ERDÖS, P. (Budapest, Hungary)

REMARKS ON SOME PROBLEMS IN NUMBER THEORY*

I discuss in this note several disconnected problems in number theory. I have written several such papers but here I will give details (or at least outlines) of the proofs and will not concentrate on stating unsolved problems (except in III). Several of the problems which I discuss were suggested by questions in other branches of mathematics.
I. Denote by $S(x)$ the number of integers $n<x$ for which there is a non-cyclic simple group of order n. The well known classical result of Feit and Thomson states that every such number must be even. Dornhoff proved that $S(x)=o(x)$ and Dornhoff and Spitznagel proved $S(x)<c_{1} x\left(\frac{\log \log \log x}{\log \log x}\right)^{1 / 2}$. (c_{1}, c_{2}, \ldots denote absolute constants.)

I proved in a paper dedicated to the memory of the well known Indian mathematician D. D. Kosambi that

$$
\begin{equation*}
S(x)<x \exp \left(-\left(\frac{1}{2}+o(1)\right) \quad(\log x \log \log x)^{1 / 2}\right) \tag{1}
\end{equation*}
$$

dince the paper where I proved (1) is not easily available, I will outline the Sroof of (1) and discuss a few related results and conjectures.

Let V be the sequence of integers $v_{1}<v_{2}<\cdots$ having the property that for every $p \mid v_{i} v_{i}$ has a divisor $t_{i} \equiv 1(\bmod p), t_{i}>1 . \mathrm{U}$ is the sequence of integers $u_{1}<u_{2}<\cdots$ where the above property only has to hold for the largest prime factor $p_{i}=P\left(u_{i}\right)$ of u_{i}. Clearly $U \supset V$.

It follows from the classical results on non-cyclic simple groups that if there is a non-cyclic group of order s then $s \in V$. For if $p^{a}\left|s, p^{a+1}\right| s$ then the number of SyLow subgroups $t(\alpha, p)$ of order p^{α} is a divisor of s and further $t(\alpha, p)>1$ and $t(\alpha, p) \equiv 1(\bmod p)$. Thus clearly $S(x) \leqslant V(x) \leqslant U(x)$ and (1) will follow from $(A(x)$ is the number of integers not exceeding x of the sequence A)

$$
\begin{equation*}
U(x)<x \exp \left(-\left(\frac{1}{2}+o(1)\right) \quad(\log x \log \log x)^{1 / 2}\right) \tag{2}
\end{equation*}
$$

To prove (2) denote by $\psi(x, y)$ the number of integers not exceeding x all whose prime factors are $\leqslant y$. Put $y^{z}=x$ and assume $z<y^{1 / 2} \log y$ A theorem of de Bruinn then states that

$$
\begin{equation*}
\psi(x, y)<c_{2} x(\log x)^{2} \exp \left(-z \log z-z \log \log z+c_{3} z\right) \tag{3}
\end{equation*}
$$

* Presented at the $5^{\text {th }}$ Balkan Mathematical Congress (Beograd, 24-30.06. 1974)
(3) now easily implies (2) and (1). We split the integers $u_{i}<x$ into two classes. In the first class are the integers $u_{i}<x$ all whose prime factors are less than $\exp \frac{1}{2}(2 \log x \log \log x)^{1 / 2}$. In the second class are the other u 's. $U_{i}(x)$, $i=1,2$ denotes the number of u 's in the i-th class. From (3) we obtain by a simple computation that here $\left(z=\left(\frac{2 \log x}{\log \log x}\right)^{1 / 2}\right)$

$$
\begin{equation*}
U_{1}(x)<x \exp \left(-\left(\frac{1}{2}+o(1)\right) \quad(\log x \log \log x)^{1 / 2}\right) \tag{4}
\end{equation*}
$$

