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University of Wisconsin
Particles perform independent random walks on the integers, and are

annihilated if they cross paths or land at the same point. The problem is
to determine whether the origin is hit infinitely often . The answer is
shown to depend on the initial distribution of particles in accordance with
a "log log law ." Several equivalent models are mentioned .

1. An annihilating particle model . Let us start with a particle at each integer
point on the line except 0 . Let the particles perform independent simple ran-
dom walks, moving a unit step to the right or left with probability 2 at each
unit of time . If two particles cross each other's paths, or if they are about to
land at a common point they "annihilate" each other (i .e ., are removed from
the game before landing) .

QUESTION 1 . IS
P{the origin is ever hit} = 1 ?

We conjecture that the answer is yes, but do not have a proof .

One can consider a number of variants of the above model . The particles can
move to the left or right with probabilities p # 1 and 1 - p . The walk can be
one sided, with particles taking a step to the left with probability p and remaining
in place with probability 1 - p. In this case annihilation occurs if a particle
moves toward an occupied point, in which case both the occupying and moving
particle are removed prior to the landing . The initial distribution of particles
can also be varied . The question 1 is open in all these cases, but the model
suggests another problem about which we can say something .

2 . Two types of particles . Suppose we start with two types of particles, say
black and white (b and w), arranged on some subset of the integers according
to some initial distribution so that the colors alternate . Everything is as in the
previous model, but now the probabilities of movement of the b and w particles
are different . Thus, for example, in the one sided case white (resp . black) par-
ticles would move independently one step to the left with probability p (resp .
q), and remain in place with probability 1 - p (resp . 1 - q) . Annihilation of
particles occurs exactly as before, but observe that it always takes place btween
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neighboring pairs of particles of opposite colors. Hence the colors of particles
will continue to alternate . (If p - q this model is the same as the one-type

particle case, so we here only consider p

	

q .)

QUESTION 2. How many particles reach the origin?

We will see that the answer depends on the initial distribution of particles,
which is most easily described in terms of yet a third model .

3. Random intervals. Consider the unit segments {[n, n + 1) ; n - 0, ± 1,

and color the nth white or black with probabilities pn, and 1 - pn respectively .

The line is thus partitioned into black (B) and white (W) intervals . At each unit
of time, a white interval may grow by one unit (at the expense of its neighbor)
by extending its left end point by one unit with probability p, and similarly a
black interval may extend its left end with probability q . (They remain un-

changed with probabilities 1 - p and 1 - q respectively .)
If we think of a white (black) particle as placed at the left end of a white

(black) interval, and let the particle move as in the one sided model in paragraph
2 above, then the two models are identical . A white (black) interval stretches
from a white (black) particle to the next particle on its right (necessarily of the

opposite color) . An annihilation of two particles corresponds to an interval
shrinking to length 0, and its neighbors fusing into one long interval of the same

color . Thus we have a picture of intervals growing or shrinking, moving to the
left, possibly vanishing or fusing together . (A similar analog to the two sided
walk, with interval growing in either direction, can easily be defined .)

QUESTION 2' . How many intervals cross the origin?

4. Markov lattice models . The above models bear some resemblance to
special cases of Markov lattice models with local transition probabilities, which
have attracted some attention, recently . Suppose each unit interval (or locus)
on the line starts at time zero in one of two states-say 0 or 1 . Each locus

remains in its present state for an exponentially distributed random time (these
are independent), and then makes a transition to 0 or 1 with probabilities de-
pending on the current states of the locus in question and of its neighbors . Make
the special assumption that a 0-state with two 0-neighbors, will with probability

one make a transition into 0 ; and the same for 1's . Thus changes of state can-
not occur at the interior of a run of 0's or 1's, but only at the boundary . Will
a particular locus change state infinitely often, or will it ultimately remain in a
single state?

This is a continuous time analog of the interval model of Section 3, with a
new interval reaching the origin corresponding to a change of state there . Al-
though we have not worked out the details of this continuous time model, it
seems quite clear that the conclusions of the theorem below also hold for this

case .
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5 . Conclusions . Consider the one sided, 2 particle type model of paragraph
2, or the equivalent random interval model ; and let the initial distribution be
determined by {pj = P([j, j + 1) is white), n = 0, 1, • • •} . ( In this model we
need consider only j > 0, since no particles from the left can reach 0 .) Suppose,
for definiteness, that p > q .

