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1. Introduction
Let dcx(x) be a non-negative measure on (- oo, oo) for which all moments

tt,n (do,) = J
xmda(x) (m = 0, 1,-)

exist and are all finite. We consider the orthonormal polynomials

(1 .1)
n

pn(da, x) = yn(doc) 11 IX - xkn(da)]
k=1

which satisfy yn(da) > 0 and f pn(da) pn(da) da(x) = 5,,,, where S„tn is the
Kroneeker symbol. The zeros Xkn(da) of pn(da, x) are real and simple .
We assume that they are ordered increasingly . If no misunderstanding
can arise, we write x k,,, for Xk.(da) (resp . Xkn(w), see below). Let us denote
by Nn(da, t) the number of integers k for which

x1n(da)-xnn(da) >~ t [xin(da ) - xnn(da)]
holds . The distribution function of the zeros is defined, when it exists, as

(1.2)

	

f3(t) = lim n-1Nn(da, t) (0 S t S 1) .
n-,oo

We are here concerned with the case when the distribution function
is given by

(1 .3)

	

flo(t) = 2-- arcsin(2t- 1) .

In this case the points 0k,, = are sin xkn are equidistributed in Weyl's
sense .

A non-negative measure da for which the array xkn (da) has the distribu-
tion function fl o(t) will be called an arc-sine measure . If du(x) = w(x) dx
is absolutely continuous, we apply, replacing dca by w, the notations
pn(W,x), yn (w), xkn(w) and call a non-negative w(x) an arc-sine weight
if da(x) = w(x) dx is an arc-sine measure. A fairly complete treatise of
are-sine weights with compact support is given in [9] by Ullman .

The restricted support of a weight w(x) is defined as the set {x : w(x) > 0} .
The support of w(x) can be characterized as the set of points e for which
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every interval containing 6 contains a subset with positive measure of
the restricted support of w . It was proved by Erdős and Turin ([3] )
that a w(x) having support [-1, 1] is arc-sine provided that its restricted
support has Lebesgue measure equal to 2 . This, as well as another
criterion for arc-sine weights, established by Geronimus ([7] ), is treated
also in [9] .

Arc-sine weights with non-compact support were introduced by Erdős
in [2] .

The case when the support of the measure da is contained in [-1, 1]
and the two points -1, 1 belong to this support is of particular interest .
We have then x1n(da) -* 1, xnn(da) - I and (1 .2) can be rewritten as

(1 .4)

	

limn-1

	

1 = 1 arc cos T (-1 < T < 1 } .
n,00

	

k: x7„(da)3T

	

7T

For the measures da, reap. weights w, whose support is contained in
[-1,1], we apply the term arc-sine on [-1,1] if the array {xkn(da)},
reap . {xkn(w)}, satisfies (1.4) .

Our results are as follows .

THEOREM 1 .1 . (a) The condition

(1 .5)

	

Jim
n-1V (Yn-1(da))[x1n(da)-xnn(da)] <, 4

n-co

implies that da is arc-sine .
(b) It follows from (1 .5) that

(1 .6) lim n-1V (Yn-1(da))[x1n(da) -xnn(da)] = 4 .
n1o_

See also Theorem 4.2 for a more general result .
We show that the arc-sine weights with infinite support studied by the

first of us in [2] satisfy (1 .6), but the weights w«(x) = exp{- I x 1"}, a > 0,
are not arc-sine . It is further proved by a counter-example that even
the stronger sufficient condition (1 .6) is not necessary in general . The case
is different if w(x) has compact support .

THEOREM 1.2 . A weight w, the support of which is contained in [-1,1],
is arc-sine on

	

I] if and only if

(1 .7)

	

limnV(yn(w)) <, 2 .
n~00

We note that by Ullman's Lemma 1 .2 in [9], the support of w is
precisely [-1,1] . We do not make use of this observation . Also,
Theorem 1 .2 was conjectured by Ullman in [9], part 7. He proved the
weaker statement that if the restricted support of w is a determining set
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(see Definition 1.1) then condition (1 .7) is sufficient ([9], Theorem 1 .6(b)),
The sufficiency part of Theorem 1 .2 can be generalized to measures da
which are not necessarily absolutely continuous (see Theorem 3 .1 below) .

DEFINITION 1.1 (Ullman, [9], Definition 1 .4) . We say that A [ -1, 1]
is a determining set if all weights w(x), the restricted support of which
contain A, are arc-sine on [- 1, 1] .

