COMPLETE SUBGRAPHS OF CHROMATIC GRAPHS AND HYPERGRAPHS

B. Bollobás, P. Erdős and E. G. Straus

In this note we consider k-chromatic graphs with given colour classes C_1, \ldots, C_k , $|C_i| = n_i$. In other words, our k-chromatic r-graphs have vertex sets $\begin{tabular}{l} \begin{tabular}{l} \begi$

As usual, we denote by $K_p^{(r)}$ the complete r-graph with p vertices. The set of r-tuples of an r-graph G is denoted by E(G) and e(G) is the number of r-tuples. Let G be the set of k-chromatic r-graphs $\left(with\ n=\sum_{1}^{k}\ n_i\ vertices\right)$ that do not contain a $K_p^{(r)}$. Let $m=\max\{e(G):\ G\in G\},\ G_{\max}=\{G\in G:\ e(G)=m\}$. We shall always suppose that $2\leq r< p\leq k$.

The main aim of this note is to prove that G_{\max} contains some special graphs. In particular, for r=2 we obtain an extension of Turán's theorem [4]. We make use of some ideas in [1] and [3].

We call a k-chromatic r-graph G canonical if whenever $\begin{pmatrix} v_{i_1}, \dots, v_{i_r} \end{pmatrix}$, $v_{i_j} \in C_{i_j}$, is an r-tuple of G then G contains every r-tuple of the form $\begin{pmatrix} w_{i_1}, \dots, w_{i_r} \end{pmatrix}$, $w_{i_j} \in C_{i_j}$, $i = 1, \dots, r$.

THEOREM 1. G contains a canonical graph.

Proof. Choose k algebraically independent numbers $\alpha_1, \dots, \alpha_k, 0 < \alpha_i < \epsilon$, where $\epsilon > 0$ satisfies $k^r n^r \{(1+\epsilon)^r - 1\} < 1$. Define the weight of an r-tuple $\tau = \left(v_{i_1}, \dots, v_{i_r}\right)$ by

$$w(\tau) = \prod_{j=1}^{r} (1 + \alpha_{ij})$$
, and the weight of a graph G by

$$w(G) = \sum_{\tau \in E(G)} w(\tau)$$
.

Let $G_0 \in G$ be a graph with maximal weight in G. Note that $w(\tau) < (1+\epsilon)^T$, so

$$e(G) \leq w(G) < e(G) + 1$$

for every graph G. Thus $G_0 \in G_{max}$.

We shall show that G_0 is canonical. Clearly it suffices to show that if (x_1,\ldots,x_r) is an r-tuple of G_0 and $\tilde{x}_1\in C_1$ then $(\tilde{x}_1,x_2,\ldots,x_r)$ is also an r-tuple of G_0 . Suppose $(\tilde{x},x_2,\ldots,x_r)$ is not an r-tuple of G_0 . Then the algebraic independence of the α_1 's implies that $d_w(x_1) \neq d_w(\tilde{x}_1)$, where

$$d_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{x} \in \tau} \mathbf{w}(\tau)$$
.

We can suppose without loss of generality that $d_w(x_1) > d_w(\widetilde{x}_1)$. Let \widetilde{G}_0 be the graph obtained from G_0 by omitting the r-tuples containing \widetilde{x}_1 and adding all the r-tuples of the form $(\tau - \{x_1\}) \cup \{\widetilde{x}_1\}$, where $x_1 \in \tau$. Clearly $\widetilde{G}_0 \in G$ and $w(\widetilde{G}_0) > w(G_0)$, contradicting the maximality of $w(G_0)$. Thus $G_0 \in G_{max}$ is canonical, as claimed.

THEOREM 2. Let r = 2. Then G_{max} contains a complete (p-1)-partite graph.

Proof. Define G_0 as in the proof of Theorem 1. Then G_0 is canonical. Furthermore, if two vertices of G_0 are not joined then they must be joined to the same set of vertices, otherwise one could increase $w(G_0)$ by omitting the edges containing one of them and then joining this vertex to every vertex that is joined to the other one. This means exactly that G_0 is a complete s-partite graph for some s. As G_0 does not contain a $K_p \left(= K_p^{(2)} \right)$ one can take $S_0 = P_0$.

