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ON THE IRRATIONALITY OF CERTAIN SERIES 

P. ERD~S AND E. G. STRAUS 

A criterion is established for the rationality of series of 
the form Z: &/(a,, b * m1 a,) where a,, b, are integers, a, 2 2 
and lim b,/(a,-,a,) = 0. This criterion is applied to prove 
irrationality and rational independence of certain special 
series of the above type. 

1. Introduction. In an earlier paper [2] we proved the fol- 
lowing result: 

THEOREM 1.1. 1 {a%} is a monotoNic sequence of positive inteyers 
with a, 2 n”112 for all large n, then the series 

are irrational. 

We conjectured that the series (1.2) are irrational under the 
single assumption that {a,) is monotonic and we observed that some 
such condition is needed in view of the possible choices a, = cp(n) + 1 
or a, = O(N) + 1. These particular choices do not satisfy the hypothe- 
sis lim inf ~,+,/a, > 0 but we do not know whether that hypothesis 
which is weaker than that of the monotonicity of a, would suffice. 

In this note we obtain various improvements and generalizations 
of Theorem 1.1, in particular by relaxing the growth conditions on 
the a, and using more precise results in the distribution of primes. 

In 0 2 we obtain some general conditions for the rationality of 
series of the form C b,/(al, a. a, a,) which are modifications of 
[2, Lemma 2.291. In 5 3 we use a result of A. Selberg [3] on the 
regularity of primes in intervals to obtain improvements and generali- 
zations of Theorem 1.1. 

2, Criteria for rationality. 

THEOREM 2.1. Let {b3 be a sequence of integers and {a,} a 
sequence of positive integers with a, > 1 for all large n and 

(2.2) ]imlb,l=O. 
==I a,-,a, 

Thea the series 
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is rational if and only if there exists a positive integer B and a 
sequennce of integers (G,) so that for all larga n we have 

(2.4) Bb, = cAalp - cnfl , I c,+~ I < ad2 . 

Proof. Assume that (2.4) holds beyond N. Then 

= integer + c, = integer . 

Thus condition (2.4) is sufficient for the rationality of the series (2.3). 
To prove the necessity of (2.4) assume that the series (2.3) equals 

d/B and that N is so large that a, 2 2 and 1 &/(a,-la*) 1 < 1/(4B) 
for all m 2 N. Then 

(2.5) 

co 

da, m - l aNul = Ba, l . . a,-, C b, 

7k=1 a, . . . a, 

= integer + - f BbN g Bb, . 
a, 7a=iv+1 aN . . . a, 

If we call the last sum RN we get 

GW 

/ RL%r 1 5 max 1 I Bb, I 2 
n>~ a,-,a, n=~+l aLv - - . a,-, 

Thus, if we choose cN to be the integer nearest to Bb,/a, and 
write Bb, = enTaX - c;~+~ then (2.5) yields that -eNJaN + R, is an 
integer of absolute value less than 1 and hence 0, so that 

(2.7) 
Bb %+l - & - N+-I -- + h,, 

aAy aNaN+l aN 

From (2.8) it follows that cN+l is the integer nearest to Bb.V+l/a,VS1 
and if we write Bb,,, = cN+,aN+, - cH+z we get 

(2.9) 
Bb Nf2 - -- 

CN+Z - RN,, . 

aN+Z 
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Proceeding in this manner we get the desired sequence {c,). 

REMARK. Since (2.2) implies R, -+ 0 it follows that for rational 
values of the series (2.3) we get ~,,,/a, - 0. Thus either a, - 03 or 
c, = 0 and hence b, = 0 for all large n. 

COROLLARY 2.10. Let (a%}, {b,} satisfy the hypotheses of Theorem 
2.1 and in addition the conditions that for all large n we have 
b, > 0, a n+l 2_ a,, lim (b,+I - b,,)fa, (= 0 and lim inf a,/b, = 0. Then the 
series (2.3) is irrational. 