THEOREM. (1) If

(1 a)

but Z p n = oo, then with probability 1 infinitely many particles (intervals) reach
the origin .

(ü) There exists a b < oo such that if

(1 b)

	

p ~

	

b log log j
j>_2,

J

then with probability 1, at most finitely many particles (intervals) reach the origin .

In the two sided case, black and white particles take independent steps of size
+ 1, 0, -1 with probabilities q+, q°, q- and p+, p°, p - respectively . Denote the
means by b = q+ - q- , w = p+ - p- . If b and w are of opposite sign, then it is
easy to show that only finitely many particles will cross 0 . If w < b < 0 then
the same conclusion holds as for the one sided case in the theorem above .' If
0 < b < w then the same statement holds, but with p; replaced by 1 - p; .
Analogous conclusions also hold for the remaining cases 0 < w < b and
b<w<0.

The proofs for the above cases are similar to the one sided case, so we shall
only treat the latter . In fact it seems clear that the proof extends to the case
when black and white particles perform arbitrary random walks with different
means . In the case of equal means one encounters similar difficulties to those
of the problem in Section 1 .

6. Proofs for the one sided case .'
PROOF OF (i) . Sometimes in the proof it will be convenient to talk in terms

of moving black or white intervals ; and sometimes it will be easier to argue in
terms of the black or white particles which sit at the boundaries of the intervals .
We will feel free to shift back and forth between these vocabularies, as it is
convenient .

Consider the intervals

pj < a log log j
J

j > 2, any a < q ,
P

where
Jk.) _ [( 1 + o)kn (1 + o)k+1n )

P/q < lo < 1/a ,

k=0,1,2, . . .,

2 In the two sided case replace j by jj on the right sides of (1) .
3 K's and c's with or without subscripts or primes denote constants, not necessarily the same

ones each time they appear .
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and where n is fixed but will ultimately be chosen large ; and let B,(,) - the
event that all unit segments in Jk (n) are black. (Adopt the convention that [c, d)
means the interval [<c>, <d>), where (x> = the largest integer in x .)
Now if

pj <
a log log j j=0,1,2, . . .

J
then

P(BO (n)) = T7~1+nS)n
(I
_ pj )

/
> 1 - a log log n ~Sn

1)n

K
(log n)"

Hence, substituting (I + ó)kn for n in the above

n,	 KP(Bk
) > 0 1 [log (1 + 6)n]"

Since, 0 < a6 < 1 (by choice of 5) we have

Zk P(Bk(n) ) = oo ,
and since the events are independent we conclude by the Borel-Cantelli lemma
that infinitely many B k (n) 's occur . Furthermore, since Z p j = oo, there will be
white intervals somewhere to the right of every black interval . Hence, with
probability 1, there will be infinitely many disjoint black intervals Jk ( n)*, where
k is taken from some infinite subsequence of {1, 2,

	

such that Jk (n)

	

J,( n ) *

(by disjoint we mean separated by white intervals .)
Consider one of these intervals Jk (n) *, with a black particle b* at its left end,

and a white particle w* at its right end ; and let x 6* and x w . denote the locations
of these end points . Since Jk (n) c ,Tk n *, we must have

0 < x 6* C ( I T ~)kn <
(I I 6)k+In G x,u* < oo .

(If x6* - 0, consider Jk+i instead)
l

)
We want to estimate Pk, n , the probability that the particle b* reaches 0 before

undergoing collision with any other particle . Suppose we modify our initial
distribution by moving b* from x 6* to (1 + 6) k n, and w* from x,* to (1 + b)'c+ln,

while leaving all other particles unchanged . This is equivalent to shrinking the
black interval J,(n)* = [x6* , xw*) to a black interval Jk (n) _ [( 1 + 6)kn (1 + 6) k+ l )

or to changing the colors of all unit segments in the set Jk * - Jk from black to
white. Let Pk,m, denote the probability that with this new initial location, b*
reaches 0 before undergoing collision . It is clear from a sample path comparison
of the process with the above two initial distributions, that

P ( ' ) < P*k,n - k,n

The situation in the modified initial distribution looks as in Fig . 1, in which
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Heavy line denotes black and light line denotes white (Figs . 1 through 5) .