For the u 's of the second class we evidently have (in Σ^{\prime} the summation is extended over the primes $\left.p>\exp \left(\frac{1}{2} \log x \log \log x\right)^{1 / 2}\right)$

$$
\begin{align*}
U_{2}(x) & <\sum_{p}^{\prime} \sum_{t=1}^{\infty}\left[\frac{x}{p(t p+1)}\right]<\sum_{p}^{\prime} \sum_{t=1}^{x} \frac{x}{p(t p+1)} \tag{5}\\
& <\sum^{\prime} \frac{x}{p^{2}} \sum_{t=1}^{x} \frac{1}{t}<2 x \log x \sum^{\prime} \frac{1}{p^{2}}<x \exp -\left(\frac{1}{2}+o(1)\right)(\log x \log \log x)^{1 / 2}
\end{align*}
$$

(4) and (5) proves (2) and (1). With a little more trouble I could prove

$$
\begin{equation*}
S(x) \leqslant U(x)=x \exp -(1 \div o(1)) \quad(\log x \log \log x)^{1 / 2} \tag{6}
\end{equation*}
$$

We suppress the details. The principal tool is again a result of de Bruisn, namely $\psi(x, y)>\frac{x}{(z!)^{1+\varepsilon}}$.

The true order of magnitude of $S(x)$ is probably much smaller. It is generally conjectured by group theorists that $S(x)<x^{1-\varepsilon}$ and perhaps even $S(x)=o\left(x^{1 / 3}\right)$, but our methods are far too crude to prove this. Using $V(x)$ instead of $U(x)$ it should be possible to improve (6) a little bit. Unfortunately not very much since I can show that

$$
\begin{equation*}
V(x)>x \exp -c_{3}(\log x)^{1 / 2} \log \log x . \tag{7}
\end{equation*}
$$

I am sure that (7) gives the right order of magnitude for $V(x)$ and in fact that there is a constant c_{5} so that

$$
V(x)=x \exp -(1+o(1)) c_{5}(\log x)^{1 / 2} \log \log x
$$

but so far I have not been able to prove (7).

References. N. G. de Bruijn, On the number of uncanceled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950) 247-250, see also: Of the number of positive integers $\leqslant_{a} x$ and free of prime factors $>y$, ibid. 13) 1951), $50-60$.
L. Dornhoff, Simple groups are scarce, Proc. Amer. Math. Soc. 19 (1968), 692-696.
L. Dornhoff and E. E. Spitznagel Jr., Density of finite simple group orders, MathZeitschrift, 106 (1968), 175-177.
II. The following problem is due to H. Hadwiger: Denote by $D(n)$ the set of integers with the property that if $k \in D(n)$ then the n-dimensional unit cube can be decomposed into k homothetic n-dimensional cubes. C. Meier denotes by $c(n)$ the smallest integer so that every $k \geqslant c(n)$ belongs to $D(n)$. He proves

$$
\begin{equation*}
c(n) \leqslant\left(2^{n}-2\right)\left(\left(2^{n}-1\right)^{n}-\left(2^{n}-2\right)^{n}-1\right)+1 . \tag{1}
\end{equation*}
$$

Earlier W. Plüss gave a somewhat greater upper bound. It is easy to see that $c(2)=6$ and in fact $k \in D(2)$ except if $k=2,3$ or 5 . Meier conjectures $c(3)=48$ and asks for an improvement of (1). He remarks that the problem is attractive because of the interplay of geometric and number theoretic ideas. I agree with him.
First of all I give an improvement due to BURGess and myself of (1). We prove

$$
\begin{equation*}
\left.c(n) \leqslant\left(2^{n}-2\right)\left((n+1)^{n}-2\right)\right)-1 . \tag{2}
\end{equation*}
$$

To prove (2) we first show the following
Lemma. The set of integers $k^{n}-1,2 \leqslant k \leqslant n+1$ is relatively prime.
Observe that if $p \mid k^{n}-1, \quad 2 \leqslant k \leqslant n+1$ we clearly must have $p>n+1$. Thus the congruence $x^{n}-1 \equiv 0(\bmod p)$ has the roots $k=1,2, \ldots, n+1$ which is a contradiction since it can have at most n roots. This contradiction proves the Lemma.

