ON ORTHOGONAL POLYNOMIALS WITH REGULARLY DISTRIBUTED ZEROS

By P. ERDÔS and G. FREUD

[Received 14 August 1973]

1. Introduction

Let $d \alpha(x)$ be a non-negative measure on $(-\infty, \infty)$ for which all moments

$$
\mu_{m}(d \alpha)=\int_{-\infty}^{\infty} x^{m} d \alpha(x) \quad(m=0,1, \ldots)
$$

exist and are all finite. We consider the orthonormal polynomials

$$
\begin{equation*}
p_{n}(d \alpha, x)=\gamma_{n}(d \alpha) \prod_{k=1}^{n}\left[x-x_{k n}(d \alpha)\right] \tag{1.1}
\end{equation*}
$$

which satisfy $\gamma_{n}(d \alpha)>0$ and $\int p_{n}(d \alpha) p_{m}(d \alpha) d \alpha(x)=\delta_{m n}$, where $\delta_{m n}$ is the Kronecker symbol. The zeros $x_{k n}(d \alpha)$ of $p_{n}(d \alpha, x)$ are real and simple. We assume that they are ordered increasingly. If no misunderstanding can arise, we write $x_{k n}$ for $x_{k n}(d \alpha)$ (resp. $x_{k n}(w)$, see below). Let us denote by $N_{n}(d \alpha, t)$ the number of integers k for which

$$
x_{1 n}(d \alpha)-x_{n n}(d \alpha) \geqslant t\left[x_{1 n}(d \alpha)-x_{n n}(d \alpha)\right]
$$

holds. The distribution function of the zeros is defined, when it exists, as

$$
\begin{equation*}
\beta(t)=\lim _{n \rightarrow \infty} n^{-1} N_{n}(d \alpha, t) \quad(0 \leqslant t \leqslant 1) . \tag{1.2}
\end{equation*}
$$

We are here concerned with the case when the distribution function is given by

$$
\begin{equation*}
\beta_{0}(t)=\frac{1}{2}-\frac{1}{\pi} \arcsin (2 t-1) . \tag{1.3}
\end{equation*}
$$

In this case the points $\theta_{k n}=\arcsin x_{k n}$ are equidistributed in Weyl's sense.
A non-negative measure $d \alpha$ for which the array $x_{k n}(d \alpha)$ has the distribution function $\beta_{0}(t)$ will be called an arc-sine measure. If $d \alpha(x)=w(x) d x$ is absolutely continuous, we apply, replacing $d \alpha$ by w, the notations $p_{n}(w, x), \gamma_{n}(w), x_{k n}(w)$ and call a non-negative $w(x)$ an arc-sine weight if $d \alpha(x)=w(x) d x$ is an arc-sine measure. A fairly complete treatise of arc-sine weights with compact support is given in [9] by Ullman.

The restricted support of a weight $w(x)$ is defined as the set $\{x: w(x)>0\}$. The support of $w(x)$ can be characterized as the set of points ξ for which
every interval containing ξ contains a subset with positive measure of the restricted support of w. It was proved by Erdõs and Turán ([3]) that a $w(x)$ having support $[-1,1]$ is arc-sine provided that its restricted support has Lebesgue measure equal to 2. This, as well as another criterion for arc-sine weights, established by Geronimus ([7]), is treated also in [9].

Arc-sine weights with non-compact support were introduced by Erdős in [2].

The case when the support of the measure $d \alpha$ is contained in $[-1,1]$ and the two points $-1,1$ belong to this support is of particular interest. We have then $x_{1 n}(d \alpha) \rightarrow 1, x_{n n}(d \alpha) \rightarrow-1$ and (1.2) can be rewritten as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \sum_{k: x_{k n}(d \alpha) \geqslant T} 1=\frac{1}{\pi} \arccos T \quad(-1 \leqslant T \leqslant 1) \tag{1.4}
\end{equation*}
$$

For the measures $d \alpha$, resp. weights w, whose support is contained in $[-1,1]$, we apply the term arc-sine on $[-1,1]$ if the array $\left\{x_{k n}(d \alpha)\right\}$, resp. $\left\{x_{k n}(w)\right\}$, satisfies (1.4).

Our results are as follows.
Theorem 1.1. (a) The condition

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \sqrt[n-1]{ } \sqrt{ }\left(\gamma_{n-1}(d \alpha)\right)\left[x_{1 n}(d \alpha)-x_{n n}(d \alpha)\right] \leqslant 4 \tag{1.5}
\end{equation*}
$$

implies that $d \alpha$ is arc-sine.
(b) It follows from (1.5) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n-1]{\sqrt{ }\left(\gamma_{n-1}(d \alpha)\right)\left[x_{1 n}(d \alpha)-x_{n n}(d \alpha)\right]=4 . . .4 .} \tag{1.6}
\end{equation*}
$$

See also Theorem 4.2 for a more general result.
We show that the arc-sine weights with infinite support studied by the first of us in [2] satisfy (1.6), but the weights $w_{\alpha}(x)=\exp \left\{-|x|^{\alpha}\right\}, \alpha>0$, are not arc-sine. It is further proved by a counter-example that even the stronger sufficient condition (1.6) is not necessary in general. The case is different if $w(x)$ has compact support.

Theorem 1.2. A weight w, the support of which is contained in $[-1,1]$, is arc-sine on $[-1,1]$ if and only if

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \sqrt[n]{ }\left(\gamma_{n}(w)\right) \leqslant 2 \tag{1.7}
\end{equation*}
$$

We note that by Uliman's Lemma 1.2 in [9], the support of w is precisely $[-1,1]$. We do not make use of this observation. Also, Theorem 1.2 was conjectured by Ullman in [9], part 7. He proved the weaker statement that if the restricted support of w is a determining set
(see Definition 1.1) then condition (1.7) is sufficient ([9], Theorem 1.6(b)). The sufficiency part of Theorem 1.2 can be generalized to measures $d \alpha$ which are not necessarily absolutely continuous (see Theorem 3.1 below).

Definition 1.1 (Ullman, [9], Definition 1.4). We say that $A \subseteq[-1,1]$ is a determining set if all weights $w(x)$, the restricted support of which contain A, are arc-sine on $[-1,1]$.

Let us denote by $C(A)$ the capacity (that is, inner logarithmic capacity) of the set A and by $|A|$ its outer (linear) Lebesgue measure. Note that the capacity of $[-1,1]$ is $\frac{1}{2}$.

Definition 1.2. We say that $A \subseteq[-1,1]$ has minimal capacity $\frac{1}{2}$ if for every $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that for every B having Lebesgue measure less than ε we have $C(A \backslash B)>\frac{1}{2}-\varepsilon$.

Theorem 1.3a. A measurable subset A of $[-1,1]$ is a determining set if and only if it has minimal capacity $\frac{1}{2}$.

Theorem 1.3a was stated as a conjecture by Erdős in several lectures held in the last thirty years; see [2].

Theorem 1.3b. A measurable subset A of $[-1,1]$ is a determining set if and only if it is a 'good set' (in the sense of Erdõs, [2]).

2. Sufficiency of condition (1.5)

We denote by $T_{n}(X)=\cos (n$ arc $\cos x)$ the nth Chebychev polynomial of the first kind. The zeros of $T_{n}(x)$ are $t_{k n}=\cos [(2 k-1) / 2 n] \pi$.