FIG . 1 .
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FIG . 2 .

wl b
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unit segment

FIG. 3 .

particles have been numbered to the left and right of b* and w* ; o's denote the
location of black particles, and x's of white .

Figure 2 is obtained from 1 by coloring black all unit segments to the left of
wI- , and coloring white all those to the right of w* . Let Pk1n denote the prob-
ability that b* reaches 0 before collision with the initial pattern in Fig . 2, and

let us compare P (I) and P (2) . There are two ways that b* can fail to reach 0 :
(a) by virture of collision with a white particle on its left, (b) by virtue of a
collision with a white particle on its right . Case (a) is equivalent to the black
interval Jk (n) coming in contact with a black interval on its left . Whenever such

an event occurs with an initial distribution as in Fig . 1, then a comparison of
sample paths shows that it must also occur with the pattern in 2 . Such a com-
parison also shows that if case (b) occurs in Fig . 1 it must also occur in Fig . 2 .
Hence

P(2) G P(1)k,n - k,n

Finally, we modify the initial pattern from Fig . 2 to Fig. 3, by moving the left

white neighbor w, - from its position at xwl _, rightward to the point ((1 + b)kn - 1),
and let Pk3n be the corresponding probability that b* reaches 0 before collision .

Clearly Pk 3 n < Pkln, and hence, combining the above inequalities

P(3) C p*k,n = k,n

Now Pk3n can be described in terms of random walks .
Let {Xj ; i = 1, 2,

	

and {Yi ; i = 1, 2,

	

be independent random variables

with
P{Xi = -1 } =1-P{Xi=0} =P,

P{Yi = -1 }-=1-P(Y,.=0} =q,



(4)

	

PlT(l+E)U+S) k n/q < 0}

P{T(l+,)(1+ö)kn1q < - ( 1 + O)kn}

P JI	T(l+e)(I+ó)k,1,	 <

	

q	1 1
l ( I + e)( 1 + o )kn/q

	

( 1 + e)

Let {Xj '} be a process distributed as {XJ, independent of {Xz } and {YJ and with
Xó = Yo - 1 ; and with the corresponding sums denoted by primes . Finally,

let N = N(k) = the 1st hitting time of 0 by T;(k), and define the event

~ ) (k) _ {S;(k) > T;(k) > S;'(k), j = 1,

	

N} .

(We suppress the dependence on n in the S's and T's .)

LEMMA . There exists an n o < oo, and a B o > 0 such that for all n > no and
k > 1, P[e(n) (k)] > Bo •

PROOF .

P{K(n ) (k)} _ E j=, Pt5,"n'(k) I N= j}P{N = j}

> EK , P{ " ) (k) IN= j}P{N = j}

where we take K = <(1 + e)Tolq>, s > 0 to be chosen later,

>P{N<K}P{S;>T;>S;';j =1, • • • , K}
>P{N<K}P{S; >To >T; >a; >S;';j= 1,

	

K}

where {a;} is a sequence to be specified,

=P{N<K} •P{S;>T,,j=1, • • • , K}

(3)

	

XPIT, >T;>a;,j=l, • • • , K}

X P{a; > S;' ; j = 1, . . ., K} .

(It is understood that all the above factors depend on n and k .)
We now proceed to estimate these terms . First

PIN < K} = P ~T;(k) hits 0 before (1 + e)
I + 5)kn~

r
q

as n

	

oo

uniformly in k .
Next

P{S; > To , 1 < j < K} = P{s; > -(1 + 6)kdn, 1 < j < K}

= P{SK > -( 1 + 5)kbn} .

Since 5 > p1q we can choose e so that ól(1 + e) > 1, and then the above

=PiK > -1+ S } = P{ S
K

	 > -P( 1 +e~)}

RANDOM INTERVALS 833

with p > q being the same constants as specified before .
(1 + 6)k+ln, and To = Yo = Yo(k) _ (1 + 6)k n,

Let So = Xo = X"(k) _

S; = S;(k) _ Z¢=o Xz ; T; = T,(k) _ Z%=, Yz ;
= Si -Xo ; T;=T;-Yo .
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for some s' > 0 . Since K-> co as n -~ co, and Sj is a sum of independent ran-
dom variables with mean -p, we see that
(5)

	

PtS; > To , l < j < K} -4 1

	

as n ---> oo .