Let us denote by C(A) the capacity (that is, inner logarithmic capacity)
of the set A and by I A I its outer (linear) Lebesgue measure . Note that the
capacity of [-1,1] is 2 •
DEFINITION 1 .2. We say that A c [-1,1] has minimal capacity 2

if for every s > 0 there exists S(E) > 0 such that for every B having
Lebesgue measure less than E we have C(A \ B) > 2 - E .

TxEOREM 1 .3a . A measurable subset A of [-1,1] is a determining set if
and only if it has minimal capacity 2 •
Theorem 1.3a was stated as a conjecture by Erdős in several lectures held

in the last thirty years ; see [2] .

TFFOREM 1.3b . A measurable subset A of [- l, 1] is a determining set if
and only if it is a `good set' (in the sense of Erdős, [2] ) .

2. Sufficiency of condition (1.5)
We denote by Tn(X) = cos(n are cos x) the nth Chebyshev polynomial

of the first kind . The zeros of T,,(x) are tkn = cos[(2k - 1)/2n]7r .

LEMMA 2.1 . lire have for every da,

(2.1)

	

lim n-1V(yn_1(d(x))[xln(da)-xnn(da)] >, 4 .

Proof. Let

(2.2)

	

xkn = 2(x111+xnn) +2 Tkn(xln - xnn) ,

then I Tkn , 1 (k = 1, 2, . . ., n) .
By applying the Lagrange interpolation formula with nodes

we have

(2.3)

	

Tn-,[2(xln -xnn)-1(z - 2(xln + xnn))] _

	

lkn(z)Tn-1(Tkn)k=1
By [4], formula 111 (6 .3),

(2 .4)

	

lkn(z) = *Y7,
-1(d«),lkn Pn-1(da,xkn)

pn(da, z) .yn(da)

	

z- xkn

xkn ,
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The akn are the Christoffel numbers with respect to dot . Comparing

highest coefficients in (2.3) and applying (2 .4), we obtain

(2.5)
n

22n-3(x,n-xnn)-n+1 = Yn-1(da) E AknPn-1(d 0 , xkn)Tn-1(Tkn) •
k=1

Since 1 Tkn I -< 1 implies I Tn-,(Tkn) I < 1, we have by the quadrature
formula

(2 .6)

	

22n-3

	

2

[("'51n -`xnn)n-1Yn-1( a)

E Akn I pn-l(da, xkn) I}

2

k=1

n

	

n
EAkn Z 4npn-1 2(da, xkn)
k=1 k=1

= f da(x) f p.- 1 2 (da, x) da(x) = µo(da) < oo .

(2 .1) is a consequence of (2.6) .

Let Z = 2(xln+xnn)+2(xln-xnn)S . By (2 .3) and (2.4),

y

	

Ipn(	
1 Tn-1(S) I

	

(da)
) I Yn-1(da

nIxkn I pn-l(da, xkn) I mk x	y.(d-)

	

zxkn i

Let us observe that z - xkn = 2(xin-xnn)(b-Tkn), the last factor does not
exceed 2(xyn-xnn)-1[~(~)]-1, where A(~) denotes the euclidean distance
of ~ from the interval [-1, 1]. From the second half of (2 .6), we obtain

(2.7)

	

1 T11-1M I < Ipn(da, z)I
Yn-1(da)	 2	[~ko(da)] #

Yn(da)

	

xln-xnn 0(O)

In (2.7) we take logarithms on both sides and divide by n. After
rearranging terms, we get

1

	

Y.(da) _ 1 n

	

1
n log

pn(da, z) I n =11og I z- xkn 1

2

	

1 n

	

1= log	+- E log
xln -xnn nk=1

	

-Tkn

1log

	

2	 + 1109Yn-1(da) + 1log 2"-2
n x1n`xnn n

	

n 1 Tn-1(O I

- n-2. log 2+ 1 log [l-zo(da)]I
n

	

n

	

0(0}
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that is,

(2.8)

	

k.1l0gly Tknl \ (1- n)logf1(xln - xnax) n-1y(Yn-1(da))}

1

	

2n-2

	

1

	

[fto(da)] I+n log

ITn-,(C)I + n lOg ~2 AM ~ .
LEm1IA 2 .2 . We have, for every da and every C 0

1(2.9) lim n-1 1110g I Tknl I \ J 11091 X
I ~(ldxx2)

+log~lim[11 n-1V(Yn.-1(da))(xln -xnn)]'`nloo

Proof.
7T

	

2n-2

	

n- 1

	

1
n-II Tn-,(~)I

	

n-I
11og I~ -

t1n-11
is a Riemann sum of the integral

f
~n

	

1

	

1

	

1

	

dx
1o1og1~-cosaldB=

f 11og 1C
-XjV(1-x 2 )

Applying this fact, we obtain (2.9) from (2.8) .

