ON ABUNDANT-LIKE NUMBERS

By
PAUL ERDÖS

Problem 188, [3], stated: Apart from finitely many primes p show that if n_{p} is the smallest abundant number for which p is the smallest prime divisor of n_{p}, then n_{p} is not squarefree.

Let $2=p_{1}<p_{2}<\cdots$ be the sequence of consecutive primes. Denote by $n_{k}^{(c)}$ the smallest integer for which p_{k} is the smallest prime divisor of $n_{k}^{(c)}$ and $\sigma\left(n_{k}^{(c)}\right) \geq c n_{k}^{(0)}$ where $\sigma(n)$ denotes the sum of divisors of n. Van Lint's proof, [3], gives without any essential change that there are only a finite number of squarefree integers which are $n_{k}^{(c)}$,s for some $c \geq 2$. In fact perhaps 6 is the only such integer. This could no doubt be decided without too much difficulty with a little computation.

Note that $n_{2}^{(2)}=945=3^{3} \cdot 5 \cdot 7$. I will prove that $n_{k}^{(2)}$ is cubefree for all $k>k_{0}$, the exceptional cases could easily be enumerated. The cases $1<c<2$ causes unexpected difficulties which I have not been able to clear up completely. I will use the methods developed in the paper of Ramunujan on highly composite numbers [1]. A well known result on primes states that for every s, [2],

$$
\begin{equation*}
\sum_{p<x} \frac{1}{p}=\log \log x+B+0\left(\frac{1}{(\log x)^{s}}\right) \tag{1}
\end{equation*}
$$

(1) implies

$$
\begin{equation*}
\sum_{x<p<x^{1+a}} \frac{1}{p}=\log (1+a)+0\left(\frac{1}{(\log x)^{s}}\right) . \tag{2}
\end{equation*}
$$

It would be interesting to decide whether

$$
\begin{equation*}
\sum_{x<\mathfrak{p}<x^{1+a}} \frac{1}{p}-\log (1+a) \tag{3}
\end{equation*}
$$

changes sign infinitely often. I do not know if this question has been investigated.
Theorem 1. $n_{k}^{(2)}$ is cubefree for all $k>k_{0}$.
Clearly (see [1])

$$
\begin{equation*}
k_{k}^{(2)}=\prod_{i=0}^{i} p_{k+i}^{\alpha_{i}}, \quad \alpha_{0} \geq \alpha_{1} \geq \cdots \geq \alpha_{i} . \tag{4}
\end{equation*}
$$

It is easy to see that

$$
\exp \left(\sum_{i=1}^{l} \frac{1}{p_{k+i}-1}\right)>\frac{\sigma\left(n_{k}^{(c)}\right)}{n_{k}^{(c)}} \geq \exp \left(\sum_{i=1}^{\iota} \frac{1}{p_{k+i}}-\sum_{i=1}^{l} \frac{1}{p_{k+i}^{2}}\right)
$$

This, together with the definition of $n_{k}^{(c)}$, and a simple computation imply
and hence by (2) we have

$$
\sum_{i=1}^{i} \frac{1}{p_{k+i}}=\log c+0\left(\frac{1}{k}\right)
$$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{p_{k+l}}{p_{k}^{c}}=1 \tag{5}
\end{equation*}
$$

Let $c=2$. We show that if $\varepsilon>0$ is small enough then for every u such that $p_{k+u}<$ $(1+\varepsilon) p_{k}$. We have

$$
\begin{equation*}
\alpha_{k+u} \geq 2 \tag{6}
\end{equation*}
$$

If (6) would be false put

$$
\begin{equation*}
N=n_{k}^{(2)} p_{k+u} p_{k+u+1} p_{k+u+2} p_{k+l}^{-1} p_{k+l-1}^{-1}<n_{k}^{(2)} \tag{7}
\end{equation*}
$$

by (5) and $p_{k+u+2}<2 p_{k}$. Further for $k>k_{0}, p_{k+u+2}<(1+2 \varepsilon) p_{k}$ by the prime number theorem. Thus for sufficiently small ε we have by a simple computation

$$
\begin{equation*}
\frac{\sigma(N)}{N}>\frac{\sigma\left(n_{k}^{(2)}\right)}{n_{k}^{(2)}} \tag{8}
\end{equation*}
$$

(7) and (8) contradict the definition of $n_{k}^{(2)}$ and thus (6) is proved.

Now we prove Theorem 1. Let p_{k+u} be the greatest prime not exceeding $(1+\varepsilon) p_{k}$. By the prime number theorem

$$
p_{\hat{k}+u}>\left(1+\frac{\varepsilon}{2}\right) p_{k}
$$

Assume $\alpha_{k} \geq 3$. Put $N_{1}=n_{k}^{(2)} p_{k+l+1} p_{k}^{-1} p_{k+u}^{-1}$. By (5), $N_{1}<n_{k}^{(2)}$ and by a simple computation $\sigma\left(N_{1}\right) / N_{1}>\sigma\left(n_{k}^{(2)}\right) / h_{k}^{(2)}$, which again contradicts the definition of $n_{k}^{(c)}$. This proves Theorem 1.