Lemma 2.1. We have for every $d \alpha$,

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \sqrt[n-1]{ } \sqrt{ }\left(\gamma_{n-1}(d \alpha)\right)\left[x_{1 n}(d \alpha)-x_{n n}(d \alpha)\right] \geqslant 4 \tag{2.1}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
x_{k n}=\frac{1}{2}\left(x_{1 n}+x_{n n}\right)+\frac{1}{2} \tau_{k n}\left(x_{1 n}-x_{n n}\right) \tag{2.2}
\end{equation*}
$$

then $\left|\tau_{k n}\right| \leqslant 1(k=1,2, \ldots, n)$.
By applying the Lagrange interpolation formula with nodes $x_{k n}$, we have

$$
\begin{equation*}
T_{n-1}\left[2\left(x_{1 n}-x_{n n}\right)^{-1}\left(z-\frac{1}{2}\left(x_{1 n}+x_{n n}\right)\right)\right]=\sum_{k=1}^{n} l_{k n}(z) T_{n-1}\left(\tau_{k n}\right) \tag{2.3}
\end{equation*}
$$

By [4], formula III (6.3),

$$
\begin{equation*}
l_{k n}(z)=\frac{\gamma_{n-1}(d \alpha)}{\gamma_{n}(d \alpha)} \lambda_{k n} \frac{p_{n-1}\left(d \alpha, x_{k n}\right)}{z-x_{k n}} p_{n}(d \alpha, z) \tag{2.4}
\end{equation*}
$$

The $\lambda_{k n}$ are the Christoffel numbers with respect to $d \alpha$. Comparing highest coefficients in (2.3) and applying (2.4), we obtain

$$
\begin{equation*}
2^{2 n-3}\left(x_{1 n}-x_{n n}\right)^{-n+1}=\gamma_{n-1}(d \alpha) \sum_{k=1}^{n} \lambda_{k n} p_{n-1}\left(d \alpha, x_{k n}\right) T_{n-1}\left(\tau_{k n}\right) \tag{2.5}
\end{equation*}
$$

Since $\left|\tau_{k n}\right| \leqslant 1$ implies $\left|T_{n-1}\left(\tau_{k n}\right)\right| \leqslant 1$, we have by the quadrature formula

$$
\left.\left.\begin{array}{l}
{\left[\frac{2^{2 n-3}}{\left(x_{1 n}-x_{n n}\right)^{n-1}} \gamma_{n-1}(d \alpha)\right.}
\end{array}\right]^{2}\right] \text { } \begin{aligned}
& \quad \leqslant\left[\sum_{k=1}^{n} \lambda_{k n}\left|p_{n-1}\left(d \alpha, x_{k n}\right)\right|\right]^{2} \tag{2.6}\\
& \quad \leqslant \sum_{k=1}^{n} \lambda_{k n} \sum_{k=1}^{n} \lambda_{k n} p_{n-1}{ }^{2}\left(d \alpha, x_{k n}\right) \\
& \quad=\int_{-\infty}^{\infty} d \alpha(x) \int_{-\infty}^{\infty} p_{n-1}{ }^{2}(d \alpha, x) d \alpha(x)=\mu_{0}(d \alpha)<\infty .
\end{aligned}
$$

(2.1) is a consequence of (2.6).

Let $z=\frac{1}{2}\left(x_{1 n}+x_{n n}\right)+\frac{1}{2}\left(x_{1 n}-x_{n n}\right) \zeta$. By (2.3) and (2.4),

$$
\left|T_{n-1}(\zeta)\right| \leqslant \frac{\left|p_{n}(d \alpha, z)\right|}{\gamma_{n}(d \alpha)} \gamma_{n-1}(d \alpha) \sum_{k=1}^{n} \lambda_{k n}\left|p_{n-1}\left(d \alpha, x_{k n}\right)\right| \max _{k} \frac{1}{\left|z-x_{k n}\right|}
$$

Let us observe that $z-x_{k n}=\frac{1}{2}\left(x_{1 n}-x_{n n}\right)\left(\zeta-\tau_{k n}\right)$, the last factor does not exceed $2\left(x_{1 n}-x_{n n}\right)^{-1}[\Delta(\zeta)]^{-1}$, where $\Delta(\zeta)$ denotes the euclidean distance of ζ from the interval $[-1,1]$. From the second half of (2.6), we obtain

$$
\begin{equation*}
\left|T_{n-1}(\zeta)\right| \leqslant \frac{\left|p_{n}(d \alpha, z)\right|}{\gamma_{n}(d \alpha)} \gamma_{n-1}(d \alpha) \frac{2}{x_{1 n}-x_{n n}} \frac{\left[\mu_{0}(d \alpha)\right]^{\frac{1}{2}}}{\Delta(\zeta)} . \tag{2.7}
\end{equation*}
$$

In (2.7) we take logarithms on both sides and divide by n. After rearranging terms, we get

$$
\begin{aligned}
\frac{1}{n} \log \frac{\gamma_{n}(d \alpha)}{\left|p_{n}(d \alpha, z)\right|}= & \frac{1}{n} \sum_{k=1}^{n} \log \frac{1}{\left|z-x_{k n}\right|} \\
= & \log \frac{2}{x_{1 n}-x_{n n}}+\frac{1}{n} \sum_{k=1}^{n} \log \frac{1}{\left|\zeta-\tau_{k n}\right|} \\
\leqslant & \frac{1}{n} \log \frac{2}{x_{1 n}-x_{n n}}+\frac{1}{n} \log \gamma_{n-1}(d \alpha)+\frac{1}{n} \log \frac{2^{n-2}}{\left|T_{n-1}(\zeta)\right|} \\
& \quad-\frac{n-2}{n} \log 2+\frac{1}{n} \log \frac{\left[\mu_{0}(d \alpha)\right]^{\frac{1}{2}}}{\Delta(\zeta)},
\end{aligned}
$$

that is,

$$
\begin{align*}
\frac{1}{n} \sum_{k=1}^{n} \log \frac{1}{\left|\zeta-\tau_{k n}\right|} \leqslant\left(1-\frac{1}{n}\right) & \log \left\{\frac{1}{4}\left(x_{1 n}-x_{n n}\right)^{n-1} \sqrt{ }\left(\gamma_{n-1}(d \alpha)\right)\right\} \tag{2.8}\\
& +\frac{1}{n} \log _{\frac{2^{n-2}}{\left|T_{n-1}(\zeta)\right|}+\frac{1}{n} \log \left(2 \frac{\left[\mu_{0}(d \alpha)\right]^{\frac{1}{2}}}{\Delta(\zeta)}\right) .}
\end{align*}
$$

Lemma 2.2. We have, for every $d \alpha$ and every $\zeta \notin[-1,1]$,
(2.9) $\varlimsup_{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} \log \frac{1}{\left|\tau_{k n}-\zeta\right|} \leqslant \frac{1}{\pi} \int_{-1}^{1} \log \frac{1}{|x-\zeta|} \frac{d x}{\sqrt{\left(1-x^{2}\right)}}$

$$
+\log \left\{\varlimsup_{n \rightarrow \infty}\left[\frac{1}{4}{ }^{n-1} \sqrt{ }\left(\gamma_{n-1}(d \alpha)\right)\left(x_{1 n}-x_{n n}\right)\right]\right\} .
$$

Proof.

$$
\frac{\pi}{n-1} \log \frac{2^{n-2}}{\left|T_{n-1}(\zeta)\right|}=\frac{\pi}{n-1} \sum_{k=1}^{n-1} \log \frac{1}{\left|\zeta-t_{k, n-1}\right|}
$$

is a Riemann sum of the integral

$$
\int_{0}^{\pi} \log \frac{1}{|\zeta-\cos \theta|} d \theta=\int_{-1}^{1} \log \frac{1}{|\zeta-x|} \frac{d x}{\sqrt{\left(1-x^{2}\right)}}
$$

Applying this fact, we obtain (2.9) from (2.8).
Proof of Theorem 1.1. (a) Let $\mathscr{P}(x)=c \Pi\left(x-\zeta_{j}\right)$ be an arbitrary polynomial whose zeros are situated outside $[-1,1]$. We insert $\zeta=\zeta_{j}$ in (2.9) and add up:

Now Iet $f(x)$ be a bounded upper semicontinuous function in $[-1,1]$. Then there exists a sequence of polynomials $\left\{\mathscr{P}_{\nu}\right\}$ which satisfy, for $x \in[-1,1]$,

$$
\begin{equation*}
\mathscr{P}_{v+1}(x)>\mathscr{P}_{\nu}(x)>\ldots>\mathscr{P}_{1}(x)>c>0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \log \frac{1}{\mathscr{P}_{\nu}(x)}=f(x) \tag{2.12}
\end{equation*}
$$

