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On Weird and Pseudoperfect Numbers

By S. J. Benkoski and P . Erdős

Abstract. If n is a positive integer and v(n) denotes the sum of the divisors of n, then n is
perfect if e(n) = 2n, abundant if a(n) >_ 2n and deficient if a(n) < 2n . n is called pseudoperfect
if n is the sum of distinct proper divisors of n . If n is abundant but not pseudoperfect, then n
is called weird. The smallest weird number is 70.

We prove that the density of weird numbers is positive and discuss several related prob-
lems and results . A list of all weird numbers not exceeding 10 1 is given.

Let n be a positive integer . Denote by a(n) the sum of divisors of n . We call n
perfect if a(n) = 2n, abundant if r(n) >= 2n and deficient if a(n) < 2n . We further
define n to be pseudoperfect if n is the distinct sum of some of the proper divisors of n,
e.g ., 20 = 1 + 4 + 5 + 10 is pseudoperfect [6] . An integer is called primitive abundant
if it is abundant but all its proper divisors are deficient . It is primitive pseudoperfect
if it is pseudoperfect but none of its proper divisors are pseudoperfect .

An integer n is called weird if n is abundant but not pseudoperfect . The smallest
weird number is 70 and Table 1 is a list of all weird numbers not exceeding 10 8 . The
study of weird numbers leads to surprising and unexpected difficulties . In particular,
we could not decide whether there are any odd weird numbers [1] nor whether a(n)/n
could be arbitrarily large for weird n. We give an outline of the proof that the density
of weird numbers is positive and discuss several related problems . Some of the proofs
are only sketched, especially, if they are similar to proofs which are already in the
literature .

First, we consider the question of whether there are weird numbers n for which
a(n)/n can take on arbitrarily large values . Tentatively, we would like to suggest that
the answer is negative . We can decide a few related questions . Let n be an integer
with 1 = d, < . . . < dk = n the divisors of n. We say that n has property P if all
the 2k sums Eks, c idi , e; = 0 or 1, are distinct . P. Erdős proved that the density
of integers having property P exists and is positive [2] . Clearly, 2m has property P
for every m. It is plausible to conjecture that if n has property P, then U(n)/n < 2 .
The result is indeed true and follows from the next theorem . We conjectured this
and the simple and ingenious proof is due to C. Ryavec .

THEOREM 1 . Let 1 _< a, < . . . < a„ be a set of integers for which all the sums
E,_, ciai , e, = 0 or 1, are distinct . Then

1 < 2 .
í-i a .

Proof. We have, for 0 < x < 1,

Received June 28, 1973.
AMS (MOS) subject classifications (1970) . Primary 10A40, 1OJ99, 10-04 ; Secondary 1OH25 .
Key words and phrases. Weird numbers, pseudoperfect numbers, primitive abundant numbers .

Copyright © 1974, American Mathematical Society

617



61 8

	

S . J. BENKOSKI AND P . ERDŐS

Thus

(1)

TABLE I

Weird Numbers <_ 10 8

	 1H(1+x-)< Exk -	
i-1

	

k~0

	

1 - x

n

E log(1 -i- x a' ) < - log(1 - x) or
i®1

f1

log(1+x`)
dx < - f 1

log(1- x) dx .
1 o

	

x

	

n

	

x

Now, putting x°' = y, we obtain, from (1),

1 f 1

1og(1+Y) dy < - f'
log(1	

-
	 x)

dx
i-, a, ,

	

y

	

o

	

x

Primitive Nonprimítíve

70 70-p with p > a (70) and p a prime
836 7192.31
4030 836 .421
5830 836.487
7192 836.491
7912 836•p with p >_ 557 and p a prime
9272
10,792
17,272
45,356
73,616
83,312
91,388
113,072
243,892
254,012
338,572
343,876
388,076
519,712
539,774
555,616
682,592
786,208
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a, \121 < 6 .

Thus E"_, 1/ai < 2 and the theorem is proved .
The same argument can be used to show that if the sums E'~, E iai are all distinct,

then

1 < 2 - 1I

	

,_, a ;

	

2

and equality holds only if a; = 2'- ', i = 1, 2,

	

, n .
Here, we call attention to an old conjecture of P . Erdős . If the sums E i -, Eiai ,

ei = 0 or 1, are all distinct, then, is it true that a„ > 2" - ° for an absolute constant C?
P. Erdős offered and still offers 300 dollars for a proof or disproof of this conjecture .