Proof. According to Theorem 2.1 the rationality of (2.3) implies 
the existence of a positive integer B and a sequence of integers {c,} 
so that 

Bb, = c,a, - an+, 

for all large n where c,+,/a, - 0. Thus 

b n+1 - hlax+, - f&%+2 -- 

b, 

> h&*1 - d 2 en+1 - 6 

fw, - c,+, can %I 

for all E > 0 and sufficiently large n. Thus c,+~ > c, would lead to 

(2.11) b,,, > 
( 
1 + ’ - e -)b, > 6, + (1 - c)(aN - %)/B 

n II 

> b, + (1 - E)%/B . 

This contradicts our hypothesis for sufficiently large n. Thus we get 
0 < &a+1 = < c, for all large n and hence b,/a, is bounded contrary to 
the hypothesis that lim inf a,/b, = 0. 

In fact, if we omit the hypothesis lim inf a,/b, = 0 then we get 
rational values for the series (2.3) only when Bb, = C(a, - 1) with 
positive integers B, C for all large n. 

3. Some special sequences. 

THEOREM 3.1. Let p, be the nth prime and let (a,} be a monotonic 
sequence of positive integers satisfying lim p,/ai = 0 and lim inf a,fp, = 
0. Thelz the series 

(3.2) 

is irrational. 

Proof. Since the series (3.2) satisfies the hypotheses of Theorem 
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2.1 it follows that there is a sequence {c~} and an integers B so that 
for all large n. we have 

(3.3) BP, = ena, - c,+l . 

For large n an equality c, = en+% would imply c, j B and a, > pn. 
Since {cm} is unbounded there must exist an index m 2 n so that 
cm 5 cm < f-L+,. But this implies by an argument analogous to (2.11) 
that 

(3.4) pm+1 > P, + am/W) > (f + &)P- 

which is impossible for large m. Thus we may assume that c, f: c,+, 
for all large n. Now consider an interval N 5 n 5 2N. If c,++~ > c, 
then as in (3.4) we get 

P,,, > P, + a,/CW > P, + G 

which therefore happens for fewer than (p,, - pN)/l//l,- < N1’z+r 
values in the interval (N, 2N). If clrfl < c, then we get 

so that 

Since case (3.5) holds for more than N/2 values of n in (N, 2N) 
we get apN > N/2 and thus for all large n we have a, > n/4, c, < 
p,/a, + 1 < ~‘%/4. Substituting these values in (3.5) we get 

(3.6) a ?1+1 >a, + v’%’ when es+1 < c,, n large ; 

so that a,, > N3j2/2, contradicting the hypothesis that lim inf a,/p, = 0. 

THEOREM 3.7. Let {CL*} be a monotonic sequence of positive in- 
tegers with a, > n’lzfa for some positive 6 > 0 and all large n. Then 
the numbers 1, x, y, x are rationally independent. Here 

and 

z&g d, 
s=t a, . . . Q,, 
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where {dll} is arty sequence of integers satisfying 1 d, 1 < nl/e-a for all 
large n and infinitely many d, # 0. 

Proof. Assume that there exist integers A, B, C not all 0 so that 
setting b, = AT(~) + B(n) + Cd, we get that S = C;=Ib,/(a,, . . . , a,) 
is an integer. 

From Theorem 2.1 it follows directly that x is irrational and thus 
not both A and B can be zero. We consider first the case A + B + 0 
so that without loss of generality we may assume A + B = D > 0. 
Since S satisfies the hypotheses of Theorem 2.1 there exist integers 
{c~} so that 

b, = w, - G,+, for all large n . 

Since 1 b, [ < nl+a’e for all large n we get 

1 c, 1 < ?a(‘-“)‘2 for all large n . 

Let p, be the nth prime and set 

ad = up,, b: = bp,, ck = cpa, cr = c~,+~ , 

then 

a:, = Ah - 1) + B(P, + 1) + Cd,% = I&,, + d; 

where 

dt = Cd,, - A -I- B with 1 dX 1 < n(‘-d)‘z for all large n . 