Proof of Theorem 1 .1 . (a) Let °P(x) = c n (x-~j ) be an arbitrary
polynomial whose zeros are situated outside [-1, 1] . We insert _ C, in
(2 .9) and add up

n

	

f-1(2 .10)

	

n
1M

n 11og I ~(Tkn) I 7T

	

log
I ~(x) I ~(1 xx2)

.

Now let f (x) be a bounded upper semicontinuous function in
Then there exists a sequence of polynomials {-3fi„}
X E [-1, 1],
(2.11)

	

+1(x) > 9,(X) > . . . > 91(X) > c > 0

and

(2 .12)

	

hm log~ (x) = f(x) .

By (2 .10), we have
_ n n
11m - E f (7•kn) 5 hm - 1,109
n ~co n k=1

	

n~ o n k=1 w(Tkn)
1 /r 1

	

1

	

dx
7- J_11ogw(x) V(1-X2)

Y =

which satisfy, for

1, 2,
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Let v oo, then it follows by dominated convergence from (2.11) and
(2.12) that

(2.13)

	

hm1 E f(Tkn) 1
J 1

f(x)
dx

....nk=1

	

1

	

ái(1-x2 }

Let T E [-1, 1]. Inserting in (2.17) for f the characteristic function of
the interval [T, 1] (reap . [-1, T] ) we find that the sums

EM = 1 E 1 and EM = 1 E
1

n k : z- k„ >-T

	

n k: rk„<-T

satisfy

(2.14} lim ~nl' 1 1 1 dx

	

and lim -in ;< 1
T dx

2n-~o

	

7% fT V( 1 - X2 )

	

n-~oo

	

Tr f_1
V(1 - x )

Clearly En l) + ~-+n2) 1, thus

(2.15) lim ~nl' , 1- lim Yn2)

n- oo

	

n-oo

1-~J i V (ldxx2) -

~ fT
y/(ldxx2)

=
7T
-are cos T.

By (2 .14) and (2.15),

(2 .16) lim 1

	

1 = 1 are cos T ;
n~oo n k: z`x„>-T

	

7T

hence da is arc-sine on [-1,1] .
Assertion (b) follows from Lemma 2.1 .

3. Conditions for arc-sine weights on [-1, 1]
By ~- we denote closed subintervals of [- 1, 1] and by ~I f J ., the

supremum norm of f (x) on 9- . Let $n be the set of all polynomials with
degree not exceeding n, `]3n c $n the set of monic polynomials of degree
n, that is, _15P. e $* if and only if gn(x) - xn E `3n-1 . We are going to
investigate the monic orthogonal polynomials

(3.1)

	

con(da, x) = LYn(d0C)]-11~n(da, x) .

In this as well as in the next section we consider only distributions da
(reap. weights w(x) ) the support of which is contained in [-1, 1] .

The following two known inequalities will be applied .

CHEBYCHEV--BERNSTEIN INEQUALITY (Bernstein, [1] ) . We have, for
every c9, n E q3n and every z 0 [- 1, 1] .

(3 .2)

	

19n(z) I '< I T"(z) ~~ -9n
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REMEZ INEQUALITY (Remez, [81 ; Freud, [4], Lemma 111.7.3) . We have,
for every 6Pn E 3n ,

( 4
(3.3)

	

l~~n~lf-hll

	

Tn1IM~-1 ,

where IM I is the Lebesgue measure of the set

(3 .4)

	

M = {x : '9n(x)1 5 1} n

LEMMA 3.1 . If the array {Tkn E [- 1, 1], k = 1, 2, . . ., n ; n = 1, 2, . . .1 has

arc-sine distribution, that is, satisfies (2.16), then

wn(z) _ (z - 7'1n) (Z - 7 2n) ,,, (Z - Tnn)
satisfies

(3 .5)

	

lim nV (I1 can ILK) = á

for every ,% [-1, 1] .

