On the Distribution of Values of Certain Divisor Functions

P. Erdös
Mathematical Institute of the Hungarian Academy of Sciences, Budapest

AND
R. R. Hall

Department of Mathematics, Unitersity of York, Heslington, York, England
Communicated July 7, 1971

Let $\left\{\epsilon_{0}\right\}$ be a sequence of nonnegative numbers and $f(n)=\Sigma e_{d}$, the sum being over divisors d of n. We say that f has the distribution function F if for all $c>0$, the number of integers $n<x$ for which $f(n)>c$ is asymptotic to $x F(c)$, and we investigate when F exists and when it is continuous.

Let $\left\{\epsilon_{d}\right\}$ be a sequence of nonnegative numbers and

$$
f(n)=\sum_{d \mid n} \epsilon_{d} .
$$

Is it true that for all $c \geqslant 0$,

$$
\sum_{\substack{n<\pi \\ f(n)>c}} 1 \sim x F(c)
$$

for some function $F(c)$ depending only on the value of c ? If so, it is plain that $0 \leqslant F(c) \leqslant 1$; moreover, F is nonincreasing. If ϵ_{d} is large enough, say $\epsilon_{d}=1$ for all d so that $f(n)=\tau(n)$, then $F(c)=1$ identically. Therefore, it is interesting to ask under what circumstances F exists and

$$
\operatorname{Lt}_{c \rightarrow \infty} F(c)=0 .
$$

In this case, we say that f has the distribution function F. We prove the following:

Theorem. The result holds if ${ }^{1}$

$$
\epsilon_{d}=1 /(\log d)^{x} \quad \text { or } \quad \epsilon_{d}=2-\log \log d-(a+B)(2 \log \log d \cdot \log \log \log \log d)^{2 / 2}
$$

for every $\alpha>\log 2$ and $\beta>0$. F is continuous and tends to zero as c tends to infinity; in fact, as $\delta \rightarrow 0$, we have that

$$
F(c-\delta)-F(c) \ll(\log (1 / \delta))^{-1 / 2}
$$

Here the constant implied by Vinogradov's notation $\&$ is independent of c. The lower bound $\log 2$ is best possible: if $\alpha=\log 2$, then the normal order of $f(n)$ tends to infunity with n. The second form of ϵ_{d} shows precisely how large it can be; in this case, the normal order of $f(n)$ tends to infinity if $\beta<0$.

We also show that in the case

$$
f(n ; q, a)=\sum_{\substack{i, n \\ d=a(\bmod \varphi)}} \epsilon_{d}, \quad(a, q)=1,
$$

we have

$$
\sum_{\substack{n<x \\ f(n ; q, a)>c}} 1 \sim x F(c ; q, a),
$$

where $F(c ; q, a)$ has similar properties to $F(c)$. It would be interesting to know how $F(c ; q, a)$ varies with q and a, and we hope to investigate this question in a later paper. We now give the
Proof of the Theorem. We let

$$
f_{k}(n)=\sum_{d \mid n} \epsilon_{d}, \quad d \text { has no prime factor }>k
$$

Since

$$
\sum_{\substack{n i-1 \\ r_{k}(n)>c}}^{\infty} \frac{1}{n^{s}}=\zeta(s) \prod_{p<s k}\left(1-\frac{1}{p^{v}}\right) \sum_{m a N_{b}(e)} \frac{1}{m^{n}},
$$

where $M_{k}(c)$ is the set of integers m having no prime factor $>k$ and for which $f(m)=f_{k}(m)>c$, we have

$$
\sum_{\substack{n \in \infty \\ t_{k}(m)>c}} 1 \sim x F_{k}(c)
$$

[^0]for all $c \geqslant 0$, and
$$
F_{k}(c)=\prod_{\nu \leqslant b}\left(1-\frac{1}{p}\right) \sum_{m \in M_{k}+\epsilon} \frac{1}{m} .
$$

