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1. Introduction

A system or family (A . : y E N) of sets A y , indexed by the elements of a set N,
is called an (a, b)-system if I N I = a and I A,, I = b for y c- N . Expressions such
as "(a, < b)-system" are self-explanatory. The system (A,, : y c N) is called a
A-system [1] if A,, n A,, = Ap n AQ whenever p, y, p, c c N ; p 7~ y ; p =A a . If we
want to indicate the cardinality I NJ of the index set N then we speak of a A(INI)-

system . In [1] conditions on cardinals a, b, c were obtained which imply that
every (a, b)-system contains a A(c)-subsystem . In [2], for every choice of cardinals
b, c such that

b>_2 ; c>_3 ; b+c>==tfi o

the least cardinal a = fo(b, c) was determined which has the property that

every (a, < b)-system contains a A(c)-subsystem .

Let b+ be the least cardinal greater than b . It is easy to see that the following
two statements are equivalent :

every (a, < b+)-system contains a A(c)-subsystem,

every (a, b)-system contains a A(c)-subsystem .

In the present note we prove a best possible theorem (Theorem 1) on the
size of the largest A-subsystem that can be found in every (m+, m)-system (A, :
y E N) which satisfies I Aµ n Av I < n for p, y EN ; p ~ y . Here m > t*~o , and n is
a given cardinal, n < m . In proving this theorem the authors have received valu-
able help from A . Hajnal .

We now introduce a condition on systems of sets which is less exacting than
that of being a A-system. The system (A Y : y c N) is called a weak A-system (wk
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A-system) if

IA,,nA Y I = IA,nAQ I

whenever µ, y, p, 6 c N ; u y ; p 0 u .
To avoid misunderstandings we shall henceforth replace the term "A-system"

by "strong A-system (st A-system) . Clearly, every st A-system is also a wk A-sys-
tem, and the system ({1, 2}, {1, 3}, {2, 3}) is weak but not strong . In Theorem 2
we give an implication in the opposite direction. For cardinals a, b, c, let the relation

(1) (a, b) -4 wk A(c)

mean that every (a, b)-system contains a wkA(c)-subsystem, and similarly for the
relation

(2)

	

(a, b) -). st 0(c) .

The negation of a relation involving an arrow -> is obtained by writing instead
of -+ . The symbol wk A by itself denotes the class of all wk A-systems, and
similarly in other cases, such as st 4(c) .

In Section 5 we prove a number of results on A-systems . In Section 7 we
give a complete discussion of the relation (1) for a, b >_ N o . In this discussion, as
well as in some of our theorems, we shall assume the generalised continuum
hypothesis (GCH) .

2. Terminology and notation

Roman capitals denote sets, and A c B denotes inclusion in the wide sense .
For every system (A Y : y e N) and M c N, we put Am = U (y e M)A,, . The system
(AY : y c N) is called an (a, b)-system if I N I = a and I AY I = b for all y eN . The
class of all (a, b)-systems is denoted by S2(a, b) . For every set A and every cardinal
r we put

[A]r= {X =A : IX I = r} .

For cardinals a, c, d, r the partition relation

a

	

(c)á

means that whenever A and D are sets ; I A = a ; I D
I =

d ; [A] r = V (íl c- D)IA
then there is a set A' c- [A] `and an element 2 of D such that [A'] rc I. , . For
every cardinal m we put m+ = min {n : n > m} . If m has the form p+ then we
put m - = p, and in all other cases m - = m . By w(m) we denote the least ordinal
2 such that I )~ I = m . For every ordinal a, put a = {íl: ~ < a} , and for every
cardinal m put m = w(m) . If m > N,, then the symbol cf(m) denotes the least
cardinal c such that m = I(y c- c)m7 for some cardinals mY < m . The function
cf is the cofinality function . Instead of (cf(m))+ we write cf+(m), and similarly
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in other cases. For objects x, y the symbol {x, y} , denotes the set {x, y} and at
the same time expresses the condition that x 0 y . If d is a cardinal then the

symbol (A . : y c N)d denotes the system (A y : y e N) and expresses the condition
that I Aµ n Ay I = d for {p, y}, c N . Symbols like (A, : y c N) 'd have the obvious
meaning .

We use the obliterator ^ ; its effect consists in deleting from a well-ordered

sequence the element above which it is placed . Other uses of ^ will be self-explan-
atory. If x = (xo, • • • , 4) and y = (yo , • • • , A) are sequences of the same length k,
and x 0 y, then there is an ordinal i < k, denoted by x o y, such that x; = y j
(j < i) ; x Í 0 yi . We shall occasionally use that

{j < k : (x o , . . . ,x,) _ (yo, . . . , yj)} = x o y + i ,

{j < k : (xo, . . . , x) _ (yo, . . . ~ yj )} = x o y .

If (S, -~) is an ordered set and n is an ordinal ; x o , • • • , z„ E S, then the sym-
bol {x,-, x"} .< denotes the set and expresses the condition that
x µ -~xy for p < y < n . A set A c S is said to be cofinal in (S, ~) if U (x c A)
ty c S : y <, x} = S . It is well known that if a >= No and tp (S, ~) = w(a), then
ef(a) is the minimum of the cardinals of the sets A which are cofinal in (S, ~) .

Finally, a symbol such as ((AY),, N, B) denotes the family (D, : Z c L), where
L=NV{p};p~N;D ),= Aa for ,~ cN, and D,,=B .

3.

THEOREM 1 . Let m, n be cardinals ; m > N o ; n < m . Let _ (A T : yEN)< "E
92 (m+, m) .

(i) If m" = m then the system F has a st A(m +)-subsystem ;
(ü) If m" > m and GCH holds, then F has a st A(p)-subsystem for every

p< m ,
(iii) the proposition (ü) becomes false if the hypothesis p < m is replaced

by p<m .

REMARKS . (a) A . Hajnal made valuable contributions towards proving

Theorem 1 .

(b) It is well known that, for every m >_ N o , the relation m" = m holds if
and only if 1 _<_ n < cf(m) (assuming GCH) .