To prove (2) observe that in the decomposition of the unit cube into smaller cubes, a cube of the decomposition can always be replaced by k^{n} smaller cubes. Thus every integer of the form

$$
\sum_{k=2}^{n+1} c_{k}\left(k^{n}-1\right), \quad c_{k} \geqslant 1
$$

belongs to $D(n)$. A well known theorem of A. Brauer states that if $\left(a_{0}, \ldots, a_{l}\right)=$ $=1, a_{1}<\cdots<a_{l}$ then every integer greater than $\left(a_{1}-1\right)\left(a_{l}-1\right)-1$ can be expressed in the form $\sum_{i=1}^{k} c_{i} a_{i}, c_{i} \geqslant 0$, which proves (2).
(2) can in fact be improved. Put $d_{k}=\left(a_{1}, \ldots, a_{k}\right)$. A. Brauer proved that if $d_{n}=1$ then every integer $\geqslant \sum a_{k+1} d_{k} / d_{k+1}$ is of the form $\sum_{k=1}^{n} c_{k} a_{k}, c_{k} \geqslant 0$, and it is not hard to prove that this gives $c(n)<\alpha n^{n+1}$ for some absolute constant α. I am ceriain that if $n+1$ is a prime $c(n)>n^{n}$ but as far as I know HADWIGER's result $c(n) \geqslant 2^{n}+2^{n-1}$ is the only lower bound for $c(n)$.

Now we make a few purely number theoretic observations. Denote by $h(n)$ the smallest integer for which the numbers

$$
\left\{2^{n}-1,3^{n}-1, \ldots, h(n)^{n}-1\right\}
$$

are relatively prime If $n+1=p$ is a prime then $h(n)=n+1$, and it is easy to see that conversely if $h(n)=n+1$ then $n+1=p$. To see this observe that if $p \mid k^{n}-1$ for every $1 \leqslant k \leqslant n$ then $x^{n}-1 \equiv 0(\bmod p)$ can not have any other roots, but this is possible only if $p=n+1\left(\right.$ for odd $n(n+1)^{n} \equiv 1(\bmod p)$ and for even $n(n+2)^{n} \equiv 1(\bmod p)$).

Denote by $A(n)$ the greatest prime q_{k} for which $q_{k}-1 \mid n$. Clearly $h(n) \geqslant q_{k+1}$. But $h(n)$ can be much larger e.g. $h(15)=5$ and $A(15)=A(2 n+$ $+1)=2$. It is easy to see that for odd $n h(n)$ is unbounded.

I proved (unpublished) that the density of integers n with $A(n)=q_{k}$ exists. Denote this density by $\varepsilon_{k}, \sum_{k=1}^{\infty} \varepsilon_{k}=1$. I can not prove that the density δ_{k} of integers with $h(n)=q_{k}$ exists. I am sure that the density exists and $\sum_{k=1}^{\infty} \delta_{k}=1$.

It is possible that if $A(n)$ is large $\left(\right.$ say $\left.>n^{\varepsilon}\right)$ then $A(n)=h(n)$. I can not prove that $h(n)$ does not tend to infinity.

