2}$, and Cauchy's inequalities for the coefficients of a power series, whence

$$
\left|a_{r}(n)\right|<\exp \left(2 \tau^{1 / 2} r^{1 / 2}+C_{2} r^{3 / 8}\right)
$$

as required.

4. Lemmas for the proof of (8)

Throughout this and the next section we assume that r is large,

$$
\begin{gather*}
X=r^{1 / 2} \tag{14}\\
Y=\frac{1}{100} X(\log X)^{1 / 2} \tag{15}
\end{gather*}
$$

and $p_{j}(j=1, \ldots, s)$ are the $\pi(Y)-\pi(X)$ prime numbers satisfying

$$
\begin{equation*}
X<p_{1}<\ldots<p_{s} \leqslant Y . \tag{16}
\end{equation*}
$$

Lemma 1. Let k be the largest integer j such that $p_{j}<\frac{1}{2} p_{1}$. Then every integer m with $m>C_{4} X$ can be written in the form

$$
m=\sum_{j=1}^{N} h_{j} p_{j}
$$

with $h_{j} \geqslant 0$.
Proof. Let $R(u)$ be the number of representations of u as the sum of two primes $p^{\prime}, p^{\prime \prime}$ with $p_{1}<p^{\prime}, p^{\prime \prime}<\frac{1}{2} p_{1}$. By an application of any of the modern forms of the sieve (see, for instance, Prachar [17; Kapitel II, Satz 4.8]), we have

$$
R(u) \ll p_{1}\left(\log p_{1}\right)^{-2} \prod_{n} \frac{p}{p-1} .
$$

Thus by Cauchy's inequality and some elementary estimates we have

$$
\sum_{R\left(w^{w}\right)>0} 1 \geqslant p_{1} .
$$

This means that there are at least $C_{5} p_{1}+1$ numbers u, with $2 p_{1}<u<3 p_{1}$, which can be written in the form $u=p^{\prime}+p^{\prime \prime}$ with $p_{1}<p^{\prime}, p^{\prime \prime}<\frac{3}{3} p_{1}$. Hence there are at least $C_{5} p_{1}+1$ residue classes u modulo p_{4} so that

Let

$$
u \equiv p^{\prime}+p^{\prime \prime}\left(\bmod p_{1}\right) .
$$

$$
\begin{equation*}
v=\left[p_{1} /\left[C_{5} p_{1}\right]\right]+1 . \tag{17}
\end{equation*}
$$

Then by repeated application of the Cauchy-Davenport theorem (for an account of which see, for instance, Theorem 15, Chapter I, of Halberstam and Roth [9]) we can write every residue class u modulo p_{1} in the form
with

$$
u \equiv p_{1}^{\prime}+p_{1}{ }^{\prime \prime}+\ldots+p_{v}^{\prime}+p_{v}^{\prime \prime}\left(\bmod p_{1}\right)
$$

$$
p_{1}<p_{j}^{\prime}, p_{j}^{\prime \prime}<\frac{3 p_{1}}{} .
$$

By (17), v is bounded. Let $C_{4}>6 v$. Then since $2 v p_{1}<p_{1}^{\prime}+\ldots+p_{z}{ }^{\prime \prime}<3 v p_{1}$ we are able, by subtracting a suitable multiple of p_{1}, to write every $m>\frac{1}{2} C_{4} p_{1}$ in the form

$$
m=\sum_{j=1}^{k} h_{j} p_{j}
$$

Moreover $C_{4} X>\frac{1}{2} C_{4} p_{1}$. This proves Lemma 1 .
We now introduce some further notation that we require in this and the next section. Let b_{m} be the coefficient of z^{m} in the Taylor expansion of

$$
\left(1-z^{p_{1}}\right)^{-1} \ldots\left(1-z^{p_{0}}\right)^{-1}
$$

in powers of z, valid when $|z|<1$. Clearly b_{m} is just the number of different ways of choosing h_{1}, \ldots, h_{s} with $h_{j} \geqslant 0$ so that

