Note
\title{ Remark on a Theorem of Lindström }
P. ERdös
Hungarian Academy of Science, Budapest, Hungary
Communicated by the Managing Editors
Received October 19, 1972

In a recent paper Lindström [1] proves a theorem on finite sets and he also proves a transfinite extension. In this note we only concern ourselves with the transfinite case of Lindström's theorem. He in fact proves the following theorem: Let $|\mathscr{S}|=\kappa$ be an infinite set, and let A_{α}, $1 \leqslant \alpha<\omega_{m}$, the initial ordinal of cardinality $m, m>\kappa$, be subsets of \mathscr{S}. Then for every $p<m$ there are p disjoint sets of the indices $I_{\nu}, 1 \leqslant \gamma<\omega_{p}$, so that the p sets

$$
\bigcup_{j \in I_{\gamma}} A_{j}
$$

are all equal.
We are going to prove the following slightly stronger result.
Defintion. $c f(m)$ denotes the smallest cardinal so that m is the sum of $c f(m)$ cardinals smaller than m.

Theorem. Let $|\mathscr{S}|=\kappa>\boldsymbol{x}_{0}$, and let $A_{\alpha}, 1 \leqslant \alpha<\omega_{m}$, where $m>\kappa$, and even $\operatorname{cf}(m)>\kappa$, be m subsets of \mathscr{S}. Then there are m disjoint sets of indices I_{γ}, so that the m sets

$$
\bigcup_{j \in I_{\gamma}} A_{j}
$$

are all equal.
If $c f(m) \leqslant \kappa$, the theorem is not true.
Let $\left\{x_{\alpha}\right\}, 1 \leqslant \alpha<\omega_{\kappa}$, be the elements of S. An element is said to be bad if it is contained in fewer than m sets A_{α}. Throw away all the bad elements and the sets A_{α} containing them. But if $m>\kappa$ we have thrown away fewer than m sets and we are left with a set $\mathscr{L}_{1} \subset \mathscr{S}$ (perhaps $\left.\left|\mathscr{S}_{1}\right|<|\mathscr{S}|\right)$
and sets $A_{i} \in \mathscr{S}_{1}, 1 \leqslant i<\omega_{m}$, so that every element of \mathscr{S}_{1} is contained in m sets $A_{\alpha_{i}}$. Note that the $A_{\alpha_{i}}$ all occur among the sets A_{α} since $A_{\alpha_{i}} \cap\left(\mathscr{S}-\mathscr{S}_{1}\right)=\varnothing$.

Now there clearly are m disjoint sets of indices $I_{\gamma}, 1 \leqslant \gamma<\omega_{m}$, so that

$$
\bigcup_{\alpha_{i} \in I_{\gamma}} A_{\alpha_{i}}=\mathscr{S}_{1} .
$$

In fact, we can construct the sets I_{γ} so that

$$
\left|I_{\gamma}\right| \leqslant \kappa
$$

and every α_{i} occurs in an I_{γ}. This can be done by a simple transfinite induction. Suppose we have already constructed $p<m$ sets I_{ν} satisfying $\bigcup_{\alpha_{i} \in I_{\gamma}} A_{\alpha_{i}}=\mathscr{S}_{1},\left|I_{\gamma}\right| \leqslant \kappa$, and well order the indices $\left\{\alpha_{i}\right\}, 1 \leqslant \alpha_{i}<\omega_{m}$. Let α_{j} be the first index which does not occur in $\bigcup I_{\gamma}$ where γ runs through the p sets which we have already constructed. We construct a new set $I_{\gamma^{\prime}}$ which is disjoint from $\bigcup I$, and so that $\bigcup_{\alpha_{i} \in I_{\gamma^{\prime}}} A_{\alpha_{i}}=\mathscr{S}_{1}$ and $\alpha_{j} \in I_{\gamma^{\prime}}$.

First of all, we put α_{j} in $I_{j^{\prime}}$, and for each element x_{j} of \mathscr{S}_{1}, we choose a set containing it and which is such that it has not yet been used. Since every element of \mathscr{L}_{1} is contained in m sets and we have used so far fewer than m sets, our construction can clearly be carried out and we obtain the required decomposition of the index set, and this completes the proof of our theorem.

Clearly, if $c f(m) \leqslant \kappa$, our theorem cannot hold. If $m \leqslant \kappa$, our sets can be disjoint if $c f(m) \leqslant \kappa<m$. Put $m=\bigcup_{\beta} g_{\beta}, 1 \leqslant \beta<\omega_{g}, g \leqslant \kappa$. Let $x_{\beta} \in g, 1 \leqslant \beta \leqslant g$, and consider any g_{β} sets containing x_{β} but not containing any x_{δ} for $\delta<\beta$. It is clear that our $\bigcup g_{\beta}=m$ sets do not satisfy our theorem.

References

1. B. Lindström, A theorem on families of sets, J. Combinatorial Theory (A) $\mathbf{1 3}$ (1972), 274-277.