Define now $H(n)=l$ as the least integer so that there is a $k<l$ with $\left(k^{n}-1, l^{n}-1\right)=1$. Clearly $H(n) \geqslant h(n)$. Probably $\left(2^{n}-1,3^{n}-1\right)=1$ holds for infinitely many n or $H(n)=h(n)=3$ infinitely often. but I can not prove that $H(n)=h(n)$ holds for infinitely many n. On the other hand I prove that $H(n)$ can be unexpectedly large for suitable values of n. In fact I prove that for infinitely many $n\left(\exp x=e^{x}\right)$

$$
\begin{equation*}
H(n)>\exp n^{c_{1} /(\log \log n)^{2}} \tag{3}
\end{equation*}
$$

To prove (3) we use the folloving theorem of Prachar. For infinitely many n, n has more than $\exp n^{c_{2} /(\log \log n)^{2}}$ divisors of the form $p-1$. Let $p_{1}^{(n)}, \ldots, p_{s}^{(n)}, s>\exp n^{c_{2} /(\log \log n)^{2}}$ be the primes p with $p-1 \mid n$. Clearly if $\left(k^{n}-1, l^{n}-1\right)=1$ we must have $k l \equiv 0 \bmod \prod_{i=1}^{s} p_{i}^{(n)}$ or by the prime number theorem $k l \geqslant \prod_{i=1}^{s} p_{i}^{(n)}>\exp (1+o(1)) s \log s$ which proves (3).

I have no good upper bound for $H(n)$. It seems likely that there is an absolute constant c so that for every $\varepsilon>0$

$$
\begin{equation*}
H(n)>\exp \left(n^{(c-\varepsilon) / \log \log n}\right) \tag{4}
\end{equation*}
$$

holds for infinitely many values of n but for all $n>n_{0}(\varepsilon)$

$$
\begin{equation*}
H(n)<\exp \left(n^{(c+\varepsilon) / \log \log n}\right), \tag{5}
\end{equation*}
$$

but I am very far from being able to prove (4) or (5).
Denote by $H_{1}(n)$ the smallest integer k for which $\left(k^{n}-1,2^{n}-1\right)=1$.
Clearly $H_{1}(n) \geqslant H(n)$, nevertheless it seems likely that (5) holds for $H_{1}(n)$ too. I can prove that there is a $c>0$ so that for $n>n_{0}(c)$

$$
\begin{equation*}
H_{1}(n)<\exp n^{1-c} . \tag{6}
\end{equation*}
$$

The proof of (6) uses Brun's method and is somewhat complicated. I do not give it since it seems to fall so far from the final truth.

It might be of interest to investigate the distribution function of the functions $H(n)$ and $H_{1}(n)$, but 1 have no results in this direction at present.

[^0]III. Denote by $\sigma(n)$ the sum of divisors of n and by $\varphi(n)$ Euler's φ function. I state some solved and unsolved problems on these functions. Unless stated otherwise the results are true for both $\sigma(n)$ and $\varphi(n)$. In some cases the behavior of $\sigma(n)$ is more complicated. Denote by $f(x)$ the number of integers $m<x$ for which $\varphi(n)=m$ is solvable. R. R. Hall and I proved that for every k and $\varepsilon>0$ [1]
\[

$$
\begin{equation*}
\frac{x}{\log x}(\log \log x)^{k}<f(x)<\frac{x}{\log x} e^{(\log \log x)^{1 / 2+\varepsilon}} . \tag{1}
\end{equation*}
$$

\]

Probably the upper bound in (1) is close to being best possible but we are far from being able to prove this. Recently Hall proved

$$
\begin{equation*}
f(x)>\frac{x}{\log x}(\log \log x)^{c \log \log \log x} . \tag{2}
\end{equation*}
$$

It is not immediately clear if there is an asymptotic formula for $f(x)$ in terms of elementary functions. I can not prove that $\lim _{x=\infty} f(2 x) / f(x)$ exists; if it exists it must be 2 .