Proof. By (2.16), the equation
1 nhm - E f(Tkn)

... n k=1

n->oo

n-~o

n-->oo

= p(ie) lim ft 1( 11 wn 11 .-)-
n- 00

_ 1 1 f(x) dx
7r J- 1

	

x2 )

is valid if f is the characteristic function of an interval . Consequently
it holds for every f continuous in [ -1,1 ] . By putting f(t) = log I z - t ~,
which is continuous for every z [-1, 1], we get

(3 .6)

	

lim 71V(1 (on(z)1)=-
J

l llogjz-xl V(ldxx2 )

Jim nV(2-n+l ITn(z)I) = 1 1Z+y(z2-1 )I

-gp(z), by definition .
The second part we obtained from the fact that the roots of T .(z) are

arc-sine-distributed . The curve C8 : p(z) = 1 + 8 surrounds [ -1,1] for
every 8 > 0 ; from the maximum principle as applied to wn(z) inside C8
and by letting 8 tend to zero, we obtain

(3.7)

	

lim mÍ(11 wn

	

< z*
n-m

Now let 7_ = [a, b] [-1,1]. Applying (3.2) to
°Jjn(z) = co n (1(a + b) + 1 (b - a)z)

and z = iE, we get
jp(j(a+b)+ie) = lim n_ f(19n(iE) 1) < lim n I(I Tn (2e) I)hm nV(II ,, III-1,1,)

n- 00

	

n,ac
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Thus, since So is continuous and cp(~) = 1 for ~ E [-1, 1],

(3 .8)

	

LM--
ft~00

	

e0
"V I Wn11 .~'- ) >

21im p(2(00+2E) - 2

Now (3.4) follows from (3.7), from the relation IIWnIh 1IWnj1[-l,i) and
from (3 .8) .

LE A 3.2 . For every pn E $n , every real interval ,%, and every 0 < E < 1,
there exists a measurable subset 9.- of .T of measure not less than O(E) I .% 1,
where t/l(E) = 462 - E4, such that, for every x e 9,, we have

(3.9)

	

Ipn,(x)I > (1- E)n IIPnII_ -

Proof. By a linear transformation, we can take 9 _ [- 1, 1], I J I = 2 .
The Remez inequality, as applied to 9,,(x) _ (1-e)-np,,(x)/ IIpn I j-', gives
(3.19)

	

(1-E)-n Tn(xbI)

	

(x31+y(x3~2

where Ku _ (4/1 M I) - 1 and M is defined by (3 .4) .
A direct calculation shows that

(3.11)

	

e+,,1(82-1)

	

(1-E)-1 (1

	

< 1+282) .

By (3.10) and (3.11), we have (4/1M I) -1 = x j_r > 1 + 282 ; hence
2 -IMI > 262 ( 1 +462)-1 > 2(82- 484 )

and on the set [-1,1] \ M, of measure 2 - I M I > ill(E) I /~ I, we have
I ,,,.(x) I > 1, that is, I p,,,(x) I > ( 1- e) n 11 p n IIX •
Proof of Theorem 1 .2 . The condition supp w [-1, 1] implies

xln(w)-xnn(w) < 2, so (1 .8) implies (1 .5) . By (1 .8) and (2 . 1), we have
xln(W)-xnn(W) -> 2, that is, xln(w) -> 1 and xnn(w)

	

-1 . This, together
with Theorem 1 . 1, shows that w is arc-sine on [- 1, 1] .

We turn to the proof that if w is arc-sine on [ -1, 1] then (1 .7) holds .
We choose a sufficiently small 0 for which the set

9)2a(W)_{xE [-1,1] : W(x)>A}

has positive measure . Then, for every 0 < 8 < 1, there exists an interval
Y8- s~ [-1, 1] for which i~ n ~7to(w) I >

	

We choose any E such
that 0 < s < 1 and choose ..%s with 8 < 20(s). We assume that w is arc-sine
on

	

1]. Then by Lemma 3 .1, we have lim ny ( II W.(w, x)11 8 ) = 2, that
n- OO

is, for sufficiently large n,

11W.(w, x)11 %8 > (1- s)n2-n.

By Lemma 3 .2,

	

has a subset fs of measure greater than O(e) 1 1, where-178
(3.12)

	

I Wn(w,
X)

I > (1- s) 2n2-n .
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By construction, f$ n 92o(w) has a common subset V . of measure
e > 20(e), so (3.12) is valid for x c V.. For the points

x C 9ne S~ 9J2o(w)

we have also co(x) > 0 . From these and (3 .1) we infer that, for sufficiently
large n,

that is,

1	) _ 1l Uln 2(w, x)w(x) dx >,

	

wn2(w, x)w(x) dxynw
ne

Letting s tend to zero, we see that (1 .7) holds .