By (2.10), we have

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\tau_{k n}\right) & \leqslant \varlimsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \log _{\frac{1}{\mathcal{P}_{\nu}\left(\tau_{k n}\right)}} \\
& \leqslant \frac{1}{\pi} \int_{-1}^{1} \log \frac{1}{\mathscr{P}_{\nu}(x)} \frac{d x}{\sqrt{\left(1-x^{2}\right)}} \quad(\nu=1,2, \ldots) .
\end{aligned}
$$

Let $\nu \rightarrow \infty$, then it follows by dominated convergence from (2.11) and (2.12) that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\tau_{k n}\right) \leqslant \frac{1}{\pi} \int_{-1}^{1} f(x) \frac{d x}{\sqrt{\left(1-x^{2}\right)}} . \tag{2.13}
\end{equation*}
$$

Let $T \in[-1,1]$. Inserting in (2.17) for f the characteristic function of the interval $[T, 1]$ (resp. $[-1, T]$) we find that the sums

$$
\Sigma_{n}^{(1)}=\frac{1}{n} \sum_{k: T_{k n} \geqslant T} 1 \quad \text { and } \quad \Sigma_{n}^{(2)}=\frac{1}{n} \sum_{k: \tau_{k_{n}} \leqslant T} 1
$$

satisfy

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \Sigma_{n}^{(1)} \leqslant \frac{1}{\pi} \int_{T}^{1} \frac{d x}{\sqrt{ }\left(1-x^{2}\right)} \text { and } \varlimsup_{n \rightarrow \infty} \Sigma_{n}^{(2)} \leqslant \frac{1}{\pi} \int_{-1}^{T} \frac{d x}{\sqrt{\left(1-x^{2}\right)}} \tag{2.14}
\end{equation*}
$$

Clearly $\Sigma_{n}^{(1)}+\Sigma_{n}^{(2)} \geqslant 1$, thus

$$
\begin{align*}
\varliminf_{n \rightarrow \infty} \Sigma_{n}^{(1)} & \geqslant 1-\varlimsup_{n \rightarrow \infty} \Sigma_{n}^{(2)} \tag{2.15}\\
& \geqslant 1-\frac{1}{\pi} \int_{-1}^{T} \frac{d x}{\sqrt{\left(1-x^{2}\right)}}=\frac{1}{\pi} \int_{T}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)}}=\frac{1}{\pi} \arccos T .
\end{align*}
$$

By (2.14) and (2.15),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k: \tau_{n n} \geqslant T} 1=\frac{1}{\pi} \arccos T ; \tag{2.16}
\end{equation*}
$$

hence $d \alpha$ is arc-sine on $[-1,1]$.
Assertion (b) follows from Lemma 2.1.

3. Conditions for arc-sine weights on $[-1,1]$

By \mathscr{T} we denote closed subintervals of $[-1,1]$ and by $\|f\|_{\mathscr{F}}$ the supremum norm of $f(x)$ on \mathscr{T}. Let \mathfrak{F}_{n} be the set of all polynomials with degree not exceeding $n, \mathfrak{P}_{n}^{*} \subseteq \mathfrak{P}_{n}$ the set of monic polynomials of degree n, that is, $\mathscr{P}_{n} \in \mathfrak{P}_{n}^{*}$ if and only if $\mathscr{P}_{n}(x)-x^{n} \in \mathfrak{P}_{n-1}$. We are going to investigate the monic orthogonal polynomials

$$
\begin{equation*}
\omega_{n}(d \alpha, x)=\left[\gamma_{n}(d \alpha)\right]^{-1} p_{n}(d \alpha, x) . \tag{3.1}
\end{equation*}
$$

In this as well as in the next section we consider only distributions $d \alpha$ (resp. weights $w(x)$) the support of which is contained in $[-1,1]$.

The following two known inequalities will be applied.
Chebychev-Bernstein inequality (Bernstein, [1]). We have, for every $\mathscr{P}_{n} \in \mathfrak{P}_{n}$ and every $z \notin[-1,1]$,

$$
\begin{equation*}
\left|\mathscr{P}_{n}(z)\right| \leqslant\left|T_{n}(z)\right|\left\|\mathscr{P}_{n}\right\|_{[-1,1]} . \tag{3.2}
\end{equation*}
$$

Remez inequality (Remez, [8]; Freud, [4], Lemma III.7.3). We have, for every $\mathscr{P}_{n} \in \mathfrak{P}_{n}$,

$$
\begin{equation*}
\left\|\mathscr{P}_{n}\right\|_{[-1,1]} \leqslant T_{n}\left(\frac{4}{|M|}-1\right) \tag{3.3}
\end{equation*}
$$

where $|M|$ is the Lebesgue measure of the set

$$
\begin{equation*}
M=\left\{x:\left|\mathscr{P}_{n}(x)\right| \leqslant 1\right\} \cap[-1,1] . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. If the array $\left\{\tau_{k n} \in[-1,1], k=1,2, \ldots, n ; n=1,2, \ldots\right\}$ has arc-sine distribution, that is, satisfies (2.16), then

$$
\omega_{n}(z)=\left(z-\tau_{1 n}\right)\left(z-\tau_{2 n}\right) \ldots\left(z-\tau_{n n}\right)
$$

satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{ }\left(\left\|\omega_{n}\right\|_{\mathscr{F}}\right)=\frac{1}{2} \tag{3.5}
\end{equation*}
$$

for every $\mathscr{T} \subseteq[-1,1]$.
Proof. By (2.16), the equation

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\tau_{k n}\right)=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x) d x}{\sqrt{\left(1-x^{2}\right)}}
$$

is valid if f is the characteristic function of an interval. Consequently it holds for every f continuous in $[-1,1]$. By putting $f(t)=\log |z-t|$, which is continuous for every $z \notin[-1,1]$, we get

$$
\begin{align*}
\lim _{n \rightarrow \infty} \sqrt[n]{ }\left(\left|\omega_{n}(z)\right|\right) & =\frac{1}{\pi} \int_{-1}^{1} \log |z-x| \frac{d x}{\sqrt{\left(1-x^{2}\right)}} \tag{3.6}\\
& =\lim _{n \rightarrow \infty} \sqrt[n]{ }\left(2^{-n+1}\left|T_{n}(z)\right|\right)=\frac{1}{2}\left|z+\sqrt{ }\left(z^{2}-1\right)\right| \\
& =\frac{1}{2} \varphi(z), \quad \text { by definition. }
\end{align*}
$$

The second part we obtained from the fact that the roots of $T_{n}(z)$ are arc-sine-distributed. The curve $C_{\delta}: \varphi(z)=1+\delta$ surrounds $[-1,1]$ for every $\delta>0$; from the maximum principle as applied to $\omega_{n}(z)$ inside C_{δ} and by letting δ tend to zero, we obtain

$$
\begin{equation*}
\left.\varlimsup_{n \rightarrow \infty} \sqrt[n]{(}\left\|\omega_{n}\right\|_{[-1,1]}\right) \leqslant \frac{1}{2} \tag{3.7}
\end{equation*}
$$

Now let $\mathscr{T}=[a, b] \subseteq[-1,1]$. Applying (3.2) to

$$
\mathscr{P}_{n}(z)=\omega_{n}\left(\frac{1}{2}(a+b)+\frac{1}{2}(b-a) z\right)
$$

and $z=i \varepsilon$, we get

$$
\begin{aligned}
\frac{1}{2} \varphi\left(\frac{1}{2}(a+b)+i \varepsilon\right) & =\lim _{n \rightarrow \infty} \sqrt[n]{ }\left(\left|\mathscr{P}_{n}(i \varepsilon)\right|\right) \leqslant \lim _{n \rightarrow \infty} \sqrt[n]{ }\left(\left|T_{n}(i \varepsilon)\right|\right) \varliminf_{n \rightarrow \infty} \sqrt[n]{ }\left(\left\|\mathscr{P}_{n}\right\|_{\{-1,1]}\right) \\
& =\varphi(i \varepsilon) \varliminf_{n \rightarrow \infty} \sqrt[n]{ }\left(\left\|\omega_{n}\right\|_{\mathscr{F}}\right) .
\end{aligned}
$$

Thus, since φ is continuous and $\varphi(\zeta)=1$ for $\zeta \in[-1,1]$,

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \sqrt[n]{ }\left(\left\|\omega_{n}\right\|_{\mathscr{F}}\right) \geqslant \frac{1}{2} \lim _{\varepsilon \rightarrow 0} \frac{\varphi\left(\frac{1}{2}(a+b)+i \varepsilon\right)}{\varphi(i \varepsilon)}=\frac{1}{2} \tag{3.8}
\end{equation*}
$$

Now (3.4) follows from (3.7), from the relation $\left\|\omega_{n}\right\|_{\mathscr{F}} \leqslant\left\|\omega_{n}\right\|_{[-1,1]}$ and from (3.8).