Theorem 2. $n_{k}^{(2)}=\prod_{i=0}^{u} p_{k+i}^{2} \prod_{i=u+1}^{l} p_{k+i}$ where

$$
\begin{equation*}
\lim _{k=\infty} \frac{p_{k+l}}{p_{k}^{2}}=1, \quad \lim _{k=\infty} \frac{p_{k+u}}{p_{k}}=2^{1 / 2} \tag{9}
\end{equation*}
$$

The first equation of (9) is (5), the proof of the second is similar to the proof of Theorem 1 and we leave it to the reader.

Henceforth we assume $1<c<2$. It seems likely that for every c there are infinitely many values of k for which $n_{k}^{(c)}$ is squarefree and also there are infinitely many values of k for which $n_{k}^{(c)}$ is not squarefree. I can not prove this. Denote by A the set of those values c for which $n_{k}^{(c)}$ is infinitely often not squarefree and B denotes the set of those c 's for which $n_{k}^{(c)}$ is infinitely often squarefree.

Theorem 3. A, B and $A \cap B$ are everywhere dense in (1,2).

We only give the proof for the set A, for the other two sets the proof is similar. Let $1 \leq u_{1}<v_{1} \leq 2$. It suffices to show that there is a c in A with $u_{1}<c<v_{1}$. Let k_{1} be sufficiently large and let l_{1} be the smallest integer for which

$$
\begin{equation*}
\prod_{i=0}^{l}\left(1+\frac{1}{p_{k_{1}+i}}\right)=\sigma\left(\prod_{i=0}^{l_{1}} p_{k_{1}+i}\right) / \prod_{i=0}^{l_{1}} p_{k_{1}+i}>u_{1} \tag{10}
\end{equation*}
$$

Put $x_{1}=\prod_{i=0}^{l_{1}} p_{k_{1}+i}$. We show that for every α satisfying

$$
\begin{equation*}
u_{1}<\frac{\sigma\left(x_{1}\right)}{x_{1}}<\alpha<\frac{\sigma\left(p_{k_{1}} x_{1}\right)}{p_{k_{1}} x_{1}}<v_{1} \tag{11}
\end{equation*}
$$

we have

$$
\begin{equation*}
n_{k 1}^{(\alpha)}=p_{k 1} x_{1} \tag{12}
\end{equation*}
$$

To prove (12) write

$$
n_{k_{1}}^{(\alpha)}=\prod_{i=1}^{j} p_{k_{1}+i}^{\alpha_{i}}, \quad \alpha_{0} \geq \alpha_{1} \geq \cdots \geq \alpha_{j} .
$$

We show $\alpha_{0}=2, \alpha_{1}=1, j=l_{1}$ which implies (12). Assume first $\alpha_{1} \geq 2$. For sufficiently large k_{1} we have from (5)

$$
T=n_{k_{1}}^{(\alpha)} p_{k_{1}+j+1} p_{k_{1}}^{-1} p_{k_{1}+1}^{-1}<n_{k_{1}}^{(\alpha)} \quad \text { and } \quad \frac{\sigma(T)}{T}>\frac{\sigma\left(n_{k_{1}}^{(\alpha)}\right)}{n_{k 1}^{(\alpha)}}
$$

which contradicts the definition of $n_{k}^{(\alpha)}$. Thus $\alpha_{1}=1, j \leq l_{1}$ follows from (5) and (11) and $\alpha_{0}<3$ follows like $\alpha_{1}=1$. Thus by (10) $j=l$ and (12) is proved. Thus for the interval (11) $n_{k}^{(\alpha)}$ is not squarefree. Now put

$$
u_{2}=\frac{\sigma\left(x_{1}\right)}{x_{1}}, \quad v_{2}=\frac{\sigma\left(p_{k_{1}} x_{1}\right)}{p_{k_{1}} x_{1}} .
$$

Let $p_{k_{2}}$ be sufficiently large and repeat the same argument for $\left(u_{2}, v_{2}\right)$ which we just need for $\left(u_{1}, v_{1}\right)$. We then obtain $x_{2}=\prod_{i=0}^{l_{2}} p_{k_{2}+i}$ so that for every α in $u_{2}<\sigma\left(x_{2}\right) / x_{2}<\alpha<\sigma\left(p_{k_{2}} x_{2}\right) / p_{k_{2}} x_{2}<v_{2} n_{k_{2}}^{(\alpha)}=p_{k_{2}} x_{2}$ and is thus not squarefree. This construction can be repeated indefinitely and let c be the unique common point of the intervals $\left(u_{i}, v_{i}\right), i=1,2, \ldots$. Clearly $n_{k_{1}}^{(c)}=p_{k_{2}} x_{i}$ is not squarefree for infinitely many integers k_{i} or c is in A which completes the proof of Theorem 3.

I can prove that B has measure 1 and that for a certain α every $1<c<1+\alpha$ is in B. I can not prove the same for A. I do not give these proofs since it seems very likely that every $c, 1<c<2$ is in $A \cap B$.

Let $r>2$ be an integer. It is not difficult to prove by the method used in the proof of Theorem 1 that $p_{k}^{r} \mid n_{k}^{(r)}$ for all $k>k_{0}(r)$, but for $k>k_{0}(r), p_{k}^{r+1} \mid n_{k}^{(r)}$ i.e. $n_{k}^{(r)}$ is divisible by an r th power but not an $(r+1)$ st power.