4. Discretization sequences

Let F _ (A T : y e N) be a given system . A discretization sequence (d-se-

quence) of

	

is any sequence (No , • • • ,Nk ) such that k = w(I N
I

+) and, for each
< k, the set Na , is maximal with the properties

N.; c N - NA ; (A T - AN, : y c Na ) o .



(3)

(4)

(5)

(6)
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Thus No is maximal such that No c N ; (Ay : y c N O), . Next,

N, is maximal such that N, c N - N o ; (A y - AN a : y c N1)0;

NZ is maximal such that N z c N - (N o U N,) ; (Ay - AN" V Nt : y c N2 ) o ,
and so on . Let us put ANA = SA for every ordinal ~ < k, and ANp = SP for every
cardinal p < I k I .

LEMMA 1 . Let (N o, ,Nk) be a d-sequence of (A y : y E N) .

There is k o < k such that {., < k : NA QS} = k o ;

if A < k ; {µ, y}$ c N A , then A, r) A y (-- S., ;

if ~ < k ; µEN - NA+1 , then AN, n A µ t SA ;
if íl < k ; µEN - NA , then IS). n Aµ I >_ I ~ I .

PROOF OF (3) . Let ~ < µ < k ; NA = 0 . Then, by definition of N,, we have
Nµ =0 . Also, I k j> I N I .

PROOF OF (4) . Aµ n A,, - SA = (A, - SA) n (A y - SA) = 0 by definition of NA .

PROOF OF (5) . The relation (A y - SA : Y ENA V {µ})o is false by the maximality
of NA . Hence there is y E NA such that (Aµ - SA) n (A y - SA) 0 0 . Then A µ nn A,, c# SA ; A„ nANA A„ n A y c# S, .

PROOF OF (6) . Let K < A . Then µ E N - NA c N -NK+ 1 and, by (5), there
is xK E A N , n A„ - S,, . If K' < K then x K E AN - AN, . (--AN - {xK .} . Hence

I SA n A„ I >_ I {x o , • • , xA } # I = I ~I . This proves Lemma 1 .

PROOF OF THEOREM 1 .

Proof of (i) . Let (N o ,

	

Rj be a d-sequence of F . Then k = c )(m++)

CASE 1 . There is K E _n with I NK I = m+ . Then there is K o = min{K E n : I NK
= m+} . Then I SK" 15 nmm = m . Put P = {y ENKO : I Ay n SK"I >_ n} ; Q. = NK "
-P .

CASE la . I P I = m+ . Then, for y e P, there is By E [A y n SKj" . Then
{By : y c- P} I < [SK,)]" I _5 m" = m < I P I , and there is {µ, y} # c P such that
Bµ = By . Then A, n A y l >_ I B„ n B y I = IBII = n > I A,, n A y I which is a con-
tradiction .

CASE lb . I P I< m . Then I Q I= m+ ; I Ay n SK " I< n (y c Q) . Since I[SK"]`" I

_< E(t < n)m` S nm" = m, there is D E [SK"] `"and Q' E [Q]"' + such that Ay n SK "
= D for all y E Q' . Then, by Lemma 1(4), A, n A y = D for {µ, y} # c Q' and so

(Ay : y c- Q') E st A(m +) .
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CASE 2 . I NK I :!5;m (K E n) . Then, I N" I < nm =m ; IN-N.1 =m+ . By
Lemma 1(6), I A Y n S" I >_ n (y e N- N") . Choose B Y E [A Y n S"]" for y E N- N".
Then

{B Y : y e N - N"}I < I[Sn]" < (mm)" = m< I N - N" I ,
and there is {µ, y} , c N - N" such that B„ = By . Then

IA,,nA Y I > IB P nBYI = IB, I = n> IA µ nA,

which is a contradiction. This proves (i) .
Before proving (ü) we establish a lemma .

LEMMA 2 . Let

n<m>,N, ; m">m ; IS I=m; IN I= m

XY E [S] ' (y e N) .
Assume GCH. Then there is f p, y}, c N such that I Xµ n X Y I > n .

PROOF OF LEMMA 2 . n >- cf(m) . There is a respresentation S = T o v . . . U Tt
such that t = ro(cf(m)) ; I TA I = in s < m 0. < t) . Let y c-N . Then there is ~, < t
such that I X Y n T,,,, I > n . For otherwise we obtain the contradiction

m=IX,IS I(,.<t)IXYr)T,.I <ItIn<m .

Now there is M E [N]"' + and ~' such that ~, = ;' (y e M) . Then

I X,, nT, .I > n (ycM) .

Since I [TA] >n
I <_ 2""' < m+, there is {µ, y}, c M with Xu n T . , . = XY rl T, . .

Then IX, n X,, I > IX, n X y n T., . I = IX, n T,,, I > n .

PROOF OF THEOREM 1 (ü) . Let (N o , • • . , Nk ) be a d-sequence of (AY : y E N).
Then k = w(m++) . Let S, and Sp have their previous meaning .

CASE 1 . I N," I < in . Then IN-N.1 = m+ ; ISm I < m . By Lemma 1(6),
I Sm n A, I >_ m (y c N - Nm ) . By Lemma 2, there is {µ, 71, c N - Nm such
that

I A,,

	

, >- I (Sm n Au) n (Sm n AY) I> n> I A µ n A, I
which is false .

CASE 2 . I Nn I = m+ . Then there is o = min{~ E m : I Nz I = m+} . Then

IA Y nS,,"I < I SzoI < m (yEN) •_

CASE 2a . There is M E [N4] m+ such that I A,, n S,~"
I
= m (y e M) . Then, by

Lemma 2, there is {µ, y} , c M such that
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(Aµ n S,,,) n (A Y n S,a) I > n > I Au n A Y .

This is a contradiction .