Lemma 3.2. For every $p_{n} \in \mathfrak{P}_{n}$, every real interval \mathscr{T}, and every $0<\varepsilon<1$, there exists a measurable subset $\mathscr{T}_{\varepsilon}$ of \mathscr{T} of measure not less than $\psi(\varepsilon)|\mathscr{T}|$, where $\psi(\varepsilon)=\frac{1}{4} \varepsilon^{2}-\frac{1}{16} \varepsilon^{4}$, such that, for every $x \in \mathscr{T}_{\epsilon}$, we have

$$
\begin{equation*}
\left|p_{n}(x)\right|>(1-\varepsilon)^{n}\left\|p_{n}\right\|_{\mathscr{F}} \tag{3.9}
\end{equation*}
$$

Proof. By a linear transformation, we can take $\mathscr{T}=[-1,1],|\mathscr{T}|=2$. The Remez inequality, as applied to $\mathscr{P}_{n}(x)=(1-\varepsilon)^{-n} p_{n}(x) /\left\|p_{n}\right\|_{\mathscr{F}}$, gives

$$
\begin{equation*}
(1-\varepsilon)^{-n} \leqslant T_{n}\left(x_{M}\right) \leqslant\left(x_{M}+\sqrt{ }\left(x_{M}^{2}-1\right)\right)^{n}, \tag{3.10}
\end{equation*}
$$

where $x_{M}=(4 /|M|)-1$ and M is defined by (3.4).
A direct calculation shows that

$$
\begin{equation*}
\xi+\sqrt{ }\left(\xi^{2}-1\right) \leqslant(1-\varepsilon)^{-1} \quad\left(1 \leqslant \xi \leqslant 1+\frac{1}{2} \varepsilon^{2}\right) \tag{3.11}
\end{equation*}
$$

By (3.10) and (3.11), we have $(4 /|M|)-1=x_{M}>1+\frac{1}{2} \varepsilon^{2}$; hence

$$
2-|M|>\frac{1}{2} \varepsilon^{2}\left(1+\frac{1}{4} \varepsilon^{2}\right)^{-1}>\frac{1}{2}\left(\varepsilon^{2}-\frac{1}{4} \varepsilon^{4}\right)=\psi(\varepsilon)|\mathscr{T}|
$$

and on the set $[-1,1] \backslash M$, of measure $2-|M|>\psi(\varepsilon)|\mathscr{T}|$, we have $\left|\mathscr{P}_{n}(x)\right|>1$, that is, $\left|p_{n}(x)\right|>(1-\varepsilon)^{n}\left\|p_{n}\right\|_{\mathscr{F}}$.

Proof of Theorem 1.2. The condition $\operatorname{supp} w \subseteq[-1,1]$ implies $x_{1 n}(w)-x_{n n}(w)<2$, so (1.8) implies (1.5). By (1.8) and (2.1), we have $x_{1 n}(w)-x_{n n}(w) \rightarrow 2$, that is, $x_{1 n}(w) \rightarrow 1$ and $x_{n n}(w) \rightarrow-1$. This, together with Theorem 1.1, shows that w is arc-sine on $[-1,1]$.

We turn to the proof that if w is are-sine on $[-1,1]$ then (1.7) holds.
We choose a sufficiently small Δ for which the set

$$
\mathfrak{M}_{\Delta}(w)=\{x \in[-1,1]: w(x) \geqslant \Delta\}
$$

has positive measure. Then, for every $0<\delta<1$, there exists an interval $\mathscr{T}_{\delta} \subseteq[-1,1]$ for which $\left|\mathscr{T}_{\delta} \cap \mathfrak{M}_{\Delta}(w)\right|>(1-\delta)\left|\mathscr{T}_{\delta}\right|$. We choose any ε such that $0<\varepsilon<1$ and choose \mathscr{T}_{δ} with $\delta<\frac{1}{2} \psi(\varepsilon)$. We assume that w is arc-sine on $[-1,1]$. Then by Lemma 3.1, we have $\lim _{n \rightarrow \infty} \sqrt[n]{ }\left(\left\|\omega_{n}(w, x)\right\|_{\mathscr{F}_{\delta}}\right)=\frac{1}{2}$, that is, for sufficiently large n,

$$
\left\|\omega_{n}(w, x)\right\|_{\mathscr{F}}^{8} \geqslant(1-\varepsilon)^{n} 2^{-n}
$$

By Lemma 3.2, \mathscr{T}_{δ} has a subset \mathscr{F}_{δ} of measure greater than $\psi(\varepsilon)\left|\mathscr{T}_{\delta}\right|$, where

$$
\begin{equation*}
\left|\omega_{n}(w, x)\right| \geqslant(1-\varepsilon)^{2 n} 2^{-n} . \tag{3.12}
\end{equation*}
$$

By construction, $\mathscr{J}_{\delta} \cap \mathfrak{M}_{\Delta}(w)$ has a common subset $\mathfrak{M}_{\varepsilon}$ of measure $\left|\mathfrak{M}_{\varepsilon}\right|>\frac{1}{2} \psi(\varepsilon)$, so (3.12) is valid for $x \in \mathfrak{M}_{\varepsilon}$. For the points

$$
x \in \mathfrak{M}_{\varepsilon} \subseteq \mathfrak{M}_{\Delta}(w)
$$

we have also $\omega(x) \geqslant \Delta$. From these and (3.1) we infer that, for sufficiently large n,

$$
\begin{aligned}
\frac{1}{\gamma_{n}{ }^{2}(w)}=\int_{-1}^{1} \omega_{n}{ }^{2}(w, x) w(x) d x & \geqslant \int_{\mathfrak{M}_{\varepsilon}} \omega_{n}{ }^{2}(w, x) w(x) d x \\
& \geqslant\left|\mathfrak{M}_{\varepsilon}\right| \Delta(1-\varepsilon)^{4 n} 2^{-2 n} \\
& \geqslant \frac{1}{2} \psi(\varepsilon) \Delta(1-\varepsilon)^{4 n} 2^{-2 n},
\end{aligned}
$$

that is,

$$
\varlimsup_{n \rightarrow \infty} \sqrt[n]{ } \sqrt{\left(\gamma_{n}(w)\right) \leqslant 2(1-\varepsilon)^{-2} .}
$$

Letting ε tend to zero, we see that (1.7) holds.
Theorem 3.1. Let w be arc-sine on $[-1,1]$; further let $\operatorname{supp} d \alpha \subseteq[-1,1]$ and let $\alpha^{\prime}(x) \geqslant K w(x)$ hold for a constant $K>0$ and almost every $x \in[-1,1]$; then also d α is arc-sine on $[-1,1]$.