THEOREM 3.1 . Let w be arc-sine on [-1,1] ;further let supp da [-1, 1]
and let a'(x) >, Kw(x) hold for a constant K > 0 and almost every x e
then also dot is arc-sine on [-1,1] .

Proof. Since pn(w) and pn(Kw) have the same zeros, we can take K = 1 .
We have

(3 .13)

	

n

	

- QEf ~1 Q 2(x)w(x) dx
Y 2(W)

I gRe l A(1- E) 4n2-2n

i 1i (e)Q(1-e)4n2-2%

limn~(yn(w)) < 2(1-s)-2 .
n~o0

11{[Y..(da)]-lpn(da, x)} 2W(x) dx

21

	

~ 1 p.n2(da, x) da(x) = 2 1
Yn (da) J_1

	

Yn (da)

Since w is arc-sine on [-1, 1],

(3.14)

	

lim nV(yn(dx)) _< 2 .

Since supp da 1], we have -1 < xnn(da) < x ln(da) < 1, so that
by Lemma 2 .1 and (3 .14) xln(da) -~ 1, xnn(da) -> -1 . Thus the conditions
of Theorem 1.1 are satisfied and consequently da is arc-sine on [- l, 1] .

4. Investigation of certain weights with infinite support
We denote by cl , c2 , . . . positive numbers independent of n but possibly

dependent on the choice of the weight .
In [5], Freud introduced the weights

wQ(x) = exp{-2Q(Jxl)} (-oo < x < oo),



530

	

P. ERD6S AND G . FREUD

where Q(x) (0 < x < oo) is a positive increasing differentiable function
and xPQ'(x) (x >, 0) is increasing for some p < 1 . By our condition,

(4.1)

	

Q(x) = Q(0) +
f02

Q'(t) dt < Q(0)+xPQ'(x) fyt- P dt
0

= Q(o) +(I - p)-,xQ'(x),

so the moments p,„E (wQ ) are finite because

Q(x) % Q(1)+(1-p)-1Q'(1)x1-P
.

We denote by qs (s >, 0) the solution of the equation q$Q'(q$ ) = s .
It is proved in [5] that

(4.2)

	

Tin ~< xln(WQ) * C2gn'
Since wQ is even, we have

(4.3) xnn(WQ) _ - xln(WQ) .

THEOREM 4 .1 . 1f wQ is arc-sine then ( 1 .5) and (1 .6) are satisfied .

Note that Theorem 4.1 and Theorem 1 .5 together show that (1 .5) as
well as (1 .6) are necessary and sufficient conditions for w Q to be arc-sine .

Proof. By assumption ([x1n(WQ)]-n[Yn(WQ )]-lpn(WQ, x lnx)) _ ((JJn(WQ, x))
is a sequence of monic polynomials which is arc-sine on [-1,1] . Let

[-r),r)] . By Lemma 3. 1, we have, for every 0 < 7) < 1 and
every e > 0,

(4.4)

	

~~ Wn(WQ) 119'(7) > 2-n(I -E)n (n > ca (,-)) .

By Lemma 3.2, J(q) has a measurable subset J,(q) of measure at least
2r)O(E), so

(4.5)

	

wn(wQ, x) i 2-n(1 -E)2n (x c- 3Ya(~?), n i C3(E))
If t c-

	

we have by (4.2) and (4.3), provided that ric e < 1,

(4.6) - logwQ(txln) 2Q(r)xln) < 2Q(O) +(1--p)-1Íxl,,Q'(-qxl,,)

2Q(0) + ( 1- p)` 1c2r?g.Q ' (gc2gn)

2Q(0)+(1- p)-1c27)(c2r1)-PQ'(gn) = 2Q(O) +c.r) 1`Pn .

By the transformation x = xlnt,

1 = f Pn2(WQ,x)wQ(x)dx = [xln(WQ)]n+la,n(WQ)
M

x
£' Ec1 )

ton2(WQ , t)wQ(xlnt) dt

(-q) 2-2n(1- e)4n exp{ - 2Q(0) - c,r)l-Pn}

i c5.2~(E)2-2n(1-E)4nexp{- c47J 1-Pn},
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the second half by (4.5) and (4 .6) . Since (4.7) must hold for arbitrary
small rl and e, we infer that

(4.8)

	

Tim {[xl,n-1(wQ)]n-1 n-1
11 (yn-1(wQ))} < 2 .

n- co

The zeros of pn(wQ ) and p,,-1(wQ ) separate each other, so

x2n(WQ) < xl,n-l(WQ) < xln(WQ) .