CASE 2b . There is M c [N, o ]'" + such that I A Y n S,, I < m (y c M)

Then there is M' c- [M]"" such that the cardinal I A Y n S,, I is constant for

y c M', say I A Y n Sao I = q (y e M') . There are sets X Y , B Y such that ((XY)YEM •, AN)o
and I BY I = p + q = p o , say (y c M'), where,By (AY n S,,,,)U X,, (y c M') . Then

(B,j : y c M') c S2( >_ po +, p o ), and by [1], Theorem I, there is M" c M' such that

(B 7 : y e M") c st A(po +) . Then (AY n S O : y c M") c st 4(pó + ) and, by Lemma 1,

(A Y : y c M") c st B(p~ +) . This proves Theorem t (ü) .

PROOF OF THEOREM 1 (iii) . It suffices to find a system

(A Y : Y c N)< "(c) c n(m+, m)

which has no st 4(m)-subsystem . Put k = co(cf(m)) . There are cardinals m, such
that mo , • • m k < m = m o + • • • + mk • Put

N = {Y = (Yo, • • • ~ Yip) : YY, e m~(; < k)},

B Y = {(Yo, . . . ~z) : ~ < k} (Y = (Yo, . . . Im c N) .

Then (B .,, : y c N) c 92 (11 in, I k 1) . We have 11 m., = m + ; I k I = cf(m) < m . Let

IX7 1 = m (y c N) and ((X y), eN , BN)o , and put A Y = B Y U X 7 (y c N) . Then
(AY : y c N) c 92(m+, m) . Let {p, y} # c N . Then there is ~o = p o y, and we have

I A µ n A Y I = I (Bµ v X µ) n (B Y U X) I = I Bµn B Y I = I a o I < I k I= cf(m) .

Now let M c N and (A,, : y c M) E st A . Then (B, : y c- M) c st A . But then there is

,~ t < k such that po y = a , and Bµ n B y = {(po, , pj : < 1 } for all {p, y} r c M.
Here p), c M Y, (7l < ~ ), and p o ,

	

are independent of p, y . Therefore

I M I = I{Ya, : (Yo1 • • ' ,Yk)cM}I 5 maim,

and the proof of Theorem 1 is completed .

5. Some special Theorems

THEOREM 2 . Let (A,, : y c N) c wk A . Assume that
(i) IAYI <_ n<tfi, for 7c-N,

(ü) IA µ n A7 1 = k for {p, y} # c N,

(iii) I N I > 1 + n(k) .

Then (A Y : y e N) e st A .

PROOF. Let Yo c N . By (i) and (ü),

I {AY nAY ,, : y c N- {Yo}} 1 < (k) .
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Hence, by (iii), there are sets M, D with M E [N - {T}]"+ 1 and D E [A,J'k such
that A. r) Ayo = D for µ E M .

CASE 1 . There is y l E N - {y o } with D (# Ay , . Then, for every p eM, we
have A„ n A y , D, and there is xu E A,, 0 AY, - D . Then

{x,, :µEM}I=<I AY,I _<n<IMI,
and there is {p, u} # c M with x P = x, . Then xP E AP rl AQ = D which is a contra-
diction .

CASE 2 . D c A,, for all y e N - {y0}. Then A,, n Ap = D for {,u, y} # c N
and the theorem follows .

Definitions : (Ay : yEN) is called a system without repetition if A„ Ay for
{y, y},, c N . For n < No, denote by g(n) the largest integer such that there exists
a (g(n),n)-system without repetition which has no wk A(3)-subsystem . Let h(n)
be defined similarly but with repetitions allowed .

It is easy to see that g(1) = 1 ; g(2) = 5 ; g(3) >_ 10 . D. Hanson proved that
g(3) = 10 .

THEOREM 3 . For all n with 0 < n < No ,

(i) h(n) = 2g(n),

	

(ü) g(n + 1) >_ 2g(n) .

COROLLARY. g(n) >_ 5 .2n-2 for n >_ 2 .

PROOF OF (i) . If (A 1 ,Á 2 , • • • , A x ) is a (g(n), n)-system without repetition which
has no wk A(3)-subsystem, then (A 1 , • . . , Ax , A,, - . -,A,,) is a (2g(n), n)-system, with
repetition, and again without wk A(3)-subsystem . Hence h(n) >= 2g(n) . If, for
some n, we have h(n) > 2g(n) then there is a ( > 2g(n), n)-system without wk A(3)-
subsystem. Such a system contains at least g(n) + 1 distinct members, and these
form a system whose existence contradicts the definition of g(n) . Hence (i) .

PROOF OF (ü) . There is a (g(n), n)-system (A y : y c N) without repetition and
without wk A(3)-subsystem . Let xyz be any . 2g(n) distinct objects, for y EN and A e 2
which do not belong to A N . Then it is easily verified that

(A y V {x yz} : y cN; E 2)

is a (2g(n),n + 1)-system without repetition and without wk A(3)-subsystem . This
proves (ü) .

THEOREM 4 . Let a > 0 and 1 < n 5 No . Then there is an (a", n)-system
(A x : x c X), which has no wk A(a+)-subsystem .

PROOF. PUt X = {x = (xo , . . . , z") : x o , - . . , x" E a} ;

Ax = {(x o , . . . , x.,) : 7 E n} (x c~ X) .
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Then (A x : x c X) E 92 (a °, n) . If {x, y},, c X then

I AxnA,I = I{(xo, • • • , x,,) :y<xoy}I =xo y<n .

Let X' c X and (Ax : x c X') E wk A . Then there is m < n such that x o y = m
for {x, y} # c X', and hence I X' I = I {xm : x e X'} I < a . The theorem follows .

THEOREM 5 . Let a be a non-zero ordinal, and put d« = 2 1«1 . Then there
is a (d«, N«)-system (AY : y c- N) <K. without wk 0(3)-subsystem . In particular, we
have (d«, NJ ++wk 0(3) . If (i) 2 101 _< %fi « for /3 < a, (ii) %fi« = I a I, then we can
stipulate that, in addition,

I AN I = K« .

REMARK. The condition (i) is a weak version of the generalized continuum
hypothesis, and the condition (ü) is equivalent to co,, = a and is known to hold
for some a .