Now we take a; = To - zj(p + q) . Then for all K > 1,

The lemma follows from (3), (4), (5) and the above inequalities .
Since clearly P,111 > P[~-11n'(k)], we have by (2) and the lemma that Pk, n >

0, > 0 for n sufficiently large . Thus the probability that b* hits 0 before under-
going collision, or equivalently that J, ("* reaches 0, is > O o > 0, where the
lower bound 0 . is independent of k .
Now pick any 8, such that p1q < á, < b . Let z(b*) denote the extinction time

of b*, or the time at which it reaches the origin, whichever comes first . Con-
sider any initial black interval Jk 1n ' _ ( 1 + 6)kn[1, 1 + b) . At time z this interval
can have shrunk to a black interval no smaller than

[(I + 6)k n, (1 + 6)k +'n - z) .

But for k sufficiently large (depending on z)

[(I + 6)kn, (I + 6)k+'n - z) c (1 + á) kn[1, 1 + 6,) .

Hence by conditioning on r(b*), we can easily argue that with probability one,
there will be an infinite number of black intervals

(1 + 8)k n[ 1, 1 + ó,) , k taken from a subsequence of 11, 2, • • . } .

Now let b,* denote the left end-point of one of these, and argue exactly as
above that the probability that b,* reaches the origin before extinction is >
B, > 0 for n > some n, . Actually an inspection of the construction used in
deriving this bound shows that somewhat more is true . If we denote by e 6 .,
the history of the process (i .e ., the a-field generated by the process) up to and
including z(b*), then P1b,* reaches 0 before extinction b.,} > 0, > 0, the
inequality being uniform over all possible conditionings (states, realizations) of
the process at and before z(b*) .

We now continue in this fashion . Pick any 5, such that p1q < 6, < 8, . Let
z(b,*) = the extinction or zero crossing time of b,* . Then at z(b,*) there will
be infinitely many black intervals (1 + ó)k n[ 1, 1 + 82) . Let b2 * denote one of
these. Then P1ó 2* reaches 0 jz,,, *j > B 2 . We thus choose sequences 16 i },

PIT, >-T;>-a ; ;l<j<K}-Pi0>T,>- J(p _2 q ) j-1, . . .,K~

> P jT; > - J(P 2 q) j = 1 2 . . . > 0 .

Finally

P{a,>-S;',j=1, • • • , K}=P1-jp2q>Sj'-1,j=1,2,- . . >0 .



and
Z, k P(Bk ) < Co

	

if M > 1 .
Thus for b sufficiently large, at most finitely events Bk occur . Thus to prove
that only finitely many intervals cross 0, we need not concern ourselves with
black intervals longer than the Jk 'n''s .

Suppose a black interval is determined by a black particle b at its left end-
point and a white particle w at its right . Let us say that the interval "reaches"
the origin if the particle b does, and "crosses 0 if b and w reach 0 (before
extinction) . Consider the intervals JkJ 11 ,1 defined above and defi nethe event Hk (B)
that at least one black interval having a left end-point in Jk s reaches 0. To
prove (ü) it is sufficient (by Borel-Cantelli) to show that Y, P[Hk(B)] < oo .

Now modify the initial state of the process by coloring all of [0, (1 + 6)kn]
white, and all of Jkn black, thus producing a black interval which we denote by
fk%" (Note that due to possible overlap at the right end-point, j may be larger
than J.) Let Hk(() denote the event that JknS reaches 0 (under the modified ini-
tial distribution) . Then a sample path comparison of the type discussed in the
proof of (i) shows that

P[Hk(B)] < P[Hk(B)]
Finally let H,'(B) denote the event that a black interval exactly equal to ilk,)

reaches 0, under the initial condition that [0, (1 + 6) k n] is white. Since only
finitely many intervals can be longer than [(1 + 6)kn (1 + b)k}In] (thus putting
a bound on the difference between Jkne and Jke) it follows that Z P[Hk(B)] < oo
for sufficiently small b if

E P[Hk~(B)] < oo

for sufficiently small b .
We now turn to the proof of the fact that the last series converges . Let

I,,(n) = Io - the interval [(1 + b)n, (1 + ó')n), with b' > b to be specified later .
Define the events :

RANDOM INTERVALS
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p/q < b i , bi decreasing, and then corresponding particles {b i *} ; and show that

P{bz+ 1 reaches 0 1 3w-,, i .,} > 9i+1

	

0 .