Consider next the property P' . An integer n is said to have property P' if no
divisor of n is the distinct sum of other divisors of n . Here again, we can prove that
there is an absolute constant C so that v(n)/n > Cimplies that n cannot have property
P'. This is immediate from the following old result of P. Erdős [3].

THEOREM 2 . Let a, < a2 < . . . be a finite or infinite sequence of integers no
term of which is the distinct sum of other terms; then Ei 1/a; < C where C is an
absolute constant .

Proof. In view of the fact that the proof appeared in Hungarian, we give the
outline of the proof here .

Put A(x) _ E,; 1 . We split the positive integers into two classes . In the first
class are the integers n for which
(2)

		

A(2"+') - A(2") < 2"/n2 .

Clearly, from (2),

(3)

	

<

	

12
< 2

a;

	

"_, n

where E' is over all j such that 2" < a; <_ 2"+ ' for some n in the first class .
Let n, < n 2 < . . . be the integers belonging to the second class, i .e.,

(4)

	

1 >= 2"'/n2 .
2n ;<a ;5_2ni+a

Observe that the integers

(5)

	

a, + a2 +

	

+ a, + ak with 1 < r < k

are all distinct since if a, + • • • + a, , + ak , = a, + •

	

+ a,, + ak 2 , r2 > r,, then
ak , would be a distinct sum of other a i 's .

Now, put n [;, 2 , = t . Clearly,

(6)

	

n; >= t + U/21 .

By (4),

(7)

	

A(2` + ') - A(2) >_ 2`/t2 > 5t 2 > Í for j > 100 .

Let 1 <_ a, < . . . < a; , be the first j2 of the a;'s . By (7), a, . <= 2 `+' . Consider now
the integers (5) for 1 <_ r <_ j2 , a, < a k <_ 2" By (7), a < 2" . Thus, by (6), the
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integers (5) are all less than
(8)

	

2";+' + j22' + ' < 2" +2 for j > 100 .

Now, observe that there are at least

(9)

	

j2(A(2",+') _ ja )
integers of the form (5); they are all distinct and are all less than 2"'. Thus, from
(8), (6), and (7),

2" +2

	

2"`
(10)

	

A(2" +') < j2

	

.2 < 10'2 for j > 100 .

Now, (10) and (3) immediately imply the uniform boundedness of E; 1 /a; . It is
perhaps not quite easy to get the best possible value of C . It seems certain that C < 10 .

Unfortunately, we obtain no information about pseudoperfect numbers by these
methods .

It is known that the density of integers having property P exists and that the same
holds for P' (see [2]). Denote by u, < u2 < • • • , respectively v, <V2< --- the
integers which do not have property P, respectively P', but all of whose proper divisors
have property P, respectively P' . We expect that F= 1 /u; and F; 1 /v; both converge
and, in fact, that

	 xl	 x l
uE 1 - O (log x)k/ '

	

;r 1 = O (log x)k/

for every k but have not been able to find a proof. For primitive abundant numbers,
the analogous results and much more is true [4] .

Now, consider weird and pseudoperfect numbers . An integer is primitive pseudo-
perfect if it is pseudoperfect but all its proper divisors are not pseudoperfect. It
seems certain that the number of primitive pseudoperfect numbers not exceeding
x is O(x/(log x)k) and, hence, the sum of their reciprocals converges . This we could
not prove, but the fact that the density of the pseudoperfect numbers exists follows
by the methods of [2] . It is easy to prove that there are infinitely many primitive
abundant numbers which are pseudoperfect and, therefore, primitive pseudoperfect .
The integers 2kp, with p a prime such that 2k < p < 2k+' , are easily seen to be primitive
abundant and pseudoperfect . In fact, they are practical numbers of Grinivasan, i .e .,
every m <= a(2kp) is the distinct sum of divisors of 2kp. We leave the simple proof to
the reader .

It is slightly less trivial to prove that there are infinitely many primitive abundant
numbers all of whose prime factors are large and which are pseudoperfect . We only
outline the proof.

For every k, let f(k) be the smallest index for which (p, < P2 < . . . are the con-
secutive prime numbers) Q(p k

	

Pr(k)) ? 2Pk

	

Pr (k)
THEOREM 3 . There exists a positive integer ko such that, for k > ka , the integers

Ak =

	

11 P, and Bk = (Ak1Pf(k))P,'(k)+'P7(k)+2
kgi5J(k)

are both primitive pseudoperfect .
Note that B, = 70 which is not pseudoperfect . It appears that this is the only
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value of k for which Theorem 3 fails, but to prove this might be difficult and would
certainly require long computations for B,, and perhaps a new idea for A k .