In addition, let

$$
h_{1} p_{1}+\ldots+h_{s} p_{s}=m .
$$

$$
\begin{equation*}
T=\left[\frac{1}{10} r\right] \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
S=p_{x}\left[\frac{r}{100 p_{s}}\right] . \tag{19}
\end{equation*}
$$

Lemma 2. For at least one integer m with $T<m \leqslant T+S$ we have

$$
b_{m}-b_{m-1}>\exp \left(C_{6}\left(\frac{r}{\log r}\right)^{1 / 2}\right)
$$

Proof. It suffices to show that

$$
\begin{equation*}
b_{T+s}-b_{T}>\exp \left(c_{7}\left(\frac{r}{\log r}\right)^{1 / 2}\right) \tag{20}
\end{equation*}
$$

Since $p_{s} \mid S, b_{T+5}-b_{T}$ is the number of ways of choosing h_{1}, \ldots, h_{s} so that $h_{j} \geqslant 0$, $h_{s}<S / p_{s}$ and

$$
T+S=\sum_{j=1}^{n} h_{j} p_{j}
$$

Let $g(v)$ be the number of ways of choosing h_{k+1}, \ldots, h_{x-1} so that $h_{j} \geqslant 0$ and

$$
v=\sum_{j=k+1}^{x-1} h_{j} p_{j} .
$$

Then, by Lemma 1 and (14),

$$
\begin{equation*}
b_{T+s}-b_{T} \geqslant \sum_{0 \leqslant N \leqslant r / / 50} g(v) . \tag{21}
\end{equation*}
$$

This last expression is at least as large as the number of ways of choosing h_{k+1}, \ldots, h_{s-1} so that $h_{j} \geqslant 0$ and

$$
\sum_{j=k+1}^{x-1} h_{j} p_{j} \leqslant \frac{1}{50} r .
$$

Thus, if we write

$$
\begin{equation*}
d=s-1-k=\pi(Y)-1-\pi\left(\frac{3}{2} p_{1}\right), \tag{22}
\end{equation*}
$$

the sum in (21) is

$$
\begin{aligned}
& \geqslant \prod_{j=k+1}^{s-1}\left(1+\left[\frac{r}{50 d p_{j}}\right]\right) \\
& >\prod_{j=k+1}^{s-1} \frac{r}{50 d p_{j}} .
\end{aligned}
$$

Hence, by (14),

$$
\begin{equation*}
\sum_{0 \leqslant v \leqslant r / 50} g(v)>\exp \left(d \log \frac{X^{2}}{50 d}-\vartheta(Y)+\vartheta\left(\frac{3}{2} p_{1}\right)+\log p_{s}\right), \tag{23}
\end{equation*}
$$

where as usual $\vartheta(x)=\sum_{p \leqslant x} \log p$.

By (14), (15), (22) and the prime number theorem with a reasonable error term,

$$
\begin{aligned}
& d= \frac{1}{100} X(\log X)^{-1 / 2}-\frac{3}{2} X(\log X)^{-1}-\frac{1}{200} X(\log \log X)(\log X)^{-3 / 2} \\
&+\frac{1}{100}(1+\log 100) X(\log X)^{-3 / 2}+O\left(X(\log X)^{-2}\right) \\
& \log \frac{X^{2}}{50 d}=\log X+\frac{1}{2} \log \log X+\log 2+O\left((\log X)^{-1 / 2}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\vartheta(Y)-\vartheta\left(\frac{3}{2} p_{1}\right)-\log p_{x}=\frac{1}{100} X(\log X)^{1 / 2}-\frac{3}{2} X+O\left(X(\log X)^{-1}\right) \tag{24}
\end{equation*}
$$

Hence

$$
\begin{align*}
d \log \frac{X^{2}}{50 d}=\frac{1}{100} X(\log X)^{1 / 2}+\frac{1}{100}(1 & +\log 200) X(\log X)^{-1 / 2} \\
& -\frac{3}{2} X+O\left(X(\log \log X)(\log X)^{-1}\right) . \tag{25}
\end{align*}
$$