Now 

b:, = &A:, - c; 

bk+, = cLaL - CL 
so that from 

b:,, _ Dpm+r + d:,, _ pm+1 1 + dLl(Dpn+J -- -- 
bb DP, + d:, P* 1 + d:l(Dr-d 

_ P,+1 + o(n-(‘+6’q) 
P ( 

1 
ii 

we get 

(3.8) 

P ai1 - G&+1 G-1 - Gfl - - I ’ ,ak, _ c ” (1 + o(n-f’+6)‘2)) 
I)98 *tA z 

- fL 1 - C+l/(a~+14+l) (1 + o(n-Ll+djIZ)) 
4 1 - c~/(akck) 

= .+(I + o(n-(l+*)le)) . 
n 
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Here the last inequality follows from the fact that 

12 1 = / ‘b;;; 1 ::$::” 1 = j Arp(n + 1) + Ba(n -I- 1) / + O@IY-~“~) 
j AT(~) + Ba(n) 1 + O(T$-~)‘~) 

= 0(nd’2) . 

From (3.8) we get that CL,, > CL implies 

for all large n. 
We now use the following result of A. Selberg [3, Theorem 41. 

THEOREM 3.10, Let @i(x) be positive and increasing and @.(x)/x 
decreasing for x > 0, further suppose 

@(x)/x - 0 and lim inf log @(x)/log x > 19/V for x - 00 . 

Then for almost all x > 0, 

n(x + @(x)) - n(x) - ~ . 
log x 

We now apply this theorem with the choice Q(x) = x”~+~ to in- 
equality (3.9) and consider the primes N 5 p, < p,,, < . . . < p, < 2N 
in an interval (N, 2N) with N large. According to Theorem 3.10 
the union of the set of intervals (p,, p,,,) where p, p,,, satisfy (3.9) 
and m $ i < n, form a set of total length < EN where 6 > 0 is 
arbitrarily small. Also the number of indices i for which (3.9) holds 
is o(D). Thus by (3.8) and (3.9) we have 

From the monotonicity of a, it now follows that for any E > 0 we 
have 

(3.11) 1 c, j < ns for all large n. 

Substituting this inequality in (3.9) we get that CL., > ci would 
imply 

P 
1 I--r 

*+1 > P, + 2 - P112+dl’ > P, -t- TP, 

which is impossible for large n when E < 5/12. Thus {ck} becomes 
nonincreasing for large n and hence constant, I$, = e, for large n. 
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This implies up > p/(c + 1) for large primes p and by the monotonicity 
of a, we get 

where p is the largest prime S rt. 
Now consider the successive equations 

bp = cup - C&+1 

b P+l = cP+laP+l -  c,+z l 

Thus 

i@(p + 1) + Ba(p + 1) + O(P~‘~-~) = cp+lap+l 
Dp + O(P’~~-~) = cap 

for all large primes p. This leads to 

(3.13) A dP + 1) 
5 p+l 

+ 2 4P + 1) -cp+I 
D p-k1 I 

< P-1J2 7 
c 

and hence to the conclusion that the only limit points of the 
sequence 

t 5 p+1 
A~(p+l)+~~(pP++ll)Ip=primej 

are rational numbers with denominator c. To see that this is not 
the case, consider first the case B # 0. Then by Dirichlet’s theorem 
about primes in arithmetic progressions we see that o(p + l)/(p + 1) 
is everywhere dense in (1, co), Thus we can choose p so that the 
distance of Bo(p + l)/D(p + 1) to the nearest fraction with denominator 
c is greater that 143~) while at the same time o(p + l)/(p + 1) is so 
large that 1 A9(p + l)/D(p -t 1) 1 < 1/(3c), contradicting (3.13). If B = 0 
we use the fact that ~(p + l)/(p + 1) is dense in (0, 1) to get the 
same contradiction. 

Finally we must consider the case A + B = 0. Here we can go 
through the same argument as before except that we consider the 
subsequence b,, = Aq(2p) + Ba(2p) + Cd,, = 2Bp 4 (3B + Cd,,) = 2Bp + 
O(pf’e-d). As before we get 

b2, = cazp - c2p+l for all large primes p 

which leads to the wrong conclusion that 

i 
fJ(2P + 1) _ SPCQ -I- I), _ * 

29 -t 1 2p + 1 P - prime ‘i 

has rational numbers with denominator c as its only limit points. 
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