Since wQ is arc-sine by assumption, we have x2,n(WQ)/xln(WQ )
consequently xl,n_1(wQ)/xln(WQ) -> 1 . Combining this with (4.8) and (4.3),
we see that (1 .5) is valid. By Theorem 1 .1, this implies that (1 .6) also
is satisfied .

REMARK . Erdős investigated t in [2] the weights wR(x) = exp{- 2R(x)}
where the (not necessarily differentiable) function R(x) satisfies, for every
e>0,

(4.9)

	

R(y) > 2R(x) (I yI > (1+e) I x I > cg (a)) .

It is proved in [2] that wR is arc-sine and the proof implies that (1.6) is
valid in this case .

THEOREM 4.2 . If, for an increasing subsequence (nj ) of the natural
numbers, we have

(4.10) lim{ -1y(Yni-1(da)}(x1n(da} - xnn(da)) 5 4

then, putting xkn = (xln + xnn) + L1(xln - xnn ) 7kn, we have

(4.11)

	

lim ni-1 E 1 = 1 are cos T.
j~c0

	

k : rk.:T

	

7T

Proof. If nj = j, this is just Theorem 1 .1 . The proof of Theorem 4 .2
follows by replacing n by nj in the proof of Theorem 1 .1 . Details are left
to the reader .

THEOREM 4.3 . If Q*(x) satisfies, besides the conditions indicated for Q(x),
the inequality

(4.12)

	

Q*(2x) ' c7Q*(x)

then

(4.13)

	

lim xln(wQ •) n-1V (Yn-1(wQ,)) > 2 .
n~0D

t We have made an obvious change of notation .
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Proof. Let (nj) be an increasing subsequence of the natural numbers
for which

hnlxlnj(WQ*) ni-1V (Y., 1(WQ*) = lim xln(WQ*) n-ly(Yn-1(WQ*)) •
j- ao

	

n~co

I£ (4.11) is not satisfied for the sequence (n,) then (4.13) is a consequence
of Theorem 4.2 . Thus we can assume in what follows that (4.11) holds .
We consider the monk polynomials of degree nj -1

(4.15)

	

CO* (x) = 2-nj+m+2(x1 nj) m 1xmTn,
Here xknj = x kn1(WQ* ) . Then by the minimum property (3.13),

(4 .16)

Y111-1 2 (WQ* ) < J [wn,-1(x)]2WQ*(x) dx

2-2nj+2m+4(x1 nj)2n1 2m-2
F

ox2m~T nj-m-1 2(x/xl nj)WQ* (x)dx .

We apply the Gauss-Jacobi quadrature formula to the integral (4.16)

and take I T.(x) I < 1 for I x

	

1 into consideration ; then

(4.17)

	

X2-T2, m-,(x/xl„,,)wQ*(x)dx

(4 .14)

(4.18)

ni 2m

	

2- ~ ~knj(21~Q*)xknj nj-m-1 (xknj xlnj)
k=1

nj
Y 4nj(WQ*)xkn,k=1

.
(xln,~4 )2m L Aknj(WQ*) +xlnj

	

E Akn(wQ *)
k=1

	

jxknj l>xlnjl4

By the quadrature formula,

Ák,nj(WQ *) - 90(wQ*) •
k=1

It follows from (4 .11) that, for sufficiently great nj , there exist roots
xln, of pnj(wQ* ) situated in [xln;/5, x lnj/4] . Thus by the Markov-Stieltjes
inequality ( [4], § 1 .5) and by symmetry,

ao
(4 .19)

	

E

	

Ak,nj(WQ*) _

	

E

	

Ak,nj(WQ*)

	

wQ*(t) dt .
xk,n,<-xl, .,15

	

xk.nj >xl,nj/5

	

xl,njl5

Since xPQ'(x) is increasing, we have

Q*(x) i fxQ * (t)dt i Q*(2X)(2x)PJ xt-Pdt i CSxQ*'(x))
fx

	

1x



Denoting by qá the solution of the equation q,,*Q'(qs) = s,
(4.2) and (4.12),

(4.20)

By (4.19) and (4.20),

E Akn;
lxk .n;I>Xln;/4
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Q*(3xln) Q * (3clgn) % c1c8gn
Q*(í0clgn) > cgg*Q*(qn) = c9n.

