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Let {Ed} be a sequence of nonnegative numbers and f(n) = E Ed , the suns
being over divisors d of n . We say that fhas the distribution function F if for
all c > 0, the number of integers n c x for which f(n) > c is asymptotic to
xF(c), and we investigate when F exists and when it is continuous .

Let {E d } be a sequence of nonnegative numbers and

Is it true that for all c > 0,

f (n) _ y Ed .
din

Y, 1 - xF(c)
n-x

f(n)>c

for some function F(c) depending only on the value of c? If so, it is plain
that 0 < F(c) < 1 ; moreover, F is nonincreasing. If c . is large enough, say
Ed = 1 for all d so that f (n) = -r(n), then F(c) = I identically . Therefore,
it is interesting to ask under what circumstances F exists and

Lt F(c) = 0 .

In this case, we say that f has the distribution function F. We prove the
following :
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THEOREM . The result holds if'

Ed = 1/(log d)a

	

or

	

Ed = 2-109109"-(1+R)(2loglogd•loglogloglogd)ila

for every a > log 2 and /3 > 0. F is continuous and tends to zero as c tends
to infinity ; in fact, as 8

	

0, we have that

F(c - 8) - F(c) < (log(1/8))-1/2

Here the constant implied by Vinogradov's notation < is independent of c .
The lower bound log 2 is best possible : if a = log 2, then the normal order
off (n) tends to infinity with n . The second form of Ed shows precisely how
large it can be ; in this case, the normal order of f (n) tends to infinity if
P<0.

We also show that in the case

we have

f (ti ; q, a) =
dln

d--a (mod q)

Ed ,

	

(a, q) = 1 ,

1 - xF(c ; q, a),
n_<x

f(n ;q,a»c

where F(c; q, a) has similar properties to F(c) . It would be interesting to
know how F(c; q, a) varies with q and a, and we hope to investigate this
question in a later paper . We now give the

Proof of the Theorem . We let

fk (n) _ Y, Ed ,

	

d has no prime factor > k .
din

Since
x

y ns

	

~(s) 11 l1
	 1S

) Y m5 '
n=1

	

k<_k

	

p naeW'
fk(n)>c

where M,(c) is the set of integers m having no prime factor > k and for
which f (m) = fjln) > c, we have

Y 1 - xF,,(c)
n,x

fk(n)>c

1 To ensure that the iterated logarithm is well-defined for small values of the variable,
moreover that El is finite, it is understood throughout that log x is to be interpreted
as max(log x, 1) .
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for all c > 0, and

Fk(c) _ [ (1 - 1)

	

1 .
P_k

	

meMk(c) 7n

The sequence {Fjc)} is monotonic increasing and bounded above by 1 .
Hence,

0 < F*(c) = Lt Fk(c) < 1
k--

is well-defined and is the intuitive value of F(c) if F exists. We start by
looking for upper and lower bounds for the sum

As it is rather easier, we begin with the

Lower Bound. Since f (n) > f,(n), we have for all k that

Y 1 > Y l
vGx

	

nGx
f(n)>c

	

fk(n)>c

>
nGx

	

mjn
mEMk(c)

(n/m,P(1)»=1

1,

2a (k) )

where P(k) is the product of all primes <_ k. This is

x
i

	

1
MEMk(c) rGx/m

	

mEMk(c)

	

p<k
(r,P(k))=1

	

m<H

for any value of H. We choose this rather less than x to limit the error
term arising from the 2,( k ) . This is

The last sum on the right does not exceed
1

	

1 1/2

Hi/2

	

(1 -
P 1/2 )

	

H1/2 exp ( log k

where A 1 is an absolute constant . We select H = x2 / 3, and we deduce that

1 > xFk(c) + O(x 2 /32m ( k) ) .
n,x

f(n)>c

> xF,(c) - 21(',)H - x 11 (1 - 1)

	

1 .
y_<A,

	

p m>H Yn
mEMk(c)
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If now k

	

oo with x so that 2, ( 1) = o(x1 /3), we have

Y 1 , x(F*(c) 0(1)) o(x) = xF*(c) + o(x) .
n<x

f(n)>e

As a particular case, if F*(c) = 1 identically, then F exists and F(c) = 1
for all c. Note that so far we have only used the fact that E d > 0 for all d.