I have no nontrivial estimation for the number $A(x)$ of integers $n<x$ for which $\varphi(m)=n$ is solvable only in integers $m>x$. In particular, I do not know if

$$
\begin{equation*}
\lim _{r=\infty} A(x) / f(x) \tag{3}
\end{equation*}
$$

exists, also I can not decide if the limit could be 0 or infinity.
Denote by $g(n)$ the number of solutions of $\varphi(m)=n$. Sivasankaranarayana Pillai proved that $\lim \sup g(n)=\infty$ and I proved that there is an absolute constant $c>0$ so that for infinitely many integers $n, g(n)>c$ [2]. I am certain that this holds for every $c<1$ i.e. infinitely often $g(n)>n^{1-\varepsilon}$. This result would follow if one could prove that for every $\varepsilon>0$ the number of primes $p<x$ for which all prime factors of $p-1$ is less that p^{ε} is greater than $c_{\varepsilon} x / \log x$, but this conjecture though no doubt true is certainly very deep.

I can not prove that the equation $\sigma(n)=\varphi(m)$ has infinitely many solutions, though this certainly must be true. I proved that there are infinitely many even numbers not of the form $\sigma(n)-n$ [3] but can not prove that there are infinitely many even numbers not of the form $n-\varphi(n)$. I can not prove that the density of integers of the form $n+\varphi(n)$ (and $n+\sigma(n)$) is positive. I can not prove that for every $\alpha \geqslant 1$ there is a sequence of integers n_{k} and m_{k} satisfying $n_{k} / m_{k} \rightarrow \alpha, \sigma\left(n_{k}\right)=\sigma\left(m_{k}\right)$ (it is easy to prove the analogous result for $\varphi(n)$). I can not prove that there is a $\beta>1$ for which

$$
\left|\sigma(n)-\beta_{n}\right| \rightarrow \infty \text { as } n \rightarrow \infty .
$$

In a previous paper [4], I state the following question: Denote by $h(x)$ the number of solutions of $\sigma(a)=\sigma(b),(a, b)=1, a<b<x$.

Prove that $h(x) / x \rightarrow \infty$.

I sketch a proof of

$$
\begin{equation*}
\lim \sup _{x=\infty} \frac{h(x)}{x}=\infty . \tag{4}
\end{equation*}
$$

The proof of $\frac{h(x)}{x} \rightarrow \infty$ can be produced with a little more trouble.
Observe that if a and b are squarefree and $\sigma(a)=\sigma(b)$, then there are uniquely determined integers $a_{1}, b_{1},\left(a_{1}, b_{1}\right)=1, a=a_{1} t, b=b_{1} t$ and of course $\sigma\left(a_{1}\right)=\sigma\left(b_{1}\right)$. Thus if $h(y)<c$ for every y then the number $R(x)$ of solutions of the equation

$$
\begin{equation*}
\sigma(a)=\sigma(b), \quad a<b<x, \quad a, b \text { squarefree } \tag{5}
\end{equation*}
$$

is easily seen to be less than $c x \log x$.
Now we outline the proof that this is not true. In fact we show that for every k and $x>x_{0}(k)$

$$
\begin{equation*}
R(x)>x(\log x)^{k} . \tag{6}
\end{equation*}
$$

The proof of (6) is fairly complicated thus we do not give many details. I am sure that (6) is very far from the final truth and believe that for every $\varepsilon>0$ and $x>x_{0}(\varepsilon), R(x)>x^{2-\varepsilon}$ and also $h(x)>x^{2-\varepsilon}$.

Denote by $v(n)$ the number of distinct prime factors of n. We first observe that for almost all n

$$
\begin{equation*}
v(\sigma(n))=(1 / 2+o(1)) \quad(\log \log n)^{2} . \tag{7}
\end{equation*}
$$

The detailed proof of (7) is fairly complicated. Here is an outline of the proof. By a theorem of mine [2]

$$
\begin{equation*}
\sum^{\prime} 1 / p<\infty \tag{8}
\end{equation*}
$$

where the summation is extended over the primes p for which $v(p-1)<$ $<(1-\varepsilon) \log \log p$. Another theorem of mine states that if p_{k} is the k-th prime factor of n then [5]

$$
\begin{equation*}
\exp \exp k(1-\varepsilon)<p_{k}<\exp \exp k(1+\varepsilon) \tag{9}
\end{equation*}
$$