Proof. Since $p_{n}(w)$ and $p_{n}(K w)$ have the same zeros, we can take $K=1$. We have

$$
\begin{align*}
\frac{1}{\gamma_{n}^{2}(w)} & =\inf _{Q \in \Re_{n}} \int_{-1}^{1} Q^{2}(x) w(x) d x \tag{3.13}\\
& \leqslant \int_{-1}^{1}\left\{\left[\gamma_{n}(d \alpha)\right]^{-1} p_{n}(d \alpha, x)\right\}^{2} w(x) d x \\
& \leqslant \frac{1}{\gamma_{n}^{2}(d \alpha)} \int_{-1}^{1} p_{n}^{2}(d \alpha, x) d \alpha(x)=\frac{1}{\gamma_{n}^{2}(d \alpha)} .
\end{align*}
$$

Since w is arc-sine on $[-1,1]$,

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \sqrt[n]{ }\left(\gamma_{n}(d x)\right) \leqslant 2 . \tag{3.14}
\end{equation*}
$$

Since $\operatorname{supp} d \alpha \subseteq[-1,1]$, we have $-1<x_{n n}(d \alpha)<x_{1 n}(d \alpha)<1$, so that by Lemma 2.1 and (3.14) $x_{1 n}(d \alpha) \rightarrow 1, x_{n n}(d \alpha) \rightarrow-1$. Thus the conditions of Theorem 1.1 are satisfied and consequently $d \alpha$ is arc-sine on $[-1,1]$.

4. Investigation of certain weights with infinite support

We denote by c_{1}, c_{2}, \ldots positive numbers independent of n but possibly dependent on the choice of the weight.

In [5], Freud introduced the weights

$$
w_{Q}(x)=\exp \{-2 Q(|x|)\} \quad(-\infty<x<\infty),
$$

where $Q(x)(0 \leqslant x<\infty)$ is a positive increasing differentiable function and $x^{\rho} Q^{\prime}(x)(x \geqslant 0)$ is increasing for some $\rho<1$. By our condition,

$$
\begin{align*}
Q(x) & =Q(0)+\int_{0}^{x} Q^{\prime}(t) d t \leqslant Q(0)+x^{\rho} Q^{\prime}(x) \int_{0}^{x} t^{-\rho} d t \tag{4.1}\\
& =Q(0)+(1-\rho)^{-1} x Q^{\prime}(x)
\end{align*}
$$

so the moments $\mu_{m}\left(w_{Q}\right)$ are finite because

$$
Q(x) \geqslant Q(1)+(1-\rho)^{-1} Q^{\prime}(1) x^{1-\rho} .
$$

We denote by $q_{s}(s \geqslant 0)$ the solution of the equation $q_{s} Q^{\prime}\left(q_{s}\right)=s$.
It is proved in [5] that

$$
\begin{equation*}
c_{1} q_{n} \leqslant x_{1 n}\left(w_{Q}\right) \leqslant c_{2} q_{n} \tag{4.2}
\end{equation*}
$$

Since w_{Q} is even, we have

$$
\begin{equation*}
x_{n n}\left(w_{Q}\right)=-x_{1 n}\left(w_{Q}\right) \tag{4.3}
\end{equation*}
$$

Theorem 4.1. If w_{Q} is arc-sine then (1.5) and (1.6) are satisfied.
Note that Theorem 4.1 and Theorem 1.5 together show that (1.5) as well as (1.6) are necessary and sufficient conditions for w_{Q} to be arc-sine.

Proof. By assumption $\left(\left[x_{1 n}\left(w_{Q}\right)\right]^{-n}\left[\gamma_{n}\left(w_{Q}\right)\right]^{-1} p_{n}\left(w_{Q}, x_{1 n} x\right)\right)=\left(\omega_{n}\left(w_{Q}, x\right)\right)$ is a sequence of monic polynomials which is arc-sine on $[-1,1]$. Let $\mathscr{T}(\eta)=[-\eta, \eta]$. By Lemma 3.1, we have, for every $0<\eta<1$ and every $\varepsilon>0$,

$$
\begin{equation*}
\left\|\omega_{n}\left(w_{Q}\right)\right\|_{\mathscr{F}(\eta)} \geqslant 2^{-n}(1-\varepsilon)^{n} \quad\left(n \geqslant c_{3}(\varepsilon)\right) . \tag{4.4}
\end{equation*}
$$

By Lemma 3.2, $\mathscr{T}(\eta)$ has a measurable subset $\mathscr{T}_{\varepsilon}(\eta)$ of measure at least $2 \eta \psi(\varepsilon)$, so

$$
\begin{equation*}
\left|\omega_{n}\left(w_{Q}, x\right)\right| \geqslant 2^{-n}(1-\varepsilon)^{2 n} \quad\left(x \in \mathscr{T}_{\varepsilon}(\eta), n \geqslant c_{3}(\varepsilon)\right) \tag{4.5}
\end{equation*}
$$

If $t \in \mathscr{T}_{\varepsilon}(\eta) \subseteq \mathscr{T}(\eta)$, we have by (4.2) and (4.3), provided that $\eta c_{2}<1$,

$$
\begin{align*}
-\log w_{Q}\left(t x_{1 n}\right) & \leqslant 2 Q\left(\eta x_{1 n}\right) \leqslant 2 Q(0)+(1-\rho)^{-1} \eta x_{1 n} Q^{\prime}\left(\eta x_{1 n}\right) \tag{4.6}\\
& \leqslant 2 Q(0)+(1-\rho)^{-1} c_{2} \eta q_{n} Q^{\prime}\left(\eta c_{2} q_{n}\right) \\
& \leqslant 2 Q(0)+(1-\rho)^{-1} c_{2} \eta\left(c_{2} \eta\right)^{-\rho} Q^{\prime}\left(q_{n}\right)=2 Q(0)+c_{4} \eta^{1-\rho} n
\end{align*}
$$

By the transformation $x=x_{1 n} t$,

$$
\begin{align*}
1= & \int_{-\infty}^{\infty} p_{n}^{2}\left(w_{Q}, x\right) w_{Q}(x) d x=\left[x_{1 n}\left(w_{Q}\right)\right]^{n+1} \gamma_{n}\left(w_{Q}\right) \tag{4.7}\\
& \quad \times \int_{\mathscr{F}_{\varepsilon}(\eta)} \omega_{n}^{2}\left(w_{Q}, t\right) w_{Q}\left(x_{1 n} t\right) d t \\
\geqslant & \mathscr{T}_{\varepsilon}(\eta) 2^{-2 n}(1-\varepsilon)^{4 n} \exp \left\{-2 Q(0)-c_{4} \eta^{1-\rho} n\right\} \\
\geqslant & c_{5} \eta \psi(\varepsilon) 2^{-2 n}(1-\varepsilon)^{4 n} \exp \left\{-c_{4} \eta^{1-\rho} n\right\}
\end{align*}
$$

the second half by (4.5) and (4.6). Since (4.7) must hold for arbitrary small η and ε, we infer that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\{\left[x_{1, n-1}\left(w_{Q}\right)\right]^{n-1 n-1} \sqrt{ }\left(\gamma_{n-1}\left(w_{Q}\right)\right)\right\} \leqslant 2 . \tag{4.8}
\end{equation*}
$$

The zeros of $p_{n}\left(w_{Q}\right)$ and $p_{n-1}\left(w_{Q}\right)$ separate each other, so

$$
x_{2 n}\left(w_{Q}\right)<x_{1, n-1}\left(w_{Q}\right)<x_{1 n}\left(w_{Q}\right) .
$$

Since w_{Q} is arc-sine by assumption, we have $x_{2 n}\left(w_{Q}\right) / x_{1 n}\left(w_{Q}\right) \rightarrow 1$; consequently $x_{1, n-1}\left(w_{Q}\right) / x_{1 n}\left(w_{Q}\right) \rightarrow 1$. Combining this with (4.8) and (4.3), we see that (1.5) is valid. By Theorem 1.1, this implies that (1.6) also is satisfied.

Remark. Erdős investigated \dagger in [2] the weights $w_{R}(x)=\exp \{-2 R(x)\}$ where the (not necessarily differentiable) function $R(x)$ satisfies, for every $\varepsilon>0$,

$$
\begin{equation*}
R(y)>2 R(x) \quad\left(|y|>(1+\varepsilon)|x|>c_{6}(\varepsilon)\right) \tag{4.9}
\end{equation*}
$$

It is proved in [2] that w_{R} is arc-sine and the proof implies that (1.6) is valid in this case.