We need two lemmas .
LEMMA 1 . There is an absolute constant c such that every integer m > cp k is

the distinct sum of primes not less than p k .
The lemma is probably well known and, in any case, easily follows by Brun's

method .
LEMMA 2 . There exists an integer ko such that, for every k > k o ,

(11)

	

cpk < m < a(Ak) - cpk

implies that m is the distinct sum of divisors of A k . The same result holds for Bk .
Lemma 2 follows easily from Lemma 1 and from the fact that, for pk 5 x

< áx < A k, the interval (x, ix) always contains a divisor of A k and Bk. (To prove this
last statement, we only need that, for e > 0, there exists an integer i,,(e) such that
p;+i < (1 -} E)p, for i >

Lemma 2 implies Theorem 3 if we can show

(12)

	

v(B k) - 2Bk > cpk and v(Ak) - 2Ak > cpk .

Statement (12) follows immediately for Bk by a very simple computation if we
observe that there is an integer t o such that, for 1 > lo ,

(1 + 11pc+i)(1 + l1pe+a) > 1 + 3/2p, .

We do not have such a simple proof of (12) for A k . Observe that

(13)

	

Q(Ak) - 2 At > (o,(Ak), A,)

where (a, b) denotes the greatest common divisor of a and b .
Now, (13) implies (12) if we can show that (v(A,), A,,) has, for k > ka , at least two

prime factors . In fact, we shall prove that (w(n) denotes the number of prime factors
of n)

(14)

	

lim w((v(Ak), Ak)) _ °D •
k-

ToTo prove (14), we first observe that, for e > 0, there is an integer ko(e) such that,
for k > ka(e),

(15)

	

Pnk> > Pk - ` •

This is of course well known and follows from the theorems of Mertens . The
following theorem now implies (14) .

THEOREM 4 . Denote by g(x) the number of indices 1, for which there is an &
satisfying

x < Pi, < Pi, < x 2 ,

	

p,, _ - 1 (mod Pj,) •

We then have lim,- m g(x) _ - .
Theorem 4 follows easily from the proof of Motohashi's theorem [5] . It does

not follow from the theorem of Motohashi but it is easy to deduce by the same proof .
Motohashi uses some deep results of Bombieri . Thus, (14) and Theorem 3 are proved .

It seems likely that there are infinitely many primitive abundant numbers which
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are weird but this we cannot prove . We can, however, show that the density of weird
numbers is positive .

It is clear that the weird numbers have a density since both the abundant numbers
and the pseudoperfect numbers have a density . (A weird number is abundant and
not pseudoperfect .) Hence, we need only show that the density of weird numbers
cannot be 0 . This follows from the following simple lemma .

LEMMA. If n is weird, then there is an E„ > 0 such that nt is weird if

Put

(16)

	

6„ = min(1 - E' 1/d) +

where, in E', d runs over all subsets of the divisors greater than 1 of n . If n is deficient
or weird, then S„ > 0 .

If nt is not weird, then there is a set of divisors, greater than 1, of nt for which

(17)

	

1 =

	

1/d +

	

1/d

where, in E,, d I n and, in E,, d I nt but d X n .
From (16) and (17),

or(t) u(n) >

	

1 >
t n

	

z d -

which proves the lemma for E„ = 0,/v(n) .
THEOREM 5 . The density of weird numbers is positive .
Proof. If n is weird, then let E„ be as in the proof of the lemma . Now, by the

lemma, if t is an integer and a-(t)/t < 1 + E,,, then nt is weird . But the density of the
integers t with Q(t)/t < 1 + E„ is positive for any E„ > 0.

Actually, we proved a slightly stronger result . If n is weird, then the density of
{m; n I m and m is weird} is positive .

It is easy to see that if n is weird and p is a prime greater than v(n), then pn is also
weird. More generally, the following result holds . Let n be an integer which is not
pseudoperfect, i .e ., n is deficient or weird . The integer pn is pseudoperfect if and
only if there is a set A of proper divisors of n and a set B of divisors of n where no
b E B is a multiple of p, such that

p(n -

	

a} _

	

b .
dEA ,

	

bEü

We leave the simple proof to the reader .
Finally, we state without proof the following result : Let t >--_ 0 be an integer .

The density of integers n for which n + t is the distinct sum of proper divisors of n
is positive. On the other hand, the density of the integers n, for which n - t (t > 0)
is the sum of distinct divisors of n, is 0 .

Proof. First define (x)+ by

1
E-

dit d
< 1 + E-

(x)+ = x if x >= 0,

= 00 if x<0 .
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