holds for all $k>k_{0}(\varepsilon, n)$ if we neglect ηx integers $n \leqslant x$. (7) follows from (8) and (9) without much difficulty.
(7) easily implies (6) since by a theorem of Hardy and Ramanujan [6] the number of integers $n<x$ for which $v(n)>\varepsilon(\log \log n)^{2}$ is $o\left(\frac{x}{(\log x)^{k}}\right)$.
[1] P. Erdös and R. R. Hall, On the values of Euler's φ-function Acta Arithmetica, 22 (1972), 201-206.
[2] P.ERDös, On the nominal number of, prime factors of p-1 and some related problems concerning Euler's ©-function, Quarterly J Math 6 (1935), 205-213
[3] P. Erdös, Über die Zahlen der Form σ (n)-n und $n-\varphi(n)$, Elemente der Mathematik 28 (1973), 83-86.
[4] P. Erdös, Remarks on number theory II. Some problems on the σ function, Acta Arith. 5 (1959), 171-177.
[5] P. Erdös, On the distribution function of additive functions, Annals of Math. 47 (1946), $1-20$, see p. 3-4.
[6] Hardy and Ramanujan, Quarterly J. Math. 48 (1917), 76-92, see also Ramanujan, Collected papers.
(Došlo 04. 10. 1974)
4.33. (1974) 203-204

PROBLEMS*

4.33.1. Problem of S. J. Benkoski and p. erdös.

Put $\sigma(n)=\sum_{d / n} d$. Is there an absolute constant C so that every integer n satisfying $\sigma(n)>C n$ is the distinct sum of proper divisors of n ?

Remarks. $\sigma(70)=144>2.70$ but 70 is not the distinct sum of proper divisors of 70 , but as far as we know C could be three:
S. J. Benkoski and Erdös, On weid and pseudoperfect numbers, Mathematics of computation, 28 (1974), 617-623.

4.33.2. Problem of P. Erdös and Straus.

I. Are there infinitely many primes p_{k} so that, for every $i<k, p_{k}^{2}>p_{k+i} p_{k-i}$ (p_{k} is the k-th prime).
II. Denote by $v(n)$ the number of distinct prime factors of n and by $d(n)$ the number of divisors of n. Is it true that there is an infinite sequence $n_{1}<n_{2}<\cdots$ of integers satisfying
(1) $v\left(n_{k}+i\right)<c_{1} i$ for every $i>0$ and c_{1} is an absolute constant?

If the answer is affirmative is there an infinite sequence $m_{1}<m_{2}<\cdots$ so that

$$
\begin{equation*}
d\left(m_{k}+i\right)<c_{2} i ? \tag{2}
\end{equation*}
$$

(1) can perhaps be proved by an improvement of BRUNS method; (2), if true, is certainly very deep.
4.33.3. Denote by $f(n)$ the smallest integer so that every $1 \leqslant m \leqslant n!$ is the sum of $f(n)$ or fewer distinct divisors of n. I proved $f(n)<n$. The proof is by induction and is simple. Prove or disprove: $f(n)<(\log n)^{c}$ for an absolute constant c and $n>n_{0}(c)$. I could not even prove $f(n)=o(n)$.
4.33.4. Prove that to every constant C there is an integer n for which $\sigma(n) / n>C$ and whose divisors do not give the moduli of a system of covering congruences. In other words if $1<d_{1}<d_{2}<\cdots<d_{k}=n$ is the set of all divisors greater than 1 of n and $a_{i}, 1 \leqslant i \leqslant k$ are arbitrary integers, there always is an integer m so that for every $i, 1 \leqslant i \leqslant k m \neq a_{i}\left(\bmod d_{i}\right)$.
4.33.5. Denote by $f(n ; t)$ the smallest integer w.th the property that if we split the integers $1 \leqslant m \leqslant n$ into two classes there always is an arithmetic progression of n terms at least t of which belongs to the same class; $f(n ; n)=f(n)$ is the well known Van der Waerden function the finiteness of which is guaranteed by van der Waerden's theorem. No satisfactory upper bound is known for $f(n) ; f(n) \geqslant 2^{n / 2}$ was proved by Rado and myself; W. SchmidT proved $f(n)>2^{n-c} \sqrt{\text { nlog } n}$ and Berlekamp proved $f(p) \geqslant p 2^{p}$ for primes p. Perhaps $f(n)^{1 / n}$ tends to infinity. $f(n ; t)$ is interesting only for $t>\frac{n}{2}$. Clearly, for