The sequence $\left\{F_{k}(c)\right\}$ is monotonic increasing and bounded above by 1 . Hence,

$$
0 \leqslant F^{*}(c)=\operatorname{Lt}_{k \rightarrow \infty} F_{k}(c) \leqslant 1
$$

is well-defined and is the intuitive value of $F(c)$ if F exists. We start by looking for upper and lower bounds for the sum

$$
\sum_{\substack{n \in=\sum_{i}^{2} \\ f_{n}(n)>c}} 1
$$

As it is rather easier, we begin with the
Lower Bound. Since $f(n) \geqslant f_{k}(n)$, we have for all k that

$$
\begin{aligned}
\sum_{\substack{n \in x \\
f(n)>c}} 1 & \geqslant \sum_{\substack{n<x \\
f_{k}(n)>c}} 1 \\
& \geqslant \sum_{n<z} \sum_{\substack{m \mid n \\
m=M \in(0) \\
(n / m, P(k))-1}} 1,
\end{aligned}
$$

where $P(k)$ is the product of all primes $\leqslant k$. This is

$$
\sum_{m \in M_{k}(c)} \sum_{\substack{r \leqslant k=(m \\(r, P\{k)-1}} 1 \geqslant \sum_{\substack{m \propto M_{k}(c) \\ m<H}}\left(\frac{x}{m} \prod_{p \leqslant k t}\left(1-\frac{1}{p}\right)-2^{\pi(k)}\right)
$$

for any value of H. We choose this rather less than x to limit the error term arising from the $2^{\mathrm{o}(k)}$. This is

$$
\geqslant x F_{k}(c)-2^{\pi(x)} H-x \prod_{y<k}\left(1-\frac{1}{p}\right) \sum_{\substack{m>H \\ m \in M_{k}(e)}} \frac{1}{m}
$$

The last sum on the right does not exceed

$$
\frac{1}{H^{1 / 2}} \prod_{p / \alpha}\left(1-\frac{1}{p^{1 / 2}}\right)^{-1} \leqslant \frac{1}{H^{1 / 2}} \exp \left(\frac{A_{1} k^{1 / 2}}{\log k}\right)
$$

where A_{1} is an absolute constant. We select $H=x^{2 / 3}$, and we deduce that

$$
\sum_{\substack{n \in \pi \\\left(n^{2}\right)>c}} 1 \geqslant x F_{k}(c)+O\left(x^{2 / 2} 2 \pi(k)\right) .
$$

If now $k \rightarrow \infty$ with x so that $2^{\text {n }}(t)=o\left(x^{1 / 9}\right)$, we have

$$
\sum_{\substack{x \ll \\ f(n)>v}} 1 \geqslant x\left(F^{*}(c)+o(1)\right)+o(x)=x F^{*}(c)+o(x) .
$$

As a particular case, if $F^{*}(c)=1$ identically, then F exists and $F(c)=1$ for all c. Note that so far we have only used the fact that $\epsilon_{d} \geqslant 0$ for all d.

Upper Bound. For all $k>0$ and $\delta>0$, we have

Examining the first sum on the right, we have
the last sum being restricted to m 's having no prime factor exceeding k. This is

$$
\leqslant x F_{k}(c-\delta)+2^{v(\alpha)} H+\frac{x}{H^{1 / 2}} \exp \left(\frac{A_{1} k^{1 / 2}}{\log k}\right)
$$

and, as before, we select $H=x^{2 / a}$ and require that

$$
2^{n \mid 21}=o\left(x^{1 / 2}\right) .
$$

For this range of values of k, we deduce that

We have to show that if $k \rightarrow \infty$ and $\delta \rightarrow 0$ as $x \rightarrow \infty$, then $F_{2}(c-8)-F_{k}(c)=o(1)$, and our method also shows that F is continuous. Now

$$
F_{2}(c-\delta)-F_{k}(c)=\prod_{\gamma<1}\left(1-\frac{1}{p}\right) \sum_{c-\delta c \pi=c e} \frac{1}{m},
$$

all the prime factors of m being $\leqslant k$. Since

$$
f(m d) \geqslant f(m)+\sum_{p \mid d, p+m} \epsilon_{p} .
$$

if d has any prime factor not dividing m for which $\epsilon_{p} \geqslant \delta$, not both m and $m d$ contribute to Σ^{\prime}, Let

$$
Q(k, \delta)=\left\{p ; p \leqslant k \text { and } \epsilon_{\mathrm{p}} \geqslant \delta\right\}
$$

and $R(k, \delta)$ be the maximal sum of the form

$$
\sum^{N} 1 / d
$$

where every prime factor of d belongs to $Q(k, \delta)$ and if d_{1} and d_{2} both contribute to $\sum^{\prime \prime}$ and $d_{1} \mid d_{2}$, then d_{2} has no prime factor not dividing d_{1}. Then

$$
\sum_{(0-\delta<j(m)<a}^{\prime} 1 / m \leqslant \prod_{\substack{p<k \\ p \in O(k, \delta)}}\left(1-\frac{1}{p}\right)^{-1} R(k, \delta)
$$

and

$$
F_{k}(c-\delta)-F_{k}(c) \leqslant \prod_{p \in O(k, \delta)}\left(1-\frac{1}{p}\right) R(k, \delta) .
$$