Theorem 4.2. If, for an increasing subsequence $\left(n_{j}\right)$ of the natural numbers, we have

$$
\begin{equation*}
\varlimsup_{j \rightarrow \infty}\left\{n_{j}-1 \sqrt{ }\left(\gamma_{n_{j}-1}(d \alpha)\right)\left(x_{1 n}(d \alpha)-x_{n n}(d \alpha)\right) \leqslant 4\right. \tag{4.10}
\end{equation*}
$$

then, putting $x_{k n}=\frac{1}{2}\left(x_{1 n}+x_{n n}\right)+\frac{1}{2}\left(x_{1 n}-x_{n n}\right) \tau_{k n}$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} n_{j}^{-1} \sum_{k: \tau_{k_{n}} \geqslant T} 1=\frac{1}{\pi} \arccos T . \tag{4.11}
\end{equation*}
$$

Proof. If $n_{j}=j$, this is just Theorem 1.1. The proof of Theorem 4.2 follows by replacing n by n_{j} in the proof of Theorem 1.1. Details are left to the reader.

Theorem 4.3. If $Q^{*}(x)$ satisfies, besides the conditions indicated for $Q(x)$, the inequality

$$
\begin{equation*}
Q^{*}(2 x) \leqslant c_{7} Q^{*}(x) \tag{4.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} x_{1 n}\left(w_{Q^{*}}\right)^{n-1} \sqrt{ }\left(\gamma_{n-1}\left(w_{Q^{*}}\right)\right)>2 \tag{4.13}
\end{equation*}
$$

\dagger We have made an obvious change of notation.

Proof. Let $\left(n_{j}\right)$ be an increasing subsequence of the natural numbers for which

$$
\begin{equation*}
\lim _{j \rightarrow \infty} x_{1 n_{j}}\left(w_{Q^{*}}\right)^{n_{j}-1} \sqrt{ }\left(\gamma_{n_{j}-1}\left(w_{Q^{*}}\right)=\lim _{n \rightarrow \infty} x_{1 n}\left(w_{Q^{*}}\right)^{n-1} \sqrt{ }\left(\gamma_{n-1}\left(w_{Q^{*}}\right)\right) .\right. \tag{4.14}
\end{equation*}
$$

If (4.11) is not satisfied for the sequence (n_{j}) then (4.13) is a consequence of Theorem 4.2. Thus we can assume in what follows that (4.11) holds. We consider the monic polynomials of degree $n_{j}-1$

$$
\begin{equation*}
\omega_{n_{j}-1}^{*}(x)=2^{-n_{j}+m+2}\left(x_{1, n_{j}}\right)^{n_{j}-m-1} x^{m} T_{n_{j}-m-1}\left(x / x_{1, n_{j}}\right) . \tag{4.15}
\end{equation*}
$$

Here $x_{k n_{j}}=x_{k n_{j}}\left(w_{Q^{*}}\right)$. Then by the minimum property (3.13),

$$
\begin{align*}
\gamma_{n_{j}-1}{ }^{-2}\left(w_{Q^{*}}\right) & \leqslant \int_{-\infty}^{\infty}\left[w_{n_{j}-1}^{*}(x)\right]^{2} w_{Q^{*}}(x) d x \tag{4.16}\\
& =2^{-2 n_{j}+2 m+4}\left(x_{1, n_{j}}\right)^{2 n_{j}-2 m-2} \int_{-\infty}^{\infty} x^{2 m} T_{n_{j}-m-1}{ }^{2}\left(x / x_{1, n_{j}}\right) w_{Q^{*}}(x) d x
\end{align*}
$$

We apply the Gauss-Jacobi quadrature formula to the integral (4.16) and take $\left|T_{n}(x)\right| \leqslant 1$ for $|x| \leqslant 1$ into consideration; then

$$
\begin{align*}
& \int_{-\infty}^{\infty} x^{2 m} T_{n_{j}-m-1}^{2}\left(x / x_{1 n_{j}}\right) w_{Q^{*}}(x) d x \tag{4.17}\\
& \quad=\sum_{k=1}^{n_{j}} \lambda_{k n_{j}}\left(w_{Q^{*}}\right) x_{k n_{j}}^{2 m} T_{n_{j}-m-1}{ }^{2}\left(x_{k n_{j} /} / x_{1 n_{j}}\right) \\
& \quad \leqslant \sum_{k=1}^{n_{j}} \lambda_{k n_{j}}\left(w_{Q^{*}}\right) x_{k, n_{j}}^{2 m} \\
& \quad \leqslant\left(x_{1 n_{j}} / 4\right)^{2 m} \sum_{k=1}^{n_{j}} \lambda_{k n_{j}}\left(w_{Q^{*}}\right)+x_{1 n_{j}}^{2 m} \sum_{\left|x_{k n_{j}}\right|>x_{1 n_{j}, 4}} \lambda_{k n}\left(w_{Q^{*}}\right) .
\end{align*}
$$

By the quadrature formula,

$$
\begin{equation*}
\sum_{k=1}^{n_{j}} \lambda_{k, n_{s}}\left(w_{Q^{*}}\right)=\mu_{0}\left(w_{Q^{*}}\right) . \tag{4.18}
\end{equation*}
$$

It follows from (4.11) that, for sufficiently great n_{j}, there exist roots $x_{i n_{j}}$ of $p_{n_{j}}\left(w_{Q^{*}}\right)$ situated in $\left[x_{1 n_{j}} / 5, x_{1 n_{j}} / 4\right]$. Thus by the Markov-Stieltjes inequality ([4], § 1.5) and by symmetry,

$$
\begin{equation*}
\sum_{x_{k, n_{j}}<-x_{1, n_{j}} / 5} \lambda_{k, n_{j}}\left(w_{Q^{*}}\right)=\sum_{x_{k, n_{j}}>x_{1, n_{j}} / 5} \lambda_{k, n_{j}}\left(w_{Q^{*}}\right) \leqslant \int_{x_{1, n_{j}} / 5}^{\infty} w_{Q^{*}}(t) d t \tag{4.19}
\end{equation*}
$$

Since $x^{\rho} Q^{\prime}(x)$ is increasing, we have

$$
Q^{*}(x) \geqslant \int_{\frac{1}{2} x}^{x} Q^{*}(t) d t \geqslant Q^{*}\left(\frac{1}{2} x\right)\left(\frac{1}{2} x\right)^{\rho} \int_{\frac{1}{2} x}^{x} t^{-\rho} d t \geqslant c_{8} x Q^{* \prime}(x) .
$$

Denoting by q_{s}^{*} the solution of the equation $q_{s}^{*} Q^{\prime}\left(q_{s}^{*}\right)=s$, we obtain, by (4.2) and (4.12),

$$
\left\{\begin{array}{l}
Q^{*}\left(\frac{1}{5} x_{1 n}\right) \geqslant Q^{*}\left(\frac{1}{5} c_{1} q_{n}^{*}\right) \geqslant \frac{1}{5} c_{1} c_{8} q_{n}^{*} \tag{4.20}\\
Q^{*}\left(\frac{1}{10} c_{1} q_{n}^{*}\right) \geqslant c_{9} q_{n}^{*} Q^{*}\left(q_{n}^{*}\right)=c_{9} n .
\end{array}\right.
$$

By (4.19) and (4.20),

$$
\begin{aligned}
\sum_{\left|x_{k, x_{j}}\right|>x_{1 n_{j}} / 4} \lambda_{k n_{j}} & \leqslant 2 \int_{x_{1, n_{j} / 5}} e^{-2 Q^{*}(x)} d x \\
& \leqslant 2 \exp \left\{-Q^{*}\left(x_{1, n_{j}} / 5\right\} \int_{0}^{\infty} e^{-Q^{*}(x)} d x \leqslant c_{10} e^{-c_{g_{0}} n}\right.
\end{aligned}
$$