If G is an edge-graph (i.e. 2-graph), denote by $\delta(G)$ the minimal degree of a vertex in G. Answering a question of Erdős, Graver showed (see [2]) that if G is a 3-chromatic edge graph, $n_1 = n_2 = n_3$ and $\delta(G) \geq n_1 + 1$ then G contains a triangle. A number of related problems were discussed by Bollobás, Erdős and Szemerédi [2].

Let us consider k-chromatic edge graphs with colour classes

$$C_{\mathbf{i}}, |C_{\mathbf{i}}| = n_{\mathbf{i}}, i \in K = \{1, \dots, k\}, \sum_{\mathbf{i} \in \mathbf{I}} n_{\mathbf{i}} = n.$$
 Let
$$\xi = \left\{ \mathbf{I} \subset K : \sum_{\mathbf{i} \in \mathbf{I}} n_{\mathbf{i}} \le n/2 \right\} \text{ and let } \delta_{\mathbf{i}} = \max \left\{ \sum_{\mathbf{i} \in \mathbf{I}} n_{\mathbf{i}} : \mathbf{I} \in \xi \right\}.$$

Let $K_1 \subset K$ be such that $\sum_{i \in K_1} = \delta_i$. Put $K_2 = K - K_1$. Joining every vertex

of U C to every vertex of U C we obtain a graph $\widetilde{\mathsf{G}}$ i $^{i \in K} 1$

with colour classes C_i , i=1,...,k. Clearly \widetilde{G} does not contain a triangle and $\delta(\widetilde{G}) = \delta_1$. Extending the above mentioned result of Graver, we prove that this situation is best possible in a certain sense.

THEOREM 3. Let G be a k-chromatic graph with colour classes $C_{\underline{i}}$, $|C_{\underline{i}}| = n_{\underline{i}}$, $\underline{i} = 1, \ldots, k$, and $\delta(G) \geq \delta_{\underline{1}} + 1$. Then G contains a triangle.

Proof. If $x \in UC_i$ and $I \in \xi$, denote by $d_I(x)$ the number of vertices of UC_i joined to x. Let x_1 and $I_1 \in \xi$ be such that $d_{I_1}(x_1) \geq d_{I}(x)$ for every x and $I \in \xi$. Let $I_2 = K - I_1$. As $d_{I_1}(x_1) \leq \sum_{i \in I_1} n_i \leq \delta_1 < \delta_1 + 1$, there is a vertex $x_2 \in C_j$ that is joined to x_1 where $j \in I_2$. Then the maximality of $d_{I_1}(x_1)$ implies that $I_1 \cup \{j\} \notin \xi$, so $I_2' = I_2 - \{j\} \in \xi$.

Let us show that G has a triangle containing the vertices x_1, x_2 . Suppose not. Then x_2 can be joined to at most $\delta_1 - d_{I_1}(x_1)$ vertices of $U = C_i$, so it must be joined to at least $\delta_1 + 1 - \left(\delta_1 - d_{I_1}(x_1)\right) = d_{I_1}(x_1) + 1$ vertices of $U = C_i$. This $i \in I_2^i$ contradicts the maximality of $d_{I_1}(x_1)$, so the proof is complete.

Remarks.

- 1. Theorem 2 can not be generalized for $r \ge 3$. It is false already in the simplest non-trivial case r = 3, p = 4, k = 4, $n_1 = 1$. Then clearly a graph with 3 3-tuples does not contain a $K_4^{(3)}$. On the other hand, a 3-chromatic 3-graph with 4 vertices has at most 3-tuples.
- 2. The obvious generalization of Theorem 3 is also false. For $k \ge 4$ and sufficiently large m there is a k-chromatic edge graph G with m vertices in each colour class, such that $\delta(G) \ge (k-2)m+1$ and G does not contain a K_k (see [2]).

REFERENCES

- [1] B. Bollobás, Complete Subgraph of the Same Order, to appear.
- [2] B. Bollobás, P. Erdös and E. Szemerédi, On Complete Subgraphs of r-chromatic graphs, to appear.
- [3] P. Erdös, On the Graph Theorem of Turân (in Hungarian), Mat. Lapok 21 (1970), 249-251.
- [4] P. Turán, On the Extremal Problem in Graph Theory (in Hungarian), Mat. és Fiz. Lapok 48 (1941), 436-452.

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

Hungarian Academy of Sciences, Budapest

Department of Mathematics
University of California at Los Angeles

Received November 25, 1974.