COMPLETE SUBGRAPHS OF CHROMATIC GRAPHS AND HYPERGRAPHS

B. Bollobás, P. Erdös and Z. G. Straus

In this note we consider k-chromatic graphs with given colour classes $C_{1}, \ldots, C_{k},\left|C_{i}\right|=n_{i}$. In other words, our k-chromatic k r-graphs have vertex sets $U C_{i}$, and no r-tuple (i.e. edge of the r-graph) has two vertices in the same colour class C_{i}.

As usual, we denote by $K_{p}^{(r)}$ the complete r-graph with p vertices. The set of r-tuples of an r-graph G is denoted by $E(G)$ and $e(G)$ is the number of r-tuples. Let G be the set of k-chromatic r-graphs (with $n=\sum_{1}^{k} n_{i}$ vertices) that do not contain a $K_{p}^{(r)}$. Let $m=\max \{e(G): G \in G\}, G_{\max }=\{G \in G$: $e(G)=m\}$. We shall always suppose that $2 \leq r<p \leq k$.

The main aim of this note is to prove that $G_{\max }$ contains some special graphs. In particular, for $r=2$ we obtain an extension of Turán's theorem [4]. We make use of some ideas in [1] and [3].

We call a k-chromatic r-graph G canonical if whenever $\left(v_{i_{1}}, \ldots, v_{i_{r}}\right), v_{i_{j}} \in C_{i_{j}}$, is an r-tuple of G then G contains every r-tuple of the form $\left(w_{i_{1}}, \ldots, w_{i_{r}}\right), w_{i_{j}} \in c_{i_{j}}, i=1, \ldots, r$. THEOREM 1. $G_{\max }$ contains a canonical graph.

Proof. Choose k algebraically independent numbers
$\alpha_{1}, \ldots, \alpha_{k}, 0<\alpha_{i}<\varepsilon$, where $\varepsilon>0$ satisfies $k^{r} n^{r}\left\{(1+\varepsilon)^{r}-1\right\}<1$. Define the weight of an r-tuple $\tau=\left(v_{i_{1}}, \ldots, v_{i_{r}}\right)$ by
$w(\tau)=\prod_{j=1}^{r}\left(1+\alpha_{i}\right)$, and the weight of a graph G by

$$
W(G)=\sum_{\tau \in \mathbb{E}(G)} w(\tau) .
$$

Let $G_{0} \in G$ be a graph with maximal weight in G. Note that $w(\tau)<(1+\varepsilon)^{\mathbf{r}}$, so

$$
\mathrm{e}(G) \leq \mathrm{w}(G)<\mathrm{e}(G)+1
$$

for every graph G. Thus $G_{0} \in G_{\text {max }}$.
We shall show that G_{0} is canonical. Clearly it suffices to show that if $\left(x_{1}, \ldots, x_{r}\right)$ is an r-tuple of G_{0} and $\tilde{x}_{1} \in C_{1}$ then $\left(\tilde{x}_{1}, x_{2}, \ldots, x_{r}\right)$ is also an r-tuple of G_{0}. Suppose ($\tilde{x}, x_{2}, \ldots, x_{r}$) is not an r-tuple of G_{0}. Then the algebraic independence of the α_{i} 's implies that $d_{w}\left(x_{1}\right) \neq d_{w}\left(\tilde{x}_{1}\right)$, where $d_{w}(x)=\sum_{x \in \tau} w(\tau)$.

We can suppose without loss of generality that $d_{w}\left(x_{1}\right)>d_{w}\left(\tilde{x}_{1}\right)$. Let \tilde{G}_{0} be the graph obtained from G_{0} by omitting the r-tuples containing \tilde{x}_{1} and adding all the r-tuples of the form $\left(\tau-\left\{x_{1}\right\}\right) \cup\left\{\tilde{x}_{1}\right\}$, where $x_{1} \in \tau$. Clearly $\tilde{G}_{0} \in G$ and $w\left(\tilde{G}_{0}\right)>w\left(G_{0}\right)$, contradicting the maximality of $w\left(G_{0}\right)$. Thus $G_{0} \in G_{\max }$ is canonical, as claimed.

THEOREM 2. Let $\mathbf{r}=2$. Then $G_{\max }$ contains a complete (p-1)-partite graph.

Proof. Define G_{0} as in the proof of Theorem 1. Then G_{0} is canonical. Furthermore, if two vertices of G_{0} are not joined then they must be joined to the some set of vertices, otherwise one could increase $w\left(G_{0}\right)$ by omitting the edges containing one of them and then joining this vertex to every vertex that is joined to the other one. This means exactly that G_{0} is a complete s-partite graph for some s. As G_{0} does not contain a $K_{p}\left(=K_{p}^{(2)}\right)$ one can take $s=p-1$.