Upper Bound. For all k > 0 and 8 > 0, we have

Examining the first sum on the right, we have

1

Y l

	

Y 1

	

Y
n-<x

	

n_x

	

n<x
f(n)>c

	

f k(n»e-s

	

f(n)-fk(n)-S

Y

	

Y 1
n<x

	

M<x;

	

rGx / »z
fk (n)>c-S

	

",ML (c-8) (~, ,P(k»=1

Y

	

x

~nnz<H

	

7

	

\ 1
<,

~neMk (c-S )

+ 2T(k)) + x
vn>H

(

xFk(c 8) 21('H H1/2
exp

og

1 /2

k

Fk(e - 8) - F;(e) _

	

ll - )

	

Y' 1 .
ri5)c

	

p c d<f(m)-<e rn ,

all the prime factors of n7 being < k. Since

f(/nd) > f(177) T

	

E7, ,
p1d,DAm

1
In'

55

the last sum being restricted to tn's having no prime factor exceeding k .
This is

and, as before, we select H - x 2 / 3 and require that

2~(k) = o(x'/ 3 ) .

For this range of values of k, we deduce that

1

	

xF*(c) 11 x{Fk(c - 8) - Fk(c);

	

1 + o(x) .
n<x

	

n<,x
f(n)>c

	

f(n)-fk(n)~-'8

We have to show that if k , oo and 8 0 as x , cc, then
Fje - 8) - F,(c) = 0(1), and our method also shows that Fis continuous.
Now
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if d has any prime factor not dividing n2 for which ep > 8, not both m
and and contribute to Y,' . Let

Q(k,8)={p;p<-k ande„>81

and R(k, 8) be the maximal sum of the form

Y," I /d

where every prime factor of d belongs to Q(k, 8) and if dl and d2 both
contribute to E° and dl I d,, then d2 has no prime factor not dividing dl .
Then

and

-1
~'

	

I/m

	

(1
-1)

R(k, 8)
c-S«(m)Gc

	

PGk

	

P
y4 Q(k,s)

Fk(c - 8) - FL(c) <, F1
pE Q(k,s)

Now let -r'"(n) denote the number of divisors d of n which
to the maximal sum R(k, 8) . Then for y - 0,

and therefore

y
yR(k, 8) >

	

d1n_<b

	

d<Y

y R(k, 8) - ~„
1 S

	

Y,„ 1
d>y

	

dcv

yR(k , 8) - 2y1/2

	

1
pc0(k,s)

R(k, 8) = Lt 1

	

-rk(n) •Y- - nGd

Now let n = mh, where m is the largest divisor of n all of whose prime
factors belong to Q(k, 8). Thus

By a result of de Bruijn, Tengbergen, and Kruyswijk [2], we may split
the divisors of m into disjoint symmetric chains . A chain is a sequence
of integers each dividing the next, the quotient being a prime ; it is
symmetric in the sense that the total number of prime factors of its first

P) R(k'
8) .

P 1/2 9

contribute

1

i



Now

so that

Setting

we deduce that

~, Tk\n) < .Y ( y
n_<y

	

PEQ(k,S) P)

	

PECU"a)
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and last members equals the number of prime factors of m . Ian Ander-
son [3] showed that the number of chains is

Now suppose that two divisors d, , d2 of n (and so of m) contributing
to R(k, 8) belong to the same chain, so that one divides the other, say
d, I d2 . Then d1 and d2 have the same prime factors . Hence, 7-'k(M) does
not exceed the number of chains times the maximal number of divisors
of na all of which have the same prime factors . If

_ ~(s) rj

	

1
, Q(k,8)

_ 4(s) 11 ( 1
PC Q(k,8)

na = 11'P'2
. . .

Pa

	

an = P1P„ . . . p

this is OT362 . . . a,, = 7-(m/in). Therefore

T~~(n)

	

T(m) T(Ml)h))h)
(,,(na))

Hence for any H > 0,

I 7-k(n) < 2H7' + g1/2 1 T(In) 7(m/m).