PROOF . Let the letter A denote elements of 2, and the letters /I, y, 6 elements
of a . Let I X(A, • • • , A,,) I = %fi 0+ , for all /I, A o , • • •

	

and

MAO, . . . , Ad : a E a ; ílo, . . . , 2 0 E 2)0 .

Put N = {(ílo, . . . , ~ J : A 0, . . . , ~« E 2} and A( ., o , . . . , «) = U (/l < a) X (20, . . . , A0)
for (),o, . . . , ~j c N . Then I N I = 21«1 ; I A (Ao, . . . «) I =

	

(~ < a)N0+ 1 = N,, .
Now suppose that Wo,

	

A«), (Aó, •' ' , 2«), Vó,

	

-- N. Put p = A o A , .
Then I A(A) n A(2') I = (y < p)`~Y+, < NP < N« . Put a _ 2 o

	

r

	

0 A,, .

Change the notation, if necessary, so that p < u < i . Then

p < i ; I A(,.) n A(~') I C 11P < % fi P+1 s N2 = E (y < T)XY+1 = I A(A') n A(Z')

Hence the (2 1« l, N«)-system (A(,) : E N),~,, has no wk A(3)-subsystem. Now sup-
pose that (i) and (ü) hold . Then

I U (A E N) A(~) I = I U (/3 < a ; ~o, . . . 20 E 2) X (~o, . . . R0 )

= E (/i < 0)210+11N0+, = N« ; I N I = 2 1«1 = 2~ta .

Hence, on changing the notation slightly, we obtain a (2 x", N«)-system (A.U : y c M)
without wk 0(3)-subsystem, and now I A11 I = N,, .

THEOREM 6. Let a = taw . Then (i) assuming GCH, there is an (a+,%fi o )-
system (Az : EL) <K. with I AL I < a ; (ü) no (a +, X,)-system (B j : AEL), x with
I BL I <_ a has a wk 0(a+)-subsystem ; (iii) if GCH holds then

(~~+1, 0)++wk A(N.+1)
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REMARKS . The result (i) is due to A . Tarski. For the convenience of the
reader we give a proof. In Section 7, Case 1 b2a1, we prove i , N O) +-* wkA( w),
a relation which is stronger than (iii) .

PROOF OF (i) . Let L be the set of all sequences ;. _ (lo , --- , lw) such that l y c- co y
for y < o) . Put A. , _ {(l o , --- , lµ ) : p < w} for ~ E L. Then (Az : 1~ E L) E Q(a+, N'o) ;

ALI = I {(lo, . . . , l„) : p < co ; l y E coy for y < µ} I

	

I (µ < w) fj (y < u)sN, =a .

If {A, ~'} # c L then there is y o = 1, o ~', and we have I Aa , n Aa, . I = yo + 1 <'No .

PROOF OF (ü) . Let the (a +, N (,)-system (B ). : .l c- L),,o satisfy I BL I _S a, Let
(B, : E L') E wk A for some L' E [L]°l . Choose {~', Z"}, c L' . Then I B., n Bz „ I

= p < N, . Choose D. E [Bj p + 1 for ~ c-L . Thenl {D, : E L'} I _< I BL I < IL' I and
therefore there is {p,Q} # c L' such that Dp = D, . Then

p=IBpnB,I > IDpI =P+1

which is the required contradiction .

6. Some Lemmas

It is convenient to use the function i/r(a) = {x : x 5 a} I , where a ranges
over cardinals . Thus, i (h a) _ No + I a I .

Throughout the rest of this paper we use the following notation for two
fixed cardinals

a=Nx ; b=Nf .

Furthermore, GCH is assumed without reference being made to this fact .

LEMMA 3 . Let a > cf(a) . Then (a, b) +-> wk A(a) .

PROOF. If n = c)(cf(a)) then there are cardinals a y with

ao, ---, án < a = ao + .-- + !n .

Choose sets B y with I B Y I = b (y < n) and (Bo , --- , B„) o , and put D, ;, = By for
y < n and A E a y . Then (D YE : y < n ; ~ E a y) E Q(a, b) . Let DY c ay (y < n) ;

(D y , : y < n ; ~ E DY) E wk A(c) .

CASE 1 . There is yo < n such that I Dyo I >_ 2 . Choose {o-, i} # c D YO . Then
Dyo , n Dyo= I = b > 0 . Hence DY = 0 for y c- n - {yo } , and so

c = I (y < n) I Dy I = I Dyo I _<_ a y , < a .

CASE 2 . I DY I < 2 for y < n . Then Y- (y < n) I Dy I _< I n I = cf(a) < a .

LEMMA 4. Let b < cf(c) . Then (c+, b) -+ st A(c+) .
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PROOF . In [2], p . 471, the function s(x, y) was defined for all cardinals x, y
such that x >_ 2 ; y >_ 3 ; x + y >_ N o , by putting

We have

s(b + , c+) = E (y c b+)cI''l _<_ I (y e b+ )c = b + c = c 5 s(b+, c+) .

Here, the first inequality follows from I y I <_ b < cf(c), and the second inequality
from b > 0 . By [2], Theorem IV,

S(x, Y) = Sup{ I (Y E x)Yo . . . Y' : Yo,	Y.w < YÍ

and therefore
.fe(b +, c+ ) = s+(b +, c+ )

(s+(b + , c+),

	

b) -> st A(c +) ; (c+, S b)

	

st A(c+) ;

(c+, b) -> st A(c+) .

LEMMA. 5 . Let a = a - = cf(a) > b . Then (a, b) -> st A(a) .

PROOF. s(b+ , a) < I (Y E b+)a wl < I (y e b+)a

	

b + a = a ;

s(b+, a) >_ sup {ao : a o < a} = a .

Hence s(b + , a) = a . We now prove fo(b + , a) = s(b+, a) . We want to apply [2]
Theorem IV (a) (iii) . To do this we must prove

b+ < cf(a) 5 a - = a ;
(ü) if sup {ap: a o < a} = d then d = cf(d) > al for al < a .

Now, (i) is true. Also,

sup {aó : a o < a} < sup {a~ b+ : ao < a} < a

< sup {ao : ao < al ; sup {ao : ao < a} = a = cf(a) .