If G is an edge-graph (i.e. 2-graph), denote by $\delta(G)$ the minimal degree of a vertex in G. Answering a question of Erdos, Graver showed (see [2]) that if G is a 3-chromatic edge graph, $n_{1}=n_{2}=n_{3}$ and $\delta(G) \geq n_{1}+1$ then G contains a triangle. A number of related problems were discussed by Bollobás, Erdös and Szemerédi [2].

Let us consider k-chromatic edge graphs with colour classes
$C_{i},\left|C_{i}\right|=n_{i}, i \in K=\{1, \ldots, k\}, \quad \sum_{i \in I} n_{i}=n$. Let
$\xi=\left\{I \subset K: \sum_{i \in I} n_{i} \leq n / 2\right\}$ and let $\delta_{1}=\max \left\{\sum_{i \in I} n_{i}: I \in \xi\right\}$.
Let $K_{1} \subset \mathrm{~K}$ be such that $\sum_{i \in \mathrm{~K}_{1}}=\delta_{1}$. Put $K_{2}=K_{-} K_{1}$. Joining every vertex
of $\underset{i \in K_{1}}{u} C_{i} \quad$ to every vertex of $\underset{i \in K_{2}}{u} C_{i}$ we obtain a graph \tilde{G}
with colour classes $C_{i}, i=1, \ldots, k$. Clearly \tilde{G} does not contain a triangle and $\delta(\tilde{G})=\delta_{1}$. Extending the above mentioned result of Graver, we prove that this situation is best possible in a certain sense.

THEOREM 3. Let G be a k-chromatic graph with colour classes $C_{i},\left|C_{i}\right|=n_{i}, i=1, \ldots, k$, and $\delta(G) \geq \delta_{1}+1$. Then G contains a triangle.

Proof. If $x \in \underset{i \in K}{u} C_{i}$ and $I \in \xi$, denote by $d_{I}(x)$ the number of vertices of $\underset{i \in I}{u} C_{i}$ joined to x. Let x_{1} and $I_{I} \in \xi$ be such that $d_{I_{1}}\left(x_{1}\right) \geq d_{I}(x)$ for every x and $I \in \xi$. Let $I_{2}=X-I_{1}$. As $d_{I_{1}}\left(x_{1}\right) \leq \sum_{i \in I_{1}} n_{i} \leq \delta_{1}<\delta_{1}+1$, there is a vertex $x_{2} \in C_{j}$ that is joined to x_{1} where $j \in I_{2}$. Then the maximality of $d_{I_{1}}\left(x_{1}\right)$
implies that $I_{1} \cup\{j\} \notin \xi$, so $I_{2}^{\prime}=I_{2}-\{j\} \in \xi$.

Let us show that G has a triangle containing the vertices $\mathrm{x}_{1}, \mathrm{x}_{2}$. Suppose not. Then x_{2} can be joined to at most $\delta_{1}-\mathrm{d}_{\mathrm{I}_{1}}\left(\mathrm{x}_{1}\right)$ vertices of $\underset{i \in T}{ } C_{i}$, so it must be joined to at least $\delta_{1}+1-\left(\delta_{1}-d_{I_{1}}\left(x_{1}\right)\right)=d_{I_{1}}\left(x_{1}\right)+1$ vertices of $\underset{i \in I_{2}^{\prime}}{u} C_{i}$. This contradicts the maximality of $\mathrm{d}_{\mathrm{I}_{1}}\left(\mathrm{x}_{1}\right)$, so the proof is complete.

Remarks.

1. Theorem 2 can not be generalized for $r \geq 3$. It is false already in the simplest non-trivial case $r=3, p=4, k=4, n_{i}=1$. Then clearly a graph with 3 -tuples does not contain $\mathrm{K}_{4}^{(3)}$. On the other hand, a 3-chromatic 3 -graph with 4 vertices has at most 3 -tuples.
2. The obvious generalization of Theorem 3 is also false. For $k \geq 4$ and sufficiently large m there is a k-chromatic edge graph G with m vertices in each colour class, such that $\delta(G) \geq(k-2) m+1$ and G does not contain $a \quad K_{k}$ (see [2]).

REFERENCES

[1] B. Bollobás, Complete Subgraph of the Some Order, to appear.
[2] B. Bollobâs, P. Erdös and E. Szemerédi, On Complete Subgraphs of r-chromatic graphs, to appear.
[3] P. Erdös, On the Graph Theorem of Turan (in Hungarian), Mat. Lapok 21 (1970), 249-251.
[4] P. Turán, On the Extremal Problem in Groph Theory (in Hungarian), Mat. és Fiz. Lapok 48 (1941), 436-452.

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
Hungarian Academy of Sciences,
Budapest
Department of Mathematics
University of California at Los Angeles