Now let $\tau_{n}^{*}(n)$ denote the number of divisors d of n which contribute to the maximal sum $R(k, \delta)$. Then for $y \geqslant 0$,

$$
\begin{aligned}
y R(k, \delta) & \geqslant \sum_{n<j} \tau_{k}^{\prime}(n)=\sum_{d \leqslant y}\left[\frac{y}{d}\right] \\
& \geqslant y\left\{R(k, \delta)-\sum_{d>y} \cdot \frac{1}{d}\right\}-\sum_{d<y}^{\prime \prime} 1 \\
& \geqslant y R(k, \delta)-2 y^{1 / 2} \prod_{p=o(k, \delta)}\left(1-\frac{1}{p^{1 / 2}}\right)^{-1},
\end{aligned}
$$

and therefore

$$
R(k, \delta)=\underset{y \rightarrow 0}{\mathrm{Lt}} \frac{1}{y} \sum_{n \zeta y} \tau_{k}^{\prime \prime}(n) .
$$

Now let $n=m h$, where m is the largest divisor of n all of whose prime factors belong to $Q(k, \delta)$. Thus

$$
\tau_{k}^{\prime \prime}(n)=\tau_{k}^{q}(m)
$$

By a result of de Bruijn, Tengbergen, and Kruyswijk [2], we may split the divisors of m into disjoint symmetric chains. A chain is a sequence of integers each dividing the next, the quotient being a prime; it is symmetric in the sense that the total number of prime factors of its first
and last members equals the number of prime factors of m. Ian Anderson [3] showed that the number of chains is

$$
\ll \tau(m) / \omega(m)^{1 / 2} .
$$

Now suppose that two divisors d_{1}, d_{2} of n (and so of m) contributing to $R(k, \delta)$ belong to the same chain, so that one divides the other, say $d_{1} \mid d_{2}$. Then d_{1} and d_{2} have the same prime factors. Hence, $\tau_{k}^{\prime}(m)$ does not exceed the number of chains times the maximal number of divisors of m all of which have the same prime factors. If

$$
m=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{r}^{\alpha_{r}}, \quad \hat{m}=p_{1} p_{2} \cdots p_{r},
$$

this is $\alpha_{1} \alpha_{2} \cdots \alpha_{r}=\tau(m / \hat{m})$. Therefore

$$
\tau_{k}^{z}(n) \ll \frac{\tau(m) \tau(m / \hat{m})}{(\omega(m))^{1 / 2}} .
$$

Hence for any $H>0$,

$$
\sum_{n>y} \tau_{n}^{*}(n) \ll 2^{H} y+\frac{1}{H^{1 / 2}} \sum_{n<v} \tau(m) \tau(m / m) .
$$

Now

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\tau(m) \tau(m / \hat{m})}{n^{*}} & =\prod_{y \in O(k, \delta)}\left(1-\frac{1}{p^{*}}\right)^{-1} \prod_{y \in O(x, \delta)}\left(1+\frac{1 \cdot 2}{p^{n}}+\frac{2 \cdot 3}{p^{20}}+\cdots\right) \\
& =\zeta(s) \prod_{y \in O(k, \Delta)}\left(1+\frac{1}{p^{n}}+\frac{4}{p^{2}}+\frac{6}{p^{3 \pi}}+\frac{8}{p^{4 \pi}}+\cdots\right) \\
& =\zeta(s) \prod_{p \in O(k, \delta)}\left(1-\frac{1}{p^{n}}\right)^{-1} \cdot\left(1+\frac{3}{p^{2 \theta}}+\frac{2}{p^{3 \theta}}+\frac{2}{p^{4 \theta}}+\cdots\right)
\end{aligned}
$$

so that

$$
\sum_{n \leqslant y} \tau(m) \tau(m / \hat{m}) \sim y \prod_{p \in O k, \delta)}\left(1-\frac{1}{p}\right)^{-1}\left(1+\frac{3 p-1}{p^{3}-p^{2}}\right) .
$$