Finally, let al < a . Then ai <_ ai b+ < a . This proves (ü), and we have, by [2],
fo(b + , a) = s(b+ , a) = a ; (a, < b+)

	

st A(a) ; (a, b) -> st A(a) .

LEMMA. 6. Let a = cf(a) ; f(µ, y) E 2 for µ < y E a+ . Then there is an (a+, a) .-
system (F,, : y c a+) such that, for it < y E a+,

F,, r) F .1 < a

= a

if f(µ, Y) = 0

if f(µ, y) = 1 .

PROOF. 1 . We begin by showing that, given any (a, a)-system (Ay : y e N) <Q ,
there is a set T (called a (< a)-transversal of the system) such that
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TE[AN]° ; 1 <_ ITn A,I < a (ycN) .

We may assume N = a_ . Then there are elements x y , for y E a, such that
x,, EAy - (A y U {x o , • • • , z y }) (y e a) . We may put T = {x y : y E a} # . For, let p E a .
If ~ E T n A,,, then there is y c a such that ~ = x,, c A, - Ay . Also, ~ E A, . Hence
ply ; p? y, so that l< I T n A„ I <_ I{x o , . • , •, x,,} I= 1/1-+ 11 < a .

2. Choose a system (S,, : a e a+ : P E_a) o c- 0 (a+, a ) . We now choose sets B,,,
for p e a+ , by the following procedure . Let po E a+, and suppose that Bo , • , ~No
have already been defined in such a way that

(*)

We show that

(**)

Let p < [t o . Then

B„ (--

By induction over

B,, is a (< a)-transversal of the family
((S «p : a < p ; #e a), Bo, . . .,~µ)<« for p < p o .

((S«p : a <_ po ; PEa), Bo, . . . É,,,)<a •

U (a <_ p; P E a) S«p U Bµ = SP+l,a U B,, say .

p, we deduce that B µ c S„+l,a (p < po) .
(i) Let a <_ po ; f3 c a_ ; y < po . If a <_ y, then I S«p n B,, I < a by (*) with

p= y . If a> y, then I S«a n B,, I <- I S«a n 5,, + ,, Q I = 0 since a n y+ 1 .

(ü) Let p < a < ,ao . Then I B u n BQ I < a by (*) with p = u . This proves (**) .
Now let B,, o be a (< a)-transversal of the family (**) . Put S« = U (f3 E a)S«Q
(a c a+) ;

A«„ = S« r) B, (a <_ it ea +) .

Then it follows, by induction on It, that

B µ c U ( a < p ; Q E a) S«Q = U (a p)S«~

Bµ = U (a < p)S« n B.. = U (a. < p)A «,, (p e a+) . Since I S«p n B„ I >_ 1 (a _< p
e a+ ; flea), we have I A«,, I = a (a < p E a_+) . Put Fy = Sy U U (p < y ; f (p, y)
= 1)A„7 (y c a+) . Then Sy c Fy c Sy+i (y c- a + ) ;

(Fy : y e a+) E 52(a + , a) .

Now let p < y c a+ . If f (p, y) = 1, then A,, y c FY ; A„ y c S„ c F,, ; I F,, nFy
>_ I A„y I = a . Now suppose f (p, y) = 0 . Then F„ n Fy = (S„ U U (a < p ; f(a,p)
= 1)A« „) n (Sy U U (f3 < y ; f'(f3, y) = 1)AQy) . We note that S„ n Sy = 0 ; if
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f(fi, y) = 1 then a it and hence S,, n A.,, c S. n SQ = 0 . If a < µ , then
A,,,, n SY c S11 n Sy = 0 ; if a f3, then A,,, nA.y c S,, nSf = 0 . All this shows
that F„ n Fy c U (a < ,u)AaE, n A,, y c B,, n By ; I F,, n Fy

I
_< I B,, n B7 1 < a . This

proves Lemma 6 .

LEMMA 7 . Let a = cf(a) . Then (a+, a) ++ wk A(a+) .

PROOF. By [3], a++>(a+)Z . Hence there is a function f: [a+] 2 ++22 such that,
whenever M = a+ and f is constant on [M]2 , then I M I < a+ . By Lemma 6, there
are sets Fy such that I Fy I = a for yea_ + and, for µ < y e a+, I Fµ n F,, I < a if
f (µ, y) = 0 ; I Fµ nFy I = a iff (µ, y) = 1 . Then the (a+, a)-system (F y : y e a_+) has
no wk A(a +)-subsystem .

LEMMA 8 . Let a -~ (c),2u(h) . Then (a, b) -+ wk A (c) .

PROOF. Let (AY : y e N) e fl(a, b) . Then

[N]2 = U (bo <= b){{µ, y} # c N : I A„ n Ay
I = b o } .

By Hypothesis there are M and b o such that M e [N]` ; bo <_ b ; I A µ n Ay I = b o
for {µ, y},, c M . Then

(Ay : y e M),, o E wk A(c) .

LEMMA 9. Let a > a - . Then (a', a) -> wk A(a) .

PROOF . + (a) _ + (a -) _< a - < a . Hence, clearly, a -> (a), (a) and therefore, by
the "stepping-up lemma" of [3], a+ --+ (a)2 toy . Now Lemma 8 yields (a+, a) ->
wk A(a) .

LEMMA 10 . Let (a, b)++ wk A(c) . Then (a', b') +a wk A(c') if a >_ a' ; b :!-< b' ;
c<c'.

REMARK. This lemma will be applied without reference .

PROOF. There is an (a, b)-system (AY : y e N) without wk A(c)-subsystem .
Choose sets B y such that Ay c By and I By I = b' for y e N, and ((B y - Ay)yC N,
AN)o . Let N' e [N]" .Then the (a', b')-system (B, : y e N') has no wk A(c')-subsystem .

LEMMA 11 . (&), b) ++ wk A(3) .