2 f

	

e-2Q'(x) dx

w
2exp{ -Q*(xl,,,/5} f, e-Q'(x) dx < cloe-con' .

By formulae (4.17)-(4 .20),

x2mTni-m-1 2(x/x ln!)wQ,(x)dx xl,nl2m [~LO(wQ')4-2m +c10e -1-9n],

xln(W)

< ~+c12(2/~)2n-1 f
~x2n-1 W(x)dx .

Lemma 4.1 is proved in [5] .

Let no = 0, nl = 1, . . ., nk+1 = enk (k = 1, 2, . . .) and

(4.23)

	

W(x) = e-nk (nk-1 < 1x1 < nk ; k = 1, 2, . . .) .

we obtain, by

hence, by (4.16),

(4.21) Yn;-1
2(WQs)(xlnf)-2nl+222n;-2 < 4[l.i,o(w*)2-+clo2me-09N] .

Up to now we have not disposed of the integer m . Let us put
m = [c9n;/2 log 2], that is, 2m - exp{2canj} . Inserting this (4.21), we see
that the limit (4.14) is greater than 2eico > 2 .

COROLLARY . Let wQ (x) = exp{- 2Q(á x l)}, where Q(x) is differentiable,
xPQ'(x) (x > 0) is increasing for some p < 1, and 0 < Q'(2x) < c,Q'(x) for
x > 0 ; then w Q is not arc-sine .

This corollary is a consequence of Theorem 4 .1 and Theorem 4.3 since
xnn(WQ ) _ - xln(WQ ) . We observe that our corollary implies that
w,,(x) = exp(- I x 1°1) is not arc-sine for any a > 0 . This was stated without
proof by Erdős in [2] .

As a last item of our paper, we show that the sufficient condition (4.10)
is not necessary for (4 .11) .

LEmmmA 4.1 . If the weight W(x) is even and decreasing for x > 0, we have,
far every 6 > 0 and 71 > 0,

(4.22)

	

2[c11,)2n-1 W(.j)]1/(2n-2)
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Then

(4.24)

Inserting e _ 7) = nk in (4.22), we get

(4.25)

f
00

x2nkW(x) dx < 2e-nk+1 12
nk

e14% < xlnk( W) nk + e15

We put v = nk , v1 = nk-1 = log v, fz _ [v/log v] + 1, and x„ = x,v(W) .
The polynomial x#T,-µ(x/x„) has leading coefficient 2"-#-1x„v+# ; thus, by
the extremism property of y,(W),

(4.26) I.Y"

211-

(W)P-1-1`12
< fx?,g[T,,-,(X/X,)12w(X)dx~

vl

	

fX'2 x2,m dx + 2e-v x2IZ dx
0

	

v1

f
00

+ 22vxv-2v+2µ x2vW(x) dx
xY

(k >, c13) .

2V12µ+1 + 2e vxv2#+1 + 22vxv2µ+1 exp{ - e-v
/21

2µ+1 v

	

V log log V,
c1óx v

	

e- exp{c1v	 logy } .

In consequence of (4.26) and xv = x1Y = - x„v , the left-hand side of
(4.10) is greater than 4VIe > 4, that is, (4.10) is not valid for the choice
of da = W dx . In spite of that, we show that W is arc-sine .

Let us suppose the contrary. Then there exists 5 > 0 such that the
maximum modulus of the monic polynomial of degree v in t,
yv1(W)x„-vpv (TT',x„t) (t E [-1, 1]), exceeds 2-v(1+&) 2" and consequently,
by Lemma 3.2,

(4.27)

	

jp,(W; x)I > yv(W)x„°2-v(1+5) v (x E M„),

where My 9 [-x,,, x,,] and IMP I > 2x,0(8) . Since x„ < v+0(1), (4.27) is
valid for a subset M* of [- v, v] satisfying I My I > x„0(8) if v is sufficiently
great. We infer that

(4.28)

	

1 = J rOD p" 2 (W, x)W(x) dx
>J

p,, 2(W, x)W(x) dx
oo

	

Mv'

i XPO(5)iw 2(W)xv2v2-2v ( 1 + 5 ) ve-v ;

but (4.28) contradicts (4.26), which means that our assumption that W is
not arc-sine was false . Thus W furnishes the example indicated .
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5. On determining sets

The lower capacity -F(A) of a set A S [-1,1] is defined by
(5.1)

	

Y(A) = inf C(B) .
BGA

IAIBJ=O

LEMMA 5.1 (Ullman) . A measurable subset A of [- l, l] is a determining
set if and only if

(5.2)

	

P(A) = 2.