Setting

$$
H=\sum_{p \in O(k, s)} \frac{1}{p},
$$

we deduce that

$$
\sum_{n \leqslant V} \tau_{k}^{z}(n) \ll y\left(\sum_{p \in O(k, s)} \frac{1}{p}\right)^{-1 / 2} \prod_{p \in O(k, 0)}\left(1-\frac{1}{p}\right)^{-1}
$$

so that

$$
F_{k}(c-\delta)-F_{k}(c) \ll T(k, \delta)=\left(\sum_{p \in O(k, \delta)} \frac{1}{p}\right)^{-1 / 2} .
$$

We now have that

$$
\sum_{\substack{n<x \\ f(n)>e}} 1 \leqslant x F^{*}(c)+\sum_{\substack{n< \pm f(m)-T_{k}(m) \geqslant 0}} 1+O(x T(k, \delta))+o(x) .
$$

To ensure that $T(k, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ and $k \rightarrow \infty$ with x, we require only
Condition 1. The series

$$
\sum_{s_{p}>0} \frac{1}{p}
$$

is divergent.
This is of course satisfied by the sequence $\left\{\epsilon_{d}\right\}$ in the theorem. We also introduce

Condition 2. If p is a prime, then $\epsilon_{p m} \leqslant \epsilon_{p}$ for all integers m.
This is convenient and requires rather less than that the sequence $\left\{\epsilon_{d}\right\}$ is nonincreasing, although both those under consideration are.

Now let d be a divisor of n whose prime factors all exceed k, and t a divisor none of whose prime factors exceed k. Clearly, every divisor of n can be written uniquely in the form $d t$, and so

$$
f(n)-f_{k}(n)=\sum_{\substack{d \| n \\ d=1}} \sum_{i \| n} \epsilon_{d t} .
$$

Next, assume that n has no repeated prime factor exceeding k. The number of exceptional $n \leqslant x$ is

$$
\leqslant \sum_{p>k} \frac{x}{p^{2}}=o\left(\frac{x}{k \log k}\right)=o(x)
$$

if $k \rightarrow \infty$ with x. If

$$
\tau_{l(k)}(n)=\sum_{l \mid n} 1,
$$

then by Condition 2, we have

$$
f(n)-f_{k}(n) \leqslant \tau_{k}(n)\left\{\epsilon_{j_{1}}+2 \epsilon_{p_{2}}+4 \epsilon_{p_{2}}+\cdots+2^{m-1} \epsilon_{p_{p_{m}}}\right\},
$$

where $p_{1}, p_{2}, \ldots, p_{m}$ are the prime factors of n exceeding k in any order; naturally, it is advantageous to select the order for which

$$
\epsilon_{p_{1}} \geqslant \epsilon_{p_{1}} \geqslant \epsilon_{p_{1}}, \ldots, \geqslant \epsilon_{刃_{m}},
$$

so that in the present application, $p_{1}, p_{2}, \ldots, p_{m}$ are simply in increasing order.

We need the following lemma, which is an application of Theorem VI of Erdös [1].

Lemma. Let $v_{y}(n)$ denote the number of distinct prime factors of n not exceeding y and λ be fixed >0. Then provided $y_{0} \geqslant y_{0}(\lambda)$, the numbers n for which

$$
\left|v_{y}(n)-\log \log y\right| \leqslant(1+\lambda)(2 \log \log y \cdot \log \log \log \log y)^{2 / 2}
$$

for all $y, y_{0} \leqslant y \leqslant n$, have a positive density; moreover, as $y_{0} \rightarrow \infty$, this density tends to 1 .

We apply this as follows: We let $y_{0}=k$ which tends to infinity with x; therefore, the lemma applies to almost all $n \leqslant x$. We take $p_{1}, p_{2}, \ldots, p_{m}$ to be in increasing order. Then for almost all $n \leqslant x$ and each $i, i \leqslant m$, we have

$$
i+\nu_{k}(n)=v_{p_{i}}(n) \leqslant \log \log p_{i}+(1+\lambda)\left(2 \log _{2} p_{i} \cdot \log _{4} p_{i}\right)^{1 / 2}
$$

using the notation $\log _{t+1} x=\log (\log x)$ for iterated logarithms. We choose λ strictly less than the β given in the theorem; say $\lambda=\beta / 2$.