[^1]$t \leqslant \frac{n}{2}, f(n ; t)=n$. I proved that $f(n ; t)>\left(1+c_{\varepsilon}\right)^{n}$ for $t>(1+\varepsilon) \frac{n}{2}$. Perhaps $f\left(n ;\left[\frac{n}{2}(1+\varepsilon)\right]\right)<C_{\varepsilon}^{n}$ holds for sufficiently large C_{ε} if ε is sufficiently small, but I was not able to prove anything in this direction. In fact I can get no usable upper bound for $f(n ; t)$ for $t=\frac{n}{2}+o(n)$. J. Spencer proved that if $n=2^{l} m$ then
$$
f\left(n ;\left[\frac{n}{2}\right]+1\right)=2^{t}(n-1)+1
$$
but we do not know the value of $f\left(n ;\left[\frac{n}{2}\right]+2\right)$ and in fact have no satisfactory upper bound for it.
P. Erdös and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 2 (1952), 417-439.
W. Schmidt, Two combinatiorial theorems on arithmetic progressions, Duke Math. J. 29 (1962), 129-140.
E. R. Berlekamp, a construction for partitions which avoid long arithmetic progressions, Bull. Canad. Math. Soc. 11 (1968), 409-414.
J. Spencer, Problems 185 Bull. Canad. Math. Soc. 16 (1973), 185.
4.33.6*. Let $a_{1}<a_{2}<\cdots$ be an infinite sequence of integers for which $\sum_{i=1}^{\infty} \frac{1}{a_{i}}=\infty$. Then our sequence contains arbitrarily long arithmetical progressions.

I offer 2500 dollars for a proof or disproof of this conjecture. The conjecture would imply that for every k there are k primes in an arithmetic progression.

Szemerédi recently proved an old conjecture of TURÁN and myself: If $a_{1}<a_{2}<\cdots$ has positive upper density, then it contains arbitrarily arithmetic progressions. Szemerédi's ingenious proof will soon appear in Acta Arithmetica.
4.33. 7*. Let E be an infinite set of real numbers. Prove that there is a set of real numbers S of positive measure which does not contain a set E^{\prime} similar (in the sense of elementary geometry) to E.

We can of course assume that E is denumerable, its only limit point is 0 which is not in E.
4.33.8*. Put $\frac{n}{2^{n}}=\alpha_{n} .8 .1$ Is it true that every α_{n} is the finite sum of other α^{\prime} s?
8.2. Is it true that $\sum_{k=1}^{\infty} \alpha_{n_{k}}$ is irrational if $n_{k} / k \rightarrow \infty$?
8.3. Is there a rational number x for which $x=\sum_{l=1}^{\infty} \alpha_{n_{i}}$ has $2 \mathrm{~N}_{0}$ solutions.
(Došlo 04. 10. 1974).

[^2]
[^0]: References. C. Meier, Decomposition of a cube into smaller cubes, Amer. Math. Monthly 81 (1974), 630-631.
 K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl welche die Form p-1 haben, Monatshefte für Math. 59 (1954), 91-97.

[^1]: * Presented the 28.06. 1974 at the problem session of the 5th Balkan Mathematical Congress (Beograd, 24-30.06. 1974)

[^2]: P. Erdös

 Mathematical institute Budapest, Hungary