By formulae (4.17)-(4.20),

$$
\int_{-\infty}^{\infty} x^{2 m} T_{n_{j}-m-1}{ }^{2}\left(x / x_{1, n_{j}}\right) w_{Q^{*}}(x) d x \leqslant x_{1, n_{j}}{ }^{2 m}\left[\mu_{0}\left(w_{Q^{*}}\right) 4^{-2 m}+c_{10^{-2}} e^{-c_{Q} n}\right] ;
$$

hence, by (4.16),

$$
\begin{equation*}
\gamma_{n_{j}-1}{ }^{-2}\left(w_{Q^{*}}\right)\left(x_{1, n_{j}}\right)^{-2 n_{j}+2} 2^{2 n_{j}-2} \leqslant 4\left[\mu_{0}\left(w_{Q}^{*}\right) 2^{-m}+c_{10} 2^{m} e^{-c_{0} n_{j}}\right] \tag{4.21}
\end{equation*}
$$

Up to now we have not disposed of the integer m. Let us put $m=\left[c_{9} n_{j} / 2 \log 2\right]$, that is, $2^{m} \sim \exp \left\{\frac{1}{2} c_{9} n_{j}\right\}$. Inserting this (4.21), we see that the limit (4.14) is greater than $2 e^{\frac{1}{c} c_{9}}>2$.

Corollary. Let $w_{Q}(x)=\exp \{-2 Q(|x|)\}$, where $Q(x)$ is differentiable, $x^{\rho} Q^{\prime}(x)(x \geqslant 0)$ is increasing for some $\rho<1$, and $0<Q^{\prime}(2 x) \leqslant c_{7} Q^{\prime}(x)$ for $x>0$; then w_{Q} is not arc-sine.

This corollary is a consequence of Theorem 4.1 and Theorem 4.3 since $x_{n n}\left(w_{Q}\right)=-x_{1 n}\left(w_{Q}\right)$. We observe that our corollary implies that $w_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right)$ is not arc-sine for any $\alpha>0$. This was stated without proof by Erdős in [2].

As a last item of our paper, we show that the sufficient condition (4.10) is not necessary for (4.11).

Lemma 4.1. If the weight $W(x)$ is even and decreasing for $x>0$, we have, for every $\xi>0$ and $\eta>0$,

$$
\begin{align*}
\frac{1}{2}\left[c_{11} \eta^{2 n-1} W(\eta)\right]^{1 /(2 n-2)} & \leqslant x_{1 n}(W) \tag{4.22}\\
& \leqslant \xi+c_{12}(2 / \xi)^{2 n-1} \int_{\xi}^{\infty} x^{2 n-1} W(x) d x
\end{align*}
$$

Lemma 4.1 is proved in [5].
Let $n_{0}=0, n_{1}=1, \ldots, n_{k+1}=e^{n_{k}}(k=1,2, \ldots)$ and

$$
\begin{equation*}
W(x)=e^{-n_{k}} \quad\left(n_{k-1}<|x| \leqslant n_{k} ; k=1,2, \ldots\right) . \tag{4.23}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{n_{k}}^{\infty} x^{2 n_{k}} W(x) d x \leqslant 2 e^{-n_{k+1} / 2} \quad\left(k \geqslant c_{13}\right) . \tag{4.24}
\end{equation*}
$$

Inserting $\xi=\eta=n_{k}$ in (4.22), we get

$$
\begin{equation*}
c_{14} n_{k} \leqslant x_{1 n_{k}}(W) \leqslant n_{k}+c_{15} \tag{4.25}
\end{equation*}
$$

We put $\nu=n_{k}, \nu_{1}=n_{k-1}=\log \nu, \mu=[\nu / \log \nu]+1$, and $x_{v}=x_{1 \nu}(W)$. The polynomial $x^{\mu} T_{\nu-\mu}\left(x / x_{\nu}\right)$ has leading coefficient $2^{\nu-\mu-1} x_{\nu}{ }^{-\nu+\mu}$; thus, by the extremum property of $\gamma_{\nu}(W)$,

$$
\begin{align*}
{\left[\frac{2^{\nu-\mu-1}}{\gamma_{\nu}(W) x_{\nu}^{\nu-\mu}}\right]^{2} \leqslant } & \int_{-\infty}^{\infty} x^{2 \mu}\left[T_{\nu-\mu}\left(x / x_{\nu}\right)\right]^{2} W(x) d x \tag{4.26}\\
\leqslant & 2 \int_{0}^{\nu_{1}} x^{2 \mu} d x+2 e^{-\nu} \int_{\nu_{1}}^{x_{\nu}} x^{2 \mu} d x \\
& +2^{2 \nu} x_{\nu}^{-2 \nu+2 \mu} \int_{x_{\nu}}^{\infty} x^{2 \nu} W(x) d x \\
\leqslant & 2 \nu_{1}^{2 \mu+1}+2 e^{-\nu} x_{\nu}^{2 \mu+1}+2^{2 \nu} x_{\nu}^{2 \mu+1} \exp \left\{-e^{-\nu} / 2\right\} \\
\leqslant & c_{16^{2}} x_{\nu}^{2 \mu+1} e^{-\nu} \exp \left\{c_{17} \frac{\nu \log \log \nu}{\log \nu}\right\}
\end{align*}
$$

In consequence of (4.26) and $x_{\nu}=x_{1 \nu}=-x_{\nu p}$, the left-hand side of (4.10) is greater than $4 \sqrt{ } e>4$, that is, (4.10) is not valid for the choice of $d \alpha=W d x$. In spite of that, we show that W is arc-sine.

Let us suppose the contrary. Then there exists $\delta>0$ such that the maximum modulus of the monic polynomial of degree ν in t, $\gamma_{\nu}{ }^{-1}(W) x_{\nu}{ }^{-\nu} p_{\nu}\left(W, x_{\nu} t\right)(t \in[-1,1])$, exceeds $2^{-\nu}(1+\delta)^{2 \nu}$ and consequently, by Lemma 3.2,

$$
\begin{equation*}
\left|p_{\nu}(W ; x)\right| \geqslant \gamma_{\nu}(W) x_{\nu}^{\nu} 2^{-\nu}(1+\delta)^{\nu} \quad\left(x \in M_{\nu}\right), \tag{4.27}
\end{equation*}
$$

where $M_{\nu} \subseteq\left[-x_{\nu}, x_{\nu}\right]$ and $\left|M_{\nu}\right|>2 x_{\nu} \psi(\delta)$. Since $x_{\nu}<\nu+O(1)$, (4.27) is valid for a subset M_{ν}^{*} of $[-\nu, \nu]$ satisfying $\left|M_{\nu}^{*}\right|>x_{\nu} \psi(\delta)$ if ν is sufficiently great. We infer that

$$
\begin{align*}
1 & =\int_{-\infty}^{\infty} p_{\nu}^{2}(W, x) W(x) d x \geqslant \int_{M_{\nu}^{*}} p_{\nu}^{2}(W, x) W(x) d x \tag{4.28}\\
& \geqslant x_{\nu} \psi(\delta) \gamma_{\nu}{ }^{2}(W) x_{\nu}^{2 \nu} 2^{-2 \nu}(1+\delta)^{\nu} e^{-\nu}
\end{align*}
$$

but (4.28) contradicts (4.26), which means that our assumption that W is not arc-sine was false. Thus W furnishes the example indicated.