Moreover by taking bi > 6, > p1q we can guarantee ei > some 0 > 0 for all i .
It thus follows that the probability that less than k out of the first n b i *' s reaches
0 goes to zero as n --> oo (for any k), and hence the conclusion of part (i) .

PROOF OF (ü) . Consider again the intervals
J(n)k

6 = [(1 + 6)kn, (1 + 6) k +in) ,

	

k = 0, 1, 2, . . . ,

and again denote by Bke the event that all unit segments in Jkó are black .
Using 1(b) we see (as in (3)) that

P(Bk
ö) ` kb 8[log (1 '+ b)n] 1 S
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EVENT A. The interval I, has at least K, log log n white unit segments any
two of which are separated by a distance of at least K, log n (under the initial
distribution) .

EVENT B . At least one white sub-segment in I, (say I,(W)) never becomes
extinct and has grown to length at least K, log log n within c log log n steps .

EVENT C . Such a white interval I,(W) of length K, log log n "consumes" J,(B)
before the latter reaches the origin (i .e ., at some time before the left (black) end
point of J,(B) reaches 0, the left end-point of I,(W) is < that of Jo(B)) .

Clearly

(6)

	

1 - P[H,'(B)] > P(ABC) = P(C
I
AB)P(B I A)P(A) .

Let us first estimate the number of white segments in lo . Let d = ó' - 8 > 0,
and write

p'

	

fj log log j = P{[ j j + 1) is initially white} .-

	

j

By hypothesis f; > b, where b will be chosen later to be sufficiently large, and
hence p; > rn-l log log n for j c Io , where r = bl(1 + 6') . Then

P{at most t whites in Io initially}

yi_o Cdnl ~rlog logn
) i (1

- rlog log n
/dn-ii

	

n

	

n

If t < K, log log n, the above is

< t ('t

	

rlog log n \ t 1 _ r log log n
/11

\ do-t
J

	

n
	 )

	

n

< c (dn)t rlog log n \ t 1 - r log log n
)-t e-1 log log n,dy

t! (

	

n

	

n

and using Stirling's formula

< c'
(edr)t

(log log n)t C1 - rlog log n l
t

	

1
tt

	

n

	

J (log J d'

Taking t = K, log log n, we get
1

	

~ed \K,loglogn

C

1 )dT

	

'
Plat most K log log n whites} < c"	r

	

- c"(log n) K

K,

	

log n

where K = dr - K, log (edr/K,) .
Hence letting A o (A,+ resp .) denote the event that there are exactly (at least ;

resp .) K, log log n white units in Ip at time 0, we have

(7) P(A o+) > 1 - constant • (log n) -K .

Furthermore P(A) > P(A I Ao+)P(A,+) > P(A I A,)P(A,+) . To estimate P(A
I
Ao)

note the following elementary occupancy problem : If N cells are arranged in a



row, and each is independently occupied with probability p, then the conditional
probability that a particular site is occupied, given that a total of K sites are

occupied, equals KIN. The conditional probability that there exist two occupied

sites separated by a distance < d (given that K are occupied) is thus bounded by

constant • (K/N) 2(W) (independent of p) . A slight adaptation of this argument

to our setting yields

1 - P(A I A,)

(8)

	

- 1 - P{no two whites in Io are separated by less than

K2 log n I there are exactly K l log log n whites in Io l

< constant
(
K, l
d

logn )
2
[(dn)(K2 1og n)] < const . (log n)2

Combining (7) and (8) we see that

(9)

	

P(A) >
~1

- Cl

	

1 \K]

L1

-
C2

(log n)2~

(log n/'

	

n
a

>1-C3	 ,
Clog n

where ( can be made arbitrarily large by taking b large, hence in turn r and K

large .
To bound P(B I A) from below note that since p > q, it follows from elemen-

tary considerations that for suitable choice of c, there are 2 > 0 and n o < co
such that for all n > no

(10)

	

P{at time c log log n a given unit white segment has not

become extinct and has grown to length > K 3 log log n} > 2 .