7(m) 7(11117h)

	

~(

	

(1_1 )-1
~

	

(1

	

1 2

	

2' 3

	

. . .~
ns

	

- 11

	

s

	

11

	

+

	

2s
n=1

	

P Q(k,8)

	

P

	

PCQ(k,3)

	

p`

	

P

Tm Tmm ti ~TT (1-1) (1
	 3p-1

)~y ( ) ( l ^)

	

y
PeQ(h,S)

	

P

	

p 3 - p2

H =

	

1
,

PC Q(7e,8) p

1 1/2
H

1

	

4

	

6

	

8
ps

-} p2 +
P3s

{
p4s

-i-

1

1
3

	

2

	

2
P s)

	

(1
~ ~~

P2s + p 3s

_ ~

P4s
+

	

)

(1 -
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so that

We now have that

Y 1 < xF*(c) =

	

1 + 0(xT(k, 8)) + o(x) .
n<_x

	

n<_x
f(22»e

	

f(n)-fk(n) .S

To ensure that T(k, 8) - 0 as 8 - 0 and k oo with x, we require only

Condition 1 . The series

is divergent.
This is of course satisfied by the sequence {E d } in the theorem . We also

introduce

Condition 2. Ifp is a prime, then E, < Ep for all integers m.

This is convenient and requires rather less than that the sequence
{Ed} is nonincreasing, although both those under consideration are .

Now let d be a divisor of n whose prime factors all exceed k, and t a
divisor none of whose prime factors exceed k. Clearly, every divisor of n
can be written uniquely in the form dt, and so

Next, assume that n has no repeated prime factor exceeding k. The
number of exceptional n < x is

1 -1/2
F,(c - 8) - F,,(c) < T(k, 8) _ (

	

)
„EQ(a,s)p

then by Condition 2, we have

Y
1

e 7,>0 p

f(n) - fk(11 ) = Y- Y, Edt
d ;n tln
d~1

< I X - O (k log J - o(x)k
if k

	

oo with x. If

7'k(n) _ Y 1,
tjn

f(n) - fk(n) < Tk(n){Ep, + 2E,, + 4Ep,, + . . . I 2m-1 E,, 7,



where p, , p2 , . . ., p„z are the prime factors of n exceeding k in any order ;
naturally, it is advantageous to select the order for which

so that in the present application, p 1 , p2 , . . ., p,n are simply in increasing
order .

We need the following lemma, which is an application of Theorem VI
of Erdös [1] .

LEMMA . Let v y(n) denote the number of distinct prime factors of n not
exceeding y and A be fixed > 0. Then provided yo > yo(A), the numbers n
for which

for all y, yo < y < n; have a positive density ; moreover, as y o --* OC), this
density tends to 1 .

We apply this as follows : We let yo = k which tends to infinity with x ;
therefore, the lemma applies to almost all n < x . We take p1 , p2 , . . ., pm
to be in increasing order . Then for almost all n < x and each i, i < m,
we have

i + vk(n) - v,.(n) < loglog pi + (1 + A)(2 10 92 pi * logo PX /2

using the notation log,+lx = Iog(log,x) for iterated logarithms . We choose
A strictly less than the P given in the theorem ; say it = g12 .

We will prove the theorem only for the second form of c, as the other
is treated similarly, except that we may use a weaker version of the above
lemma which can be obtained from the familiar variance argument due
to Turán . In the present case, since

E - 2-10g10gp-(1+13)(210g2p •1 0g4205

we have

We may assume that for each i,

64116/1-5

M

Y, 2 2-1 E
Z-1

MC 2-vk(n)
Y

2-' (210g2 p ti .10g 4 1>d-3

Z-1
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v y (n) - loglog y < (1 T A)(2 loglog y . loglogloglog y) 1/2

-loglogP i-(1+2a)(21092Pi"0g4p )4/2

2 loglog pi >- i + 1'k (n),
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and since

1/2

	

72

	

112

	

(1/2)~t1/2

	

2-(1l2)~v1/2Y 2- (i+v) <

	

2- `~ dt < 2 -(1/2)sv

	

2-

	

dt
i=1

	

0

	

t2

setting

we obtain

v = vk(n),

	

= A(log4pl)1 2 > z,1(loglog vk(n)) 1 / 2

M
-vk(n)-(1/4)A(vk(n)109109vk(n)) 1 /2

It follows that if CO k(n) denotes the number of prime factors of n not
exceeding k and counted according to multiplicity, then for almost all
n < x,

f(n)

	

. k(n) < (A 4/4) 2~k(n)-vk(n)-(1
/4)A(vk(n)1Og 1 0gvk(n)) 1/2

Since k -* oo with x, for almost all n < x, we have that

v lo(n) > ( 1/2) loglog k.