5. On determining sets

The lower capacity $\mathscr{L}(A)$ of a set $A \subseteq[-1,1]$ is defined by

$$
\begin{equation*}
\mathscr{L}(A)=\inf _{\substack{B \subseteq A \\|A| B \mid=0}} C(B) \tag{5.1}
\end{equation*}
$$

Lemma 5.1 (Ullman). A measurable subset A of $[-1,1]$ is a determining set if and only if

$$
\begin{equation*}
\mathscr{L}(A)=\frac{1}{2} \tag{5.2}
\end{equation*}
$$

Proof. (5.2) is necessary by [9], Theorem 1.2, and [9], Lemma 1.2. In order to prove that (5.2) is sufficient, it is enough to show that the following additional hypothesis, assumed in [9], Theorem 1.2, is satisfied: for every interval $\mathscr{T} \subseteq[-1,1]$ we have $|A \cap \mathscr{T}|>0$. In fact, supposing the contrary, we would have $\frac{1}{2}=\mathscr{L}(A) \leqslant C([-1,1] \backslash \mathscr{T})<\frac{1}{2}$ (the last part: for example, [9], Lemma 5.4). Thus $|A \cap \mathscr{T}|>0$.

In order to prove Theorem 1.3, we prove a more general result concerning stability of capacities. \dagger

Let ν be a σ-additive Borel measure on the plane and A a ν-measurable point set of the plane; we denote the outer measure of B by $\nu(B)$. We define the lower ν-capacity $C_{\nu}(A)$ of A as follows: for $\varepsilon>0$, let $\mathscr{K}(\varepsilon)$ denote the set of compact subsets K of A satisfying $\nu(A \backslash K)<\varepsilon$. Let

$$
\begin{equation*}
C_{\varepsilon}(\nu, A)=\inf _{K \in \mathscr{K}(\varepsilon)} C(K) \tag{5.3}
\end{equation*}
$$

clearly $C_{\varepsilon}(\nu, A)$ is an increasing function of ε. We define

$$
\begin{equation*}
C(\nu, A)=\lim _{\varepsilon \rightarrow 0} C_{\varepsilon}(\nu, A) \tag{5.4}
\end{equation*}
$$

Lemma 4.2. For every ν-measurable plane set A, there exists a subset $A^{\nu} \subseteq A$ for which $\nu\left(A \backslash A^{\nu}\right)=0$ and

$$
\begin{equation*}
C\left(A^{\nu}\right)=C(\nu, A) \tag{5.5}
\end{equation*}
$$

Proof. Let $\varepsilon_{n}=2^{-n}(n=1,2, \ldots)$. By our definitions, there exist compact sets $K \subseteq A(n=1,2, \ldots)$ such that

$$
\begin{equation*}
\nu\left(A \backslash K_{n}\right) \leqslant \varepsilon_{n} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{e_{n}}(\nu, A) \leqslant C\left(K_{n}\right) \leqslant C_{e_{n}}(\nu, A)+\varepsilon_{n} \tag{5.7}
\end{equation*}
$$

We apply the same notations as in Tsuji's book [11] and let μ_{n} be the equilibrium distribution on K_{n} and $\mathscr{U}\left(\mu_{n}, z\right)$ the conductor potential of

[^0]K_{n}. By [11], §II.2, there exists a sequence $\left(n_{j}\right)$ such that $\mu_{n_{j}}$ converges to a Borel measure μ. We define
$$
A^{\nu}=\lim _{j \rightarrow \infty} K_{n}=\bigcup_{m=1}^{\infty} \bigcap_{j=m}^{\infty} K_{n_{j}} \subseteq A .
$$

It follows that

$$
\nu\left(A \backslash A^{\nu}\right) \leqslant \sum_{j=m}^{\infty} v\left(A \backslash K_{n_{j}}\right) \leqslant \sum_{j=m}^{\infty} \varepsilon_{n_{j}} \leqslant 2^{-m+1},
$$

that is $\nu\left(A \backslash A^{\nu}\right)=0$, as required.
We say that a property is satisfied almost everywhere (in short, a.e.) if the exceptional set is a Borel set of zero capacity. By the definition of μ_{n}, we have, for every z,

$$
\begin{equation*}
\mathscr{U}\left(\mu_{n_{g}}, z\right) \leqslant \log \frac{1}{C\left(K_{n_{s}}\right)} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{U}\left(\mu_{n_{j}}, z\right)=\log \frac{1}{C\left(K_{n_{j}}\right)} \quad \text { a.e. } z \in K_{n_{j}} . \tag{5.9}
\end{equation*}
$$

By the lower-envelope principle (de la Vallée-Poussin, [10], II.69, or [9], Lemma 5.3) we infer from (5.10) (5.7), (4.8), and (5.9) that

$$
\begin{equation*}
\mathscr{U}(\mu, z)=\varliminf_{j \rightarrow \infty} \mathscr{U}\left(\mu_{n_{j}}, z\right) \leqslant \lim _{\varepsilon \rightarrow 0} \log \frac{1}{C_{\varepsilon}(v, A)}=\log _{\frac{1}{C(v, A)}} \quad \text { a.e. } z \tag{5.10}
\end{equation*}
$$

and that the sign of equality holds in (5.10) a.e. $z \in A^{\nu}$. In consequence of these properties, μ is the equilibrium distribution of a set covering A^{ν} and $C\left(A^{\nu}\right) \leqslant C(\nu, A)$.

Since $A^{\nu} \subseteq A$ and $\nu\left(A \backslash A^{\nu}\right)$, we have $C_{\varepsilon}(\nu, A) \leqslant C\left(A^{\nu}\right)$ for every $\varepsilon>0$; when $\varepsilon \rightarrow 0$, we get $C\left(A^{\nu}\right)=C(\nu, A)$.

Proof of Theorem 1.3. Let λ denote the linear Lebesgue measure on $[-1,1]$. By Lemma 5.2 we have, for every measurable $A \subseteq[-1,1]$, $\mathscr{L}(A) \leqslant C\left(A^{\lambda}\right)=C(\lambda, A)$. By [9] (see Lemma 3.3), there exists a subset $A_{0} \subseteq A$ satisfying $C\left(A_{0}\right)=\mathscr{L}(A)$ and $\left|A \backslash A_{0}\right|=0$. By (4.3)

$$
C_{e}(\lambda, A) \leqslant C\left(A_{0}\right)=\mathscr{L}(A)
$$

for every $\varepsilon>0$. This implies $C(\lambda, A) \leqslant \mathscr{L}(A)$, so $\mathscr{L}(A)=C(\lambda, A)$. For a 'good set' A, we have, by Definition 1.2, $C(\lambda, A)=\frac{1}{2}$, that is, $\mathscr{L}(A)=\frac{1}{2}$. Now Theorem 1.3 follows from Lemma 5.1.

REFERENCES

1. S. N. Bernstein, Legons sur les propriêtés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle (Gauthier-Villars, Paris, 1926).
2. P. Erdős, 'On the distribution of the roots of orthogonal polynomials', Proc. Conf. on Constructive Theory of Functions (Budapest, 1969), ed. G. Alexits and S. B. Steckhin (Akadémiai Kiadó, Budapest, 1972).
3. - and P. Turân, 'On interpolation, III', Ann. of Math. 41 (1940) 510-õ5.
4. G. Fredd, Orthogonale polynome (Birkhäuser, Basel, 1969); English trans. by L. Földes (Pergamon, New York, 1971).
5. - 'On the greatest zero of an orthogonal polynomial, II', Acta Sci. Math. (Szeged), to appear.
6. - 'On a class of sets introduced by P. Erdős', Proc. Internat. Colloq. on infinite and finite sets (Keszthely, 1973).
7. L. Ja. Gerontmus, Orthogonal polynomials (Consultants' Bureau, New York, 1961).
8. E. J. Remez, 'Sur une propriété des polynomes de Tchebycheff', Commun. Inst. Sci. Kharkow 13 (1936) 93-95.
9. J. L. Ullman, 'On the regular behaviour of orthogonal polynomials', Proc. London Math. Soc. (3) 24 (1972) 119-48.
10. Ch. J. de la Vallée-Poussin, Le potentiel logarithmique (Gauthier-Villars, Paris, 1949).
11. M. Tsudi, Potential theory (Maruzen, Tokyo, 1959).

Mathematical Institute
Hungarian Academy of Sciences Budapest
Réaltanoda U 13-15
Hungary

[^0]: \dagger A detailed proof of the following Lemma 5.2 was published by Freud in [6]. Here we repeat the proof briefly.