By (21), (23), (24) and (25) we see that

$$
b_{T+S}-b_{T}>\exp \left(C_{7} X(\log X)^{-1 / 2}\right)
$$

As an immediate consequence of this and (14) we have (20), and hence the lemma.
Lemma 3. Suppose m satisfies $T<m \leqslant T+S$. Then if $r-m$ is odd we can choose prime numbers q_{1}, q_{2} and q_{3} so that

$$
r-m=q_{1}+q_{2}+q_{3}
$$

and

$$
\frac{1}{4} r<q_{1}<q_{2}<q_{3}<\frac{1}{3} r .
$$

On the other hand, if $r-m$ is even we can choose prime numbers q_{1}, q_{2}, q_{3} and q_{4} so that

$$
r-m=q_{1}+q_{2}+q_{3}+q_{4}
$$

and

$$
\frac{1}{3} r<q_{1}<q_{2}<q_{3}<q_{4}<\frac{1}{4} r .
$$

The above lemma follows by a straightforward application of the Hardy-Little-wood-Vinogradov method. There are a number of accounts of this method. One that springs to mind is Prachar [17; Kapitel VI].

5. Proof of (8)

We show that there are arbitrarily large values of n for which $\left|a_{r}(n)\right| \geqslant \lambda$, where

$$
\begin{equation*}
\lambda=\frac{1}{625} \exp \left(C_{6}\left(\frac{r}{\log r}\right)^{1 / 2}\right) \tag{26}
\end{equation*}
$$

For suppose not. Let $n_{0}=p_{1} \ldots p_{s} P$, where P is a product of primes larger than r, chosen so that $\mu\left(n_{0}\right)=1$. We first of all take $n=n_{0}$. By (10)

$$
\Phi_{n}(z)=(1-z)\left(1-z^{p_{1}}\right)^{-1} \ldots\left(1-z^{p_{x}}\right)^{-1} \times \text { other terms, }
$$

and it is easily seen that

$$
a_{r}(n)=b_{r}-b_{r-1}=\Delta_{0}, \text { say. }
$$

Thus, by our assumption,

$$
\begin{equation*}
\left|\Delta_{0}\right|<\lambda . \tag{27}
\end{equation*}
$$

Now let P_{1} be a prime greater than P and q any prime with

$$
\begin{equation*}
p_{s}<q<r . \tag{28}
\end{equation*}
$$

Then if $n=n_{0} q P_{1}$ we have

$$
\Phi_{n}(z)=(1-z)\left(\sum_{m=0}^{\infty} b_{m} z^{m}\right)\left(\sum_{n=0}^{\infty} z^{h_{q_{i}}}\right) \times \text { other terms, }
$$

so that

$$
\begin{aligned}
a_{r}(n) & =b_{r}-b_{r-1}+\sum_{1 \leqslant \sum_{\leqslant r / q}}\left(b_{r-\text { hq }}-b_{r-\text { hq-1 }}\right) \\
& =\Delta_{0}+\Delta_{1}(q), \text { say } .
\end{aligned}
$$

Thus, by (27) and our assumption, we must have

$$
\begin{equation*}
\left|\Delta_{1}(q)\right|<2 \lambda . \tag{29}
\end{equation*}
$$

Now let P_{2} be a prime greater than P_{1}, and q_{1} and q_{2} be any primes satisfying

$$
\begin{equation*}
p_{s}<q_{1}<q_{2}<r_{.} \tag{30}
\end{equation*}
$$

Then if $n=n_{0} q_{1} q_{2} P_{1} P_{2}$ we have

$$
\Phi_{n}(z)=(1-z)\left(\sum_{m=0}^{\infty} b_{m} z^{m}\right)\left(\sum_{n_{1}=0}^{\infty} z^{h_{1}, q_{1}}\right)\left(\sum_{n_{2}=0}^{\infty} z^{h_{2}, q_{z}}\right) \times \text { other terms, }
$$

