Reprinted from JOURNAL OF COMBINATORIAL THEORY All Rights Reserved by Academic Press, New York and London Vol. 17, No. 1, July 1974 Printed in Belgium

Note

Remark on a Theorem of Lindström

P. Erdös

Hungarian Academy of Science, Budapest, Hungary Communicated by the Managing Editors Received October 19, 1972

In a recent paper Lindström [1] proves a theorem on finite sets and he also proves a transfinite extension. In this note we only concern ourselves with the transfinite case of Lindström's theorem. He in fact proves the following theorem: Let $|\mathscr{S}| = \kappa$ be an infinite set, and let A_{α} , $1 \leq \alpha < \omega_m$, the initial ordinal of cardinality $m, m > \kappa$, be subsets of \mathscr{S} . Then for every p < m there are p disjoint sets of the indices $I_{\gamma}, 1 \leq \gamma < \omega_p$, so that the p sets

$$\bigcup_{j\in I_{\gamma}}A_{j}$$

are all equal.

We are going to prove the following slightly stronger result.

DEFINITION. cf(m) denotes the smallest cardinal so that m is the sum of cf(m) cardinals smaller than m.

THEOREM. Let $|\mathcal{S}| = \kappa > \aleph_0$, and let A_{α} , $1 \leq \alpha < \omega_m$, where $m > \kappa$, and even $cf(m) > \kappa$, be m subsets of \mathcal{S} . Then there are m disjoint sets of indices I_{γ} , so that the m sets

$$\bigcup_{j\in I_{\gamma}}A_{j}$$

are all equal.

If $cf(m) \leq \kappa$, the theorem is not true.

Let $\{x_{\alpha}\}, 1 \leq \alpha < \omega_{\kappa}$, be the elements of *S*. An element is said to be bad if it is contained in fewer than *m* sets A_{α} . Throw away all the bad elements and the sets A_{α} containing them. But if $m > \kappa$ we have thrown away fewer than *m* sets and we are left with a set $\mathscr{S}_1 \subset \mathscr{S}$ (perhaps $|\mathscr{S}_1| < |\mathscr{S}|$)

Copyright © 1974 by Academic Press, Inc.

All rights of reproduction in any form reserved.

and sets $A_i \in \mathscr{S}_1$, $1 \leq i < \omega_m$, so that every element of \mathscr{S}_1 is contained in *m* sets A_{α_i} . Note that the A_{α_i} all occur among the sets A_{α} since $A_{\alpha_i} \cap (\mathscr{S} - \mathscr{S}_1) = \varnothing$.

Now there clearly are *m* disjoint sets of indices I_{γ} , $1 \leq \gamma < \omega_m$, so that

$$\bigcup_{\alpha_i\in I_{\gamma}}A_{\alpha_i}=\mathscr{S}_1\,.$$

In fact, we can construct the sets I_{γ} so that

$$|I_{\gamma}|\leqslant\kappa$$

and every α_i occurs in an I_{γ} . This can be done by a simple transfinite induction. Suppose we have already constructed p < m sets I_{γ} satisfying $\bigcup_{\alpha_i \in I_{\gamma}} A_{\alpha_i} = \mathscr{S}_1$, $|I_{\gamma}| \leq \kappa$, and well order the indices $\{\alpha_i\}$, $1 \leq \alpha_i < \omega_m$. Let α_j be the first index which does not occur in $\bigcup I_{\gamma}$ where γ runs through the *p* sets which we have already constructed. We construct a new set $I_{\gamma'}$ which is disjoint from $\bigcup I_{\gamma}$ and so that $\bigcup_{\alpha_i \in I_{\gamma'}} A_{\alpha_i} = \mathscr{S}_1$ and $\alpha_j \in I_{\gamma'}$.

First of all, we put α_j in $I_{j'}$, and for each element x_j of \mathscr{S}_1 , we choose a set containing it and which is such that it has not yet been used. Since every element of \mathscr{S}_1 is contained in *m* sets and we have used so far fewer than *m* sets, our construction can clearly be carried out and we obtain the required decomposition of the index set, and this completes the proof of our theorem.

Clearly, if $cf(m) \leq \kappa$, our theorem cannot hold. If $m \leq \kappa$, our sets can be disjoint if $cf(m) \leq \kappa < m$. Put $m = \bigcup_{\beta} g_{\beta}$, $1 \leq \beta < \omega_{g}$, $g \leq \kappa$. Let $x_{\beta} \in g$, $1 \leq \beta \leq g$, and consider any g_{β} sets containing x_{β} but not containing any x_{δ} for $\delta < \beta$. It is clear that our $\bigcup g_{\beta} = m$ sets do not satisfy our theorem.

REFERENCES

 B. LINDSTRÖM, A theorem on families of sets, J. Combinatorial Theory (A) 13 (1972), 274-277.