We will prove the theorem only for the second form of ϵ_{d} as the other is treated similarly, except that we may use a weaker version of the above lemma which can be obtained from the familiar variance argument due to Turan. In the present case, since

$$
\epsilon_{p}=2^{-\log \log p-(1+8)\left(\left(2 \log _{2} p-\log _{4} p\right) s\right.},
$$

we have

$$
\begin{aligned}
\sum_{i=1}^{m} 2^{i-1} \epsilon_{p_{i}} & =\sum_{i=1}^{m} 2^{i-1-\log \log p_{i}-(1+2 i)\left(2 \log _{2} p_{i}+\log _{4} p_{i}\right)^{1 / v}} \\
& \leqslant 2^{-p_{k}(n)} \sum_{i=1}^{m} 2^{-\lambda\left(2 \log _{2} p_{i}+\log _{4} p_{i}\right) n}
\end{aligned}
$$

We may assume that for each i,

$$
2 \log \log p_{i} \geqslant i+\nu_{k}(n)
$$

and since
setting

$$
\nu=v_{k}(n), \quad \xi=\lambda\left(\log p_{4} p_{1}\right)^{1 / 2} \geqslant \frac{1}{4} \lambda\left(\log \log v_{1}(n)\right)^{1 / 2},
$$

we obtain

$$
\sum_{i=1}^{m} 2^{(-1} \epsilon_{p_{c}} \leqslant \frac{A_{4}}{\lambda^{2}} 2^{-v_{k}(n)-\left(1 / \Delta \lambda\left(m_{n}(n) \log \log v_{v_{3}}(n)\right)^{x / n}\right.}
$$

It follows that if $\omega_{k}(n)$ denotes the number of prime factors of n not exceeding k and counted according to multiplicity, then for almost all $n \leqslant x$,

$$
f(n)-f_{k}(n) \leqslant\left(A_{4} / \lambda_{2}\right) 2^{\omega_{2}(n)-\theta_{2}(n)-(1 / 4) \lambda\left(\varphi_{4}(n) \log \log _{v_{2}}(n)\right)^{1 / a}} .
$$

Since $k \rightarrow \infty$ with x, for almost all $n \leqslant x$, we have that

$$
v_{k}(n) \geqslant(1 / 2) \log \log k
$$

Also,

$$
\omega_{k}(n)-v_{k}(n) \leqslant(\lambda / 20)\left(\log _{2} k \cdot \log _{3} k\right)^{1 / 4} \leqslant(\lambda / 8)\left(v_{k}(n) \log \log \nu_{k}(n)\right)^{1 / 2} .
$$

To see this, note that

$$
\sum_{n \leqslant s}\left\{\omega_{k}(n)-v_{k}(n)\right\}=\sum_{p<k}\left[\frac{x}{p^{2}}\right]+\left[\frac{x}{p^{3}}\right]+\cdots \leqslant x \sum_{p} \frac{1}{p(p-1)} \leqslant x .
$$

Therefore, the number of integers $n \leqslant x$ for which $\omega_{k}(n)-\nu_{k}(n) \geqslant h$ does not exceed x / h. If

$$
h=(X / 20)\left(\log _{2} k \cdot \log _{8} k\right)^{1 / 2}
$$

this is $o(x)$ as $k \rightarrow \infty$ with x. Therefore, for almost all $n \leqslant x$,

$$
f(n)-f_{k}(n) \leqslant\left(A_{4} / \lambda^{2}\right) 2^{-(X / 2 \mathrm{an})\left(\log _{2} k \cdot \log _{\alpha^{2}}\right)^{1 / 2}}
$$

If $\delta \rightarrow 0$ more slowly than this, we deduce that

$$
\sum_{\substack{n<\varkappa_{n} \\(n)-f_{k}(m)<\theta}}=o(x)
$$

We deduce that

$$
\sum_{\substack{n \\ x(x)>x}} 1 \leqslant x F^{*}(c)+o(x)
$$

and combining this with the lower bound result, we get

$$
\sum_{\substack{n<\pi \\ f^{\prime}(n)>e}} 1 \sim x F(c), \quad F \equiv F^{*} .
$$