so that

$$
a_{r}(n)=\Delta_{0}+\Delta_{1}\left(q_{1}\right)+\Delta_{1}\left(q_{2}\right)+\Delta_{2}\left(q_{1}, q_{2}\right),
$$

where

Thus, by (27), (28), (29) and our assumption, we have for all q_{1}, q_{2} satisfying (30),

$$
\left|\Delta_{2}\left(q_{1}, q_{2}\right)\right|<6 \lambda .
$$

Proceeding inductively we see that for each set of $j(\geqslant 3)$ primes q_{1}, \ldots, q_{j} satisfying

$$
\begin{equation*}
p_{s}<q_{1}<\ldots<q_{f}<r \tag{31}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|\Delta_{j}\left(q_{1}, \ldots, q_{j}\right)\right|<(j+1)^{j} \lambda, \tag{32}
\end{equation*}
$$

where

But if $r /(j+1)<q_{1}<\ldots<q_{j}<r / j$, then

$$
\Delta_{j}\left(q_{1}, \ldots, q_{j}\right)=b_{r-q_{1}-\ldots-q_{1}}-b_{r-q_{1}-\ldots-q_{j}-1} .
$$

Thus, by Lemmas 2 and 3 and (26) we see at once that there is a set of primes $q_{1}, \ldots q_{J}$ with $j=3$ or 4 , satisfying (31), and such that (32) is false.

This contradiction enables us to assert that $\left|a_{r}(n)\right| \geqslant \lambda$ for arbitrarily large values of n and thus, by (26), the proof of (8) is complete.

References

1. A. S. Bang, " Om Ligningen $\phi_{s}(x)=0 "$, Nyt Tidsskrift for Mathematik (B), 6 (1895), 6-12,
2. P. T. Bateman, "Note on the coefficients of the cyclotomic polynomial ", Bull. Amer. Math. Soc., 55 (1949), 1180-1181.
3. M. Beiter, "The midterm coefficient of the cyclotomic polynomial $F_{p 0}(x)$ ", Amer. Math. Monthly, 71 (1964), 769-770.
4. D. M. Bloom, "On the coefficients of the cyclotomic polynomials", Amer, Math. Monthly, 75 (1968), 372-377.
5. L. Carlitz, "The number of terms in the cyclotomic polynomial $F_{p r}(x)$ ", Amer. Math. Monthly, 73 (1966), 979-981.
6. P. Erdós, "On the coefficients of the cyclotomic polynomial ", Bull. Amer. Math. Soc., 52(1946), 179-184.
7. _ "On the coefficients of the cyclotomic polynomial ", Portugaliae Math., 8 (1949), 63-71.
8. - "On the growth of the cyclotomic polynomial in the interval $(0,1)$ ", Proc. Glasgow Math. Assoc., 3 (1956-58), 102-104,
9. H. Halberstam and K. F. Roth, Sequences (Clarendon Press, Oxford, 1956).
10. G. H. Hardy and S. Ramanujan, "Asymptotic formulae in combinatory analysis ", Proc. London Math. Soc,, 17 (1918), 75-115.
11. -and E. M. Wright, An introduction to the theory of numbers, fourth edition (Clarendon Press, Oxford, 1965).
12. D. H. Lehmer, " Some properties of the cyclotomic polynomial ", J. Math. Anal. App., 15 (1966), 105-117.
13. E, Lehmer, "On the magnitude of the coefficients of the cyclotomic polynomial", Bull. Amer. Math. Soc., 42 (1936), 389-392.
14. A. Migotti," Zur Theorie der Kreisteillungsgleichung ", S.B der Math,-Naturwiss. Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 87 (1883), 7-14.
15. H. Möller, "Uber die i-ten Koeffizienten der Kreisteilungspolynome ", Math. Ann., 188 (1970), 26-38.
16. -" Ober die Koeffizienten des n-ten Kreisteilungspolynoms ", Math. Z. 119 (1971), 33-40.
17. K, Prachar, Primzahlvertellung (Springer-Verlag, Berlin, 1957).

Imperial College of Science and Technology, London, S.W.7.

The University,
Sheffield.