(This can be seen by expressing the statement in terms of a simple random

walk .) Furthermore within c log log n steps a unit interval cannot grow to length

K,log n, and hence any white units which are initially separated by K2 log n are

still growing independently . Hence

( 1 1)

	

P(B I A)

	

1 - (1 - 2)K 2 1og log n > 1 -
1

(

2

log n

for Kl sufficiently large and n > n o .
Finally we estimate P(C I AB) . This is bounded from below by the probability

that the black interval J,(B) is consumed by the white interval I(W), as in Fig .
4 below, before the former reaches the origin .

JO (B)
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n

	

(1+ó)

	

(1+S')n

	

(1+S')n+K3loglogn

Fic . 4.
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W

To=n SO=(1+ó')n

FIG . 5 .

b

T0=(1+ö') n+K 3 log log n

This probability is decreased if J,(B) is increased to J,'(B) as indicated in Fig . 5 .
Let {T,1, {S;1, and {Tj '1 be independent random walks as defined before, but

now take

To=n,

	

So=(1+6')n,

	

To'=(1+6')n+K3 loglog n .

Let N be the first passage time of {T~1 to 0 . Then

P{CI AB1>P{Sn,<T,,T/>S;,j=1, • • • , N1
(12)

	

> PIS,< T,„ T j ' >S, for all j> 11
> PIT/ > S, for all j > 11 - P{S, > TN 1 .

Now the first probability equals the probability that random walk U, = Zo +
Z, + • • • + Zk , with {Zz 1 independent and = + 1, 0, -1 with probabilities

(13)

	

r+= p( 1 -q),

	

r o =2pq,

	

r =q(l-p),
and with Zo = K3 log log n, never hits the origin. Since r -1 > r- , the probability
of hitting 0 is, for sufficiently large n, bounded by

1 lK 3 1og °
C
Clog n/

where a > 1 and c is some constant. Hence (12)
1

	

Ka log a -
(14)

	

> 1 -
c (log n - P{Sn, > Tr,1

g
Also

(15)

	

PISr, < Tn,1 = Z-j-, P{S, < Tn, I N = j1P{N = j1

_ EK 1 E;-K+1 ? P{SK < TKIP{N > K1 .

Now take K = n(1 - s)1q, s to be specified . Then

(16)

	

PIN > K1 = PIT, > 01 = P{TK > - n1

- PjTn(1-s)/9 > -n1 > 1 - Cl e 1n , n l > o,
the last inequality following from a standard tail estimate for the central limit
theorem (see, e .g ., page 517 ff, Feller 2) . Also

P{SK<TK1=P{Z,+ . . .+ZK>6'n1,

with Zi distributed as in (13)

(17)

	

_ p ~ zi=1E'
/9 [Zi - EZj] > n 5'	 - (1- s)(p/q-1 )

cni

	

c
> 1 - c, e- ' 2" ,



provided we choose 5' and s are sufficiently small so that

(18)	 -~< q-1 .1	

Hence by (15), (16), (17)

(19)

	

P(S,, < Tr,} > 1 - c'e- 'n ,

	

2 > 0 ,

or P{SN > TN} < c'e".
Inserting this in (14), we thus conclude that

(20)

	

P{C I AB} > 1 - const . (	1

	

K,log a

\log n

We take K3 sufficiently large so that K, log a > 2 . Going back to (6), and using
(9), (11), and (20), we see that for n > some no ,

Hence

and
Z'L, P[H,'(B)] < oo .

Hence by the Borel-Cantelli lemma only finitely many J,(B)'s reach 0 . This
proves (ü) and the theorem .
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1 - P[Hó(B)] >

1 - const .
-

	

(log n)2

1 - const . -
(log n)P_

RANDOM INTERVALS

	

839

1 -
Clog J]

P[H '(B)] <	const .
k

	

_ [ log (1
+ 6) ," n] Z

1 -

	

const .
(log n)K31oga_
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