Proof. (5 .2) is necessary by [9], Theorem 1 .2, and [9], Lemma 1 .2. In
order to prove that (5 .2) is sufficient, it is enough to show that the
following additional hypothesis, assumed in [9], Theorem 1 .2, is satisfied :
for every interval .% [ -1,1 ] we have I A n .T I > 0. In fact, supposing
the contrary, we would have z = Y(A) < C([-1,1] \,T) < I (the last
part : for example, [9], Lemma 5 .4) . Thus I A n J- 1 > 0 .

In order to prove Theorem 1 .3, we prove a more general result
concerning stability of capacities .t

Let v be a u-additive Borel measure on the plane and A a v-measurable
point set of the plane ; we denote the outer measure of B by v(B) . We
define the lower v-capacity C,(A) of A as follows : for E > 0, let . ( E)
denote the set of compact subsets K of A satisfying v(A \ K) < E . Let

(5.3)

	

CE(v,A) = inf C(K) ;
Krjr(E)

clearly Qv, A) is an increasing function of E . We define

(5.4)

	

Qv, A) = lim Qv, A).
E-o

LEMMA 4 .2 . For every v-measurable plane set A, there exists a subset
A" S A for which v(A \A") = 0 and

(5.5)

	

C(Ay) = C(v, A) .

Proof. Let En = 2 (n = 1, 2, . . .) . By our definitions, there exist
compact sets K g A (n = 1, 2, . . .) such that

(5.6)

	

v(A\Kn) 5 En

and

(5.7)

	

C,,.(v, A)

	

C(KJ

	

C ,,.(v, A) + sn .

We apply the same notations as in Tsuji's book [11] and let µn be the
equilibrium distribution on Kn and 0&(µn, z) the conductor potential of

t A detailed proof of the following Lemma 5 .2 was published by Freud in [6] .
Here we repeat the proof briefly.
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Kn . By [111, §11 .2, there exists a sequence (nj ) such that µn3 converges to
a Borel measure µ . We define

It follows that

that is v(A\Av ) = 0, as required .

We say that a property is satisfied almost everywhere
if the exceptional set is a Borel set of zero capacity. By the definition
of µn3, we have, for every z,

CO

	

CO

Av=limK.. = U nK,sCA,
j~CQ

	

m=1 j-n

CO

	

M

v(A \ Av) 5

	

v(A\ Kn3) S

	

sn3 <, 2-m+1 ,
3~

	

j=m

(in short, a.e .)

(5 .9)

	

V(µ"3, z) = log 1 a.e . z c Kn3 .C(Kn3 )

By the lower-envelope principle (de la Vallée-Poussin, [10], 11 .69, or
[9], Lemma 5 .3) we infer from (5.10) (5.7), (4 .8), and (5.9) that

(5.10) V(µ, z) = lim 1&(µ.,, z) < lim log 1 = log 1 a .e . z
j-00

	

3

	

8_0

	

Qv, A)

	

C( v, A)

and that the sign of equality holds in (5.10) a.e . z e Av . In consequence
of these properties, µ is the equilibrium distribution of a set covering Av
and C(Av) < C(v, A) .

Since Av A and v(A\Av), we have Qv,A) < C(Av) for every s > 0 ;
when s -> 0, we get C(Av) = C(v, A) .

Proof of Theorem 1 .3. Let A denote the linear Lebesgue measure on
[-1, 1]. By Lemma 5 .2 we have, for every measurable A c [-1, 1],
P(A) - C(AI) = C(A,A) . By [9] (see Lemma 3.3), there exists a subset
AO A satisfying C(A .) = P(A) and I A \ AO I = 0. By (4.3)

CJA, A) <, C(AO ) _ Y(A)

for every s > 0 . This implies C(A, A) S Y(A), so P(A) = QA, A) . For a
`good set' A, we have, by Definition 1 .2, QA, A) = 2, that is, -T(A) = 2 .
Now Theorem 1.3 follows from Lemma 5 .1 .

(5 .8)

and

0&(µn,,

	

log 1
z) < C(Kn3 )
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