Next, we show that F is continuous. We know that

$$
F_{k}(c-\delta)-F_{k}(c) \ll T(k, \delta),
$$

the constant implied by Vinogradov's notation \ll being uniform in k, c, and δ. Letting $k \rightarrow \infty, Q(k, \delta)$ becomes

$$
\left\{p ; \epsilon_{p} \geqslant \delta\right\} .
$$

Hence

$$
\operatorname{Lt}_{k \rightarrow \infty} T(k, \delta) \ll(\log (1 / \delta))^{-1 / 2}
$$

for either form of $\left\{\epsilon_{i}\right\}$. Therefore F is continuous, indeed uniformly. It remains to show that

$$
\mathrm{Lt}_{c \rightarrow \infty} F(c)=0 .
$$

We do this by a treatment of $f(n)-f_{k}(n)$ similar to the above, but replacing "almost all $n \leqslant x$ " by "for all but at most ϵx integers $n \leqslant x$ " at each step. Given any $\epsilon>0$, there exists a k so large that on a sequence of integers of density at least $1-\epsilon$, we have

$$
f(n)-f_{k}(n) \leqslant\left(A_{4} / \lambda^{2}\right) 2^{\left.-(\lambda / v o)\left(\log _{2} k_{2} \cdot \log _{4}\right)^{2}\right)^{1 / 2}} \leqslant\left(A_{4} / \lambda_{2}\right) .
$$

Also

$$
\sum_{n \ll} \tau_{k}(n) \leqslant x \prod_{x<k}\left(1-\frac{1}{p}\right)^{-1} \leqslant A_{5} x \log k .
$$

Hence, the integers for which

$$
\tau_{k}(n) \geqslant\left(A_{5} / \epsilon\right) \log k
$$

have density not exceeding ϵ. Therefore, on a sequence of density $\geqslant 1-2 \epsilon$, we have

$$
f(n) \leqslant \tau_{k}(n)+\left(f(n)-f_{k}(n)\right) \leqslant\left(A_{4} / \lambda^{2}\right)+\left(A_{5} / \epsilon\right) \log k
$$

Setting

$$
c=c(\epsilon)=\left(A_{4} / \lambda^{2}\right)+\left(A_{3} / \epsilon\right) \log k, \quad k=k(\epsilon),
$$

we deduce that

$$
F(c) \leqslant 2 \epsilon,
$$

giving the result stated.
We conclude by deducing a similar result for $f(n ; q, a)$. We set

$$
\epsilon_{d}^{\prime}= \begin{cases}\epsilon_{d} & \text { if } d \equiv a(\bmod q), \\ 0 & \text { otherwise. }\end{cases}
$$

The treatment of the lower bound goes through as before, and that of the upper bound is largely unaltered, for we have

$$
f(n ; q, a)-f_{k}(n ; q, a) \leqslant f(n)-f_{k}(n),
$$

and so it is clear that

$$
\sum_{\substack{n<0 \\ f(n: q, a)-\int_{k}(n+2, a)>\infty}} 1 \leqslant \sum_{\substack{n<(x)>\\ f(n)-f_{k}(n)>\varnothing}} 1=o(x)
$$

from the above. In the treatment of $F_{k}(c-\delta ; q, a)-F_{k}(c ; q, a)$, we have to consider

$$
Q(k, \delta, q, a)=\left\{p: p \leqslant k \text { and } \epsilon_{p} \geqslant \delta, p \equiv a(\bmod q)\right\} .
$$

The argument goes through as before: we require that the series

$$
\sum_{\varepsilon_{p},>0} \frac{1}{p}=\sum_{p=a<\bmod \alpha)} \frac{1}{p}
$$

diverges, and since $(a, q)=1$, this is the case.
A similar argument gives the following more general result: If

$$
0 \leqslant \epsilon_{d} \leqslant 2^{-\log \log d-(1+\alpha) \text { (aloglog } d \text { Logloglogion })^{1 / 2}}, \quad \beta>0,
$$

and Condition 1 holds, then f has a continuous distribution function.
It seems possible that Condition 1 may be weakened; also, we should like to consider the case where ϵ_{d} may be negative. We leave these questions to a later paper.

References

1. P. Erdós, On the distribution function of additive functions, Ann. Math, 47 (1946), 1-20.
2. N. G. de Bruin, Ca. van E. Tengbergen, and D. Kruyswijk. On the set of divisors of a number, Nieuw Arch. W/sk. (2) 23 (1949-51), 191-193.
3. 4. Anderson, On primitive sequences, J. London Math. Soc. 42 (1967), 137-148.

[^0]: ${ }^{1}$ To ensure that the iterated logarithm is well-defined for small values of the variable, moreover that ϵ_{1} is finite, it is understood throughout that $\log x$ is to be interpreted as $\max (\log x, 1)$.