PROOF. Put N = co u { (o o , • • • ,60 ;

Ay = y V {~ : co fy <_ ~ < u)p(y + 1)} (y e N) .
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Then the (t (b), b)-system (A, : y e N) has no wk 0(3)-subsystem . For if
{µ, y,,Z}, c N then

I=IyI<IyI=IAY nAz I .

LEMMA 12. Let b = b' . Then (b +, b) -~4wkA(b) .

PROOF. Put N = {y = (yo, ' • • , Y. P) : To, • " , ~.P E 21 ;

A,, _ {(yo, . . . , y,) : ~ E b} (y c N) .

Then (A Y : y e N) E n(b+, b) . Assume that there is M E [N]b such that (A Y : y e M)p
for some p . Let {µ,y}, c M. Then p= I A,, n A Y I= I ft o y I < b ; µ o y E p+ . Put
a = w(p+) . Then I {(To, . . . , Y6 ) : (To, . . . , %.) E M for some Ta, . . . %flj I < 21'1
= p++ < b = IM I , and there is {µ, y}, c M such that (,u,, '' .,A,) _ (To, . . . ,M.
On the other hand, if ~ = µo y then íl < a ; y

	

y A , which is a contradiction .

LEMMA 13 . Let b = > (b) . Then (b+, b) -+-> wk A(3) .

PROOF. CASE 1 . /1 = 0 . The conclusion follows from the case a = 2; n = No
of Theorem 4 .

CASE 2 . (i > 0 . For < P and y0 ,

	

e 2, choose a set X(y 0 , • • •

	

with
X(yo, . . . , Yz) I = Via+ 1, such that (X (To, . . . , Yz) : A < P ; To, "' , Ya E 2) 0 . Put AY

U (~ < /l) X (yo, . . . , YA) for y = (y,, . . ., Yp) ; yo, . . . , yR E 2 . Then I A, I =
Y_(7 < a)'Xx+1 = Ng = b . We have I {To, . . .,Ya) yo, . . ., y# E2}I = 21fl1=

Ifj
+

= b+ . Let (µ, y, p) , and (AP , AY , AP) E wk A(3) . Put µ o y = i .
We note that {~ : (µo,

	

PA) _ (To,'' • , M } = z + 1 . Hence I A µ n A, I
= I U (~ < z + 1)X(yo, . . . = E(~ « + 1)N +1 = N,+, = 1`fi NoY+1 . There-
fore c = µ o y = µ o p = y o p, and (p, 7 y t , p) * which is impossible . This proves
Lemma 13 .

LEMMA 14 . Let cf(d) _ No . Then (d+, N0 ) +-> wk 0(d) .

PROOF . There are cardinals d,, such that do , • • • , du, < d = do +

	

+ d. . Put

X = {x = (x o , • • • _Q : x., c- d,, (A < o))};

Ax. _ {(x0 ,

	

A < co} (x c- X) . Then (Ax : x c X) E f2(d+, N0) . Let L c X and
(A., : x e L) E wk A . Then there is a < co such that I Ax n A,, I = a + 1 ; x o y = a
for {x, y} # c L . Then I L I = I {x, : x E L} I < dQ < d which proves Lemma 14 .

LEMMA 15. Let cf(d) _ N, . Then (d+, N . )+-* wk 0(d) .

PROOF . There are cardinals dx such that d0 , • • • , dw8 < d = do + • • • + d(,, . Let
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X = {x = (x o , • • • ,,.) : xy E _d,, (y < a))}. For x E X and 2 < co,, let I B(xo ,

-,,Q I = Nz+i , and (B(xo ,

	

< co, ; x r c d, (y < ~))o . Put

Ax = U (~ < (o)B(x o ,	x,z)

for x E X . Then I X I = do . . . dwh = d+ ; I Ax I = E (A< (o h)Nk t 1 =

	

so that
(Ax : x c- X) E Q(d+, áwó ) . Let L c X and (Ax : x e L) E wk A . Then there is a < co ó
such that x o y = a for {x, y} # c L . Hence I L I = I Ix, : u c L} 15 dQ < d, which
completes the proof.

LEMMA 16 . Let 0 < d = d - < N.. . Then cf(d) < "fin .

PROOF . We have d = X, for some 6 < o)n . Since d = d - we conclude that
d = Y- (7r < 6)N. ; cf(d) <

I
a

I <
N'n .

For the last two lemmas we need the following definitions : Consider a sys-
tem

	

_ (AY : y E N) . We call

	

an (a, b, < d)-system if F E Q (a, b) and (A y :
y c N)<d . An (a, b, < d)-system is defined similarly. For every set A and every
cardinal d we put

3~7(A,d) _ {TEN :IAr)A,,I =d} .

LEMMA 17 . Let " be an (a,b, < d)-system ; a = cf(a) > bd ; JAI = b ;
I . (A, d) I = a . Then 9 has a wkA(a)-subsystem .

PROOF. We have I [A] d I = bd < a = cf(a) . Hence there is an (a, b)-subsystem

. ' _ (AY : y E N') of and a set X such that I X I = d and A n AY = X (y e N') .
Then, for {,a, y}, c N', we have d = IX I <_ IAF, r) Ay I <- d, and . ' is a wkA(a)-
system .

LEMMA 18. Let

	

_ (AY : y e N) be an (a, b, 5 d)-system, such that

I (Ay, d) I < a

for every y e N . Suppose that a = cf(a) . Then

	

has an (a, b, < d)-subsystem .

PROOF . Assume N = _a . We can construct inductively ordinals yp for p c a_
such that, for each p c- a, y. E (N - U (a < p)9 (A y _, d)) - {yo, , fp} . Then
(Ayp : p e a) is an (a, b, < d)-system .

7. Discussion of the wk A-relation

We consider two fixed infinite cardinals a, b, where

a=Nfi ; b=No,
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and we shall determine all cardinals c such that the wkA-relation

(7) (a, b) -> wk A(c)

is true. There is a least cardinal 0(a, b) in 3 S 0(a, b) _< a+ such that (7) holds
if and only if c < 0(a, b) . We shall determine íá(a, b) . If 0(a, b) = 3 then (7)
only holds completely trivially, i .e . for c < 2, whereas 0(a, b) = a+ means that
(7) holds for all values of c which are at all admissible, which are the cardinals
c<_a .