Also,

wk(n) - Vk(n) < (A/20)(log,k ' log4k)1 1 2 < (A/8)(vk(n) loglog vk(n)) 1/2 .

To see this, note that

~x (wk(n) - vk(n)Í =

	

p2 ] + [ ps + . . . < x
p(p

1
1) < x .

Therefore, the number of integers n < x for which - 7,0) - vk(n) > h
does not exceed x/h . If

h = (A/20)(log2k • log4k)1 / 2 ,

this is o(x) as k --).- oo with x . Therefore, for almost all n < x,

f(n) - fk(n) < (A4 /A2) 2-(A/20)(10u° 275 •1Og4k) 1/2

If 8 - 0 more slowly than this, we deduce that

nGx
f(n)-fk(n)-©

e



We deduce that

and combining this with the lower bound result, we get

Y 1 - xF(c),

	

F - F* .
n<x

f(n)>c

Next, we show that F is continuous . We know that

Fk(c - 8) - Fk(c) < T(k, 8),
the constant implied by Vinogradov's notation < being uniform in
k, e, and 8 . Letting k

	

oo, Q(k, 8) becomes

Hence

Also
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Y 1 < xF*(c) - o(x),
aa~xi
00>C

Lt T(k, 8) < (log(1/8))-1/27,—

for either form of {Ed} . Therefore F is continuous, indeed uniformly . It
remains to show that

Lt F(c) = 0 .
C-

1

	

1
Y T k(17) < x~ (1 - ) < A 5x log k .
n~x

	

DG7c

	

p
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We do this by a treatment of f (n) - fk(n) similar to the above, but
replacing "almost all n < x" by "for all but at most Ex integers n < x"
at each step. Given any E > 0, there exists a k so large that on a sequence
of integers of density at least 1 - E, we have

f(n) - f,(11 ) < ( A4/A2) 2-(' / 2 0)( 1092k" 0 94 7') 1"2 y (A4/4) •

Hence, the integers for which

Tk(n) i (A5/E) log k

have density not exceeding E . Therefore, on a sequence of density
1 - 2E, we have

f(n) < -rjn) + (f (n) -fii,(n)) < (A4/A 2) + (A5/E) log k .
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Setting

we deduce that

c = c(E) _ (A4/A2) (A 5/E) log k,

	

k = k(E),

giving the result stated .

We conclude by deducing a similar result for f(n; q, a) . We set

E d
Ed,

	

ll0

The treatment of the lower bound goes through as before, and that of the
upper bound is largely unaltered, for we have

and so it is clear that

.f (n ; q, a) - fk(n ; q, a) <, .f(n) - f,(n),

n <_x
f(n ;rq,a)-f k (n ;q,a)-S

LRDÖS AND HALL

F(c) - 2E,

if d - a (mod q),
otherwise .

n _<x
f(n)-4(n»&

1 - ~ 1

e">op

	

P--a(modq)p

from the above . In the treatment of F,,(c - 6 ; q, a) - F,,(c ; q, a), we have
to consider

Q(k,6,q,a)= jp :p <-kandE„ -cS,p-a (mod q)} .

The argument goes through as before : we require that the series

diverges, and since (a, q) = 1, this is the case .
A similar argument gives the following more general result : If

0

	

Ed

	

2-109109d_(1+13)(2109109d •1o91o91o91o9d) 1 / 2 '

R > 0,

and Condition 1 holds, then f has a continuous distribution function .
It seems possible that Condition 1 may be weakened ; also, we should

like to consider the case where Ed may be negative. We leave these questions
to a later paper .
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