Our results show that, for all a, b .

0(a, b) E {3, a - , a, a+) .

In our discussion we shall write 0 instead of 0(a, b) . We remind the reader that
throughout this section we assume GCH .

CASE 1 . a > b+ .

CASE la . a > a - >a-- .We prove that 0 = a+ . We can write a = a o++,
and then we have aó + = a >_ b++ ; a o >_ b . By [2], Theorem 1 (ü), with a, b
in [2] replaced by ao , a o respectively, we have (ao +, ao) -+ st A(aó +) . Hence
(a, b)

	

st A(a) .

CASE 1b. a > a- =a -- .

CASE ló1 . b < cf(a - ) . Then = a+ . Indeed, by Lemma 4, (a, b) stA(a) .

CASE 1b2 . b >_ cf(a - ) . Let a o < a - . Put a l = max {ao , b} . Then (ai +,a,)
st A(ai + ) by [2] . Hence (a, b) -+ stA(a o ) (a, < a -) .

CASE lb2a, cf(a -) = cf-(a -) .

CASE 1 ó2a1 . cf(a - ) _ No . Then

	

= a- . For, by Lemma 14, (a, N,)
+> wk A(a - ) and therefore (a, b) ++ wk A(a -) .

CASE 1ó2a2. cf(a - ) > N . Then (P = a- . For, we have, by Lemma 15,
(a,cf(a )) ++ wk A.(a - ) .

To see this, put cf(a - ) = hh . Then b is a positive limit ordinal ; N, = cf(N,) .
If b < wd then h;b = 1(S o < S)N ,, ; cf(íN,) <_ 16 I < N,, which is false . Hence
6 = co,, . By Lemma 15, with d = a - , we have (a, llw) ++ wkA(a -), i .e . (a, ef(a -))
++ wk A(a -) . This implies (a, b) -i-+ wk A(a-) .

CASE Ib2b. cf(a - ) > cf`(a -) . Then cf(a - ) has the form N,,, .

CASE 1b2ó1 . Nwz+1 < b . Then 0 = a - . For, by Lemma 15,
+> wk A(a -) , which implies (a, b) -N wk A(a -) .



[161

	

Intersection theorems for systems of sets III

	

37

CASE 1b2ó2 . > b . We show that O= a+ . We use the notation (A, d)
introduced before the statement of Lemma 17 . We assume that the (a, b)-system
.' has no wk A(a)-subsystem, and we have to deduce a contradiction . Since is
an (a, b, < b)-system, it follows that there is a least cardinal d such that ' has
an (a, b, -< d)-subsystem . We have 0 < d S b . We may assume that'F itself is
an (a, b, < d)-system. Then F has no (a, b, <_ e)-subsystem, for every e < d . Let

(AY : y e N)< d . Let y o c-N and 1,(A,,,, d) I = a . Since bd 5 bb = b+ <a,
it follows from Lemma 17 that F has a wk A(a)-subsystem, which is a contra-
diction. Hence I (A Y , d) I < a for y e N . Then, by Lemma 18, has an (a, b, < d)-
subsystem . We may assume that _ (AY : y c N)'d is itself an (a, b, < d)-system .
If d = e+, then F is an (a, b, <_ e)-system, which contradicts the minimality of d.
Hence 0 < d = d - <_ b <

	

+, and, by Lemma 16, cf(d) < Nz+i .
We shall now construct a modified d-sequence . There is a maximal set No c N

such that (A, : y e No) o . Then 0 < I No I < a . Let 0 < a c a . Suppose that, for
each p < u, we have already defined a set N,, E [N]<°, where NP 0 0, such
that, putting SP=AN,, we have JA Y nSP I < d for y E NP ; Aµ n Ayc S„ for {,u,y} # c NP.
Suppose, furthermore, that, for each p < 6, the set N,, is maximal such that the
above stated conditions hold, i .e . : if y c N - NP , then either A y c SP , or there
is µ c NP - { y} with A u n Ay * SP . We shall now define N,, and in such a way
that all these conditions hold for p = u . Put SQ = AN . Then I SQ I < I u I a - b6
= a - . Well-order S Q by a relation

	

, so that tp (S Q , --~) <_ co(a - ) . Put N*
{y e N : I Ay n SQ I >_ d} . We now prove I N* I < a . Assume I N* I = a . For

each y E N*, denote by g(y) the initial section of (A y n S,, --~) of type, 0-)(d) . If
{µ, y} # c N* then, by (AY : y c N)Id , we have I AP n A Y < d, and hence got)

g(y) . There is an initial section T of (SQ , -~) such that I T I < a - and I{y c N*
g(y) c T} I = a . For: if I S Q I < a- then we put T = S, . Now let I SQ I = a - .
We have cf(d) < s~fiz+i = cf(a -) . For each y e N*, the set (g(y),--~) has a cofinal
subset of cardinal ef(d) . This subset is not cofinal in (SQ ,--~) . Hence g(y) is not
cofinal in (S Q , and there is xY E S6 such that g(y) c {x E S Q : x --~x y } . In view
of a = cf(a), there is x* e SQ such that I {y c N* : x y = x*} I = a . Then we may
put T {x c S Q : x -fix*} . This completes the definition of T . Now we have
I [T]d I <_ 2 1 " 1 5 a - . Hence there is X c T such that I {y E N* : g(y) = X } I = a .
But then (AY : y e N* ; g(y) = X), d , which contradicts the relation (A, : y e N)Id .

We have thus proved J N* I < a . Let y e N - N* . If AY c SQ then we have
b = I A Y I = I Ay n SQ I < d 5 b which is false. Hence y c N -N* implies Ay (t SQ .
Let NQ be maximal such that NQ c N - N* and (Ay - SQ : y c N,), . Then NQ 0
It follows that if y c- NQ then Ay (# SQ , and if {u, y}, c NQ then Aµ n AY c S a .
Also, if y EN-NQ and JAYn SP I < d, then there is ,u c .N, with AP n A Y c# S. . In order
to complete the inductive definition of No, N, • • • we must now show that I N Q I < a .

Assume that I NQ I = a . Corresponding to every y ENQ , there is e Y < d such that
I Ay n SQ I = . Then there is e < d such that I {y c N,' : ey = e} I = a . For we
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have I {e y : y c- N o } I <_ d <_ b < a - . Put N' _ {y c NQ : I A Yn SQ I = e} , so that
I N' I = a . If {µ,y},, c-- N', then I A u, n A, j = I AP n A y n S6 I < I A u n S, j = e .
Hence (A ., : y c- N'),,, E Q(a, b) which contradicts the minimum property of d .
This proves IN Q I < a, and the inductive definition of NP for p c- a is accomplished .
We have b+ < a , and therefore we can choose y c- N w(b+ ) . For each p c- b+ there
is µP ENP such that APp nA Y * SP = AN, . We can choose zP E A µ _ n A Y - AN, .
If r < p then z T E A,,_ nA Y cAu, c A Np . Hence z P z z for i < p c b+ ;

I

Ay I >_ I {z p : pGb+} # I = b+ > b = IAYI,

which is the required contradiction .

CASE lc. a = a- .

CASE lcl . a = cf(a) . Then 0 = a+ . For, by Lemma 5, (a,b) -> st A(a) .

CASE 1c2. a > cf(a) . Then 0 = a . For, by Lemma 3, (a, b) 4-> wk A(a) . Let
ao < a and put a l = max{ao , b} . Then, by [2], (a, +, a,) --> st A(ai +) . Hence
(a, b) -> st A(ao) (a o < a) .

CASE 2. a = b+ .

CASE 2a . b = I Q I . Then

	

= 3. For, by Theorem 5, (2 1Q1 , b) +> wk A(3) .
Hence (a, b) -i-+ wk A(3) .

CASE 2b . b > I fl I .
CASE 2b1 . b > b - . Then = a . For, by Lemma 7, (a, b) ++ wk A(a) . Also,

by Lemma 9, (a, b) wk A(b) .

CASE 2b2. b = b-. Then 0 = a-. For, by Lemma 12, (a, b)++wk A(b) . Now,
let b o < b . Then, by [3], b -+ (bo)2 (b) , and Lemma 8 gives (b, b) -). wk A(b o ) .
Hence (a, b) -+ wk A(b o) (bo < b) .

CASE 3 . a

	

b .

CASE 3a . b = I (3 I . Then = 3 . For, by Lemma 11, (a, b) -+ wk A(3) .

CASE 3b. b >

CASE 3bl . b > b- . If b - = cf(b - ) then, by Lemma 7, (b,b-)++wkA(b),
and if b - > cf(b -) then, by Lemma 12, (b, b-)++wkA(b-) . Thus, in either case,
(a, b) -+ wk A(b) .

CASE 3bla . b - > b -- . Then = a . For we have = Qo + 1 = Íh + 2 for
some /3 0 , 91 ; (b) _ o+Iall ; NP,+1 --> (Na,+0)1(b) and, by [3], NR,+z-> (Np,+i)4'(b),
Now Lemma 8 gives (a, b) --+ wk A(b- ) .

CASE 3blb . b- = b -- . Then, by Lemma 12, (b, b -) +> wk A(b -) and hence
(a, b) -+ wk A(b- ) .
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CASE 3óló1 . O(b -) = b - . Then 0 = 3 . For, by Lemma 13, (b, b -)-i-+
wk A(3) . Hence (a, b) -i-+ wk A(3) .

CASE 3óló2 . O(b -) < b - . Then

	

or, let bo < b- . Then b
(bo)2 (b ) and, by Lemma 8,

(a, b) -+ wk A(b o) (bo < b -)

CASE 3b2. b = b - . Then ¢ = a . For, by Lemma 12, (b+, b) ++ wk A(b), and
hence (a, b) ++ wk A(b) . Let bo < b . Then b -> (b ( )

kb) and, by Lemma 8,

(a, b) -> wk A(b o ) (bo < b) .

CASE 4 . a < b .

CASE 4a. b = I /3I . Then = 3 . For, by Lemma 11, (t (b), b) wk A(3) and
hence (a, b) +> wk A(3) .

CASE 4b. b > I /3 I .

CASE 4ól. a <_ 2 101 , Then = 3 . For, by Theorem 5, (2 101 , b) ++ wk A(3) and
therefore (a, b) ++ wk A(3) .

CASE 4b2 . a > 2"'+ 101 . Then I /~ I < 2101 < a .

CASE 4ó2a . a = a-. Then 0 = a . For, by Lemma 12, (a+, a) -+ wk A(a),
and therefore (a, b) +> wk A(a) . Let ao < a . Then a -> (ao)2o+ I 01, and Lemma 8
gives (a, b) -> wk A(ao ) (ao < a) .

CASE 4b2ó. a > a - .

CASE 4b2ó1 . a- > a -- . Then

	

= a . For : I /3I < 2101 < a ; a- ++ (a - )H o +101
a -> (a -) 2P (b ) ; (a,b) -> wkA(a -) . By Lemma 7, (a, a -) ++ wk A(a) . Since a - < a
< b, we deduce (a, b) -i-+ wk A(a ) .

CASE 4b2ó2 . a- = a -- . Then

	

= a - . For, Lemma 12 yields (a, a ') ++
wk A(a -), and hence (a, b) ++ wk A(a -) . Let ao <a - . Then a- -+(a0)Ko+101 ;
a (ao)Y,(b) ; (a, b) -> wk A(ao) (ao < a -) .

CASE 4b3. 2101 < a _< 2N'+101. Then 0 = 3 . For, we have /3 < w and a <_ N 1 .
By Lemma 13, (X,, N,) ++ wk A(3) . Hence (a, b) ++ wk A(3) .

This concludes the dicsussion of the relation (a, b) -> wk A(c) for infinite car-
dinals a, b .
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