Some remarks on set theory XI

by

P. Erdös and A. Hajnal (Budapest)

Abstract

Let \varkappa, λ be infinite cardinals, $F \subset P(\kappa), A \not \subset B$ for $A \neq B \in F ;|A|<x$ for $A \in F$. We give a necessary and sufficient condition (in ZFC) for the existence of an $F^{\prime} \subset F$ with $\left|F^{\prime}\right|=x$

$$
\left|x-\bigcup F^{\prime}\right| \geqslant \lambda .
$$

§ 1. Let x, λ be infinite cardinals, $F \subset P(x),|F|=x$. Problems of the following type were considered in quite a few papers.
(1) Under what conditions for F^{\prime} does there exist $F^{\prime} \subset F,\left|F^{\prime}\right|=x$ such that $\left|x-\bigcup F^{\prime}\right| \geqslant \lambda$ ๆ
(2) Assume f is a one-to-one mapping with domain x and range F, $\xi \notin f(\xi)$. Under what conditions for F does the set mapping f have a free subset of cardinality λ, i.e. a subset $R \subset \chi,|R|=\lambda$ such that $\xi \notin f(\eta)$ for all $\xi, \eta \in R$?

It was proved in [3] that (1) holds with $x=\lambda$ provided there is a cardinal τ with $|A|<\tau<x$ for all $A \in F$. In [4] it was proved that the same condition also implies the stronger statement (2) with $\lambda=\varkappa$. It is obvious that if we only assume

$$
\begin{equation*}
|A|<\varkappa \quad \text { for } \quad A \in F \tag{3}
\end{equation*}
$$

we have to impose further conditions on F to obtain res'lls of type (1) and (2).

The aim of this short note is to strudy the answer to (1) under the following simple condition

$$
\begin{equation*}
A \not \subset B \quad \text { for all } A \neq B \in F^{\prime} \tag{4}
\end{equation*}
$$

Here we get a complete discussion without using G.C.H. and we give the solution of Problem 73 proposed in our paper [1] as well.

We mention that in a paper with A. Máté [2] we are going to study the answer to (2) under condition (3) and under some additional and more sophisticated conditions.

To have a short notation we say that $P(\varkappa, \lambda)$ is true if (1) holds for all $F \subset P(x),|F|=x$, satisfying (3) and (4).

§ 2.

Theorem 1. Let x be regular. Then $P(\varkappa, \lambda)$ holds iff either $\lambda<x$ and $\nu^{\lambda}<\chi$ for all $\nu<\chi$ or $\lambda=\chi$ and x is weakly compact.

Theorem 2. If x is singular then $P(x, 1)$ is false.
Proof of Theorem 1.
First we prove

$$
\text { (5) If } v^{2} \geqslant \varkappa \text { for some } v<\varkappa, \lambda<\varkappa \text { then } P(\varkappa, \lambda) \text { is false. }
$$

Proof. Let λ_{0} be minimal such that there is $\nu<x$ with $\nu^{\lambda_{0}} \geqslant x$, and let ν_{0} be minimal such that $\nu_{0}^{\lambda_{0}} \geqslant x$. Then x being regalar $\nu_{0}^{\lambda_{0}}<x$.

It is well known that then there are $X,|X|=\nu_{0}^{\frac{\lambda}{0}}$ and $G \subset P(X)$, $|G|=v_{0}^{\lambda_{0}}$ such that

$$
\begin{equation*}
|A|=\lambda_{0} \text { for } A \in G \quad \text { and } \quad|A \cap B|<\lambda_{0} \text { for } A \neq B \in G \tag{6}
\end{equation*}
$$

Let $H=\operatorname{Co}(G)=\{X-A: A \in G\}$. We may assume $X \cap x=\emptyset$. Let $\left\{B_{\xi}: \xi<\pi\right\} \subset H$ be one-to-one, and put $A_{\xi}=B_{\xi} \cup \xi$ for $\xi<\pi ; F$ $=\left\{A_{\xi}: \xi<x\right\}$. Then $\left|A_{\xi}\right|<x$ for $\xi<\varkappa,|X \cup \chi|=\varkappa,|F|=x, A_{\xi} \not \subset A_{\eta}$ for $\xi \neq \eta<\chi$ since $\left|B_{\eta}-B_{\xi}\right|=\lambda_{0}$. On the other hand if $F^{\prime} \subset F,\left|F^{\prime}\right|=x$ then, by (6),

$$
\left|X \cup \chi-\bigcup F^{\prime}\right|<\lambda_{0} \leqslant \lambda
$$

This proves (5).
Now we prove
(7) Assume $\lambda<\chi, \nu^{\lambda}<\chi$ for all $\nu<\chi$ then $P(\varkappa, \lambda)$ holds.

Proof. Let F be a system satisfying (3) and (4). Let $\xi<\mu$. Put $F_{\xi}=\{A \in F:|\xi-A| \geqslant \lambda\}$. If $\left|F_{\xi}\right|=\psi$ for some ξ then by the regularity of x and by $|\xi|^{2}<x$, (1) holds. We assume $\left|F_{\xi}\right|<x$ for all $\xi<x$ and we obtain a contradiction. Pick $A_{\xi} \in F-F_{\xi}$ for each $\xi<\%$. Put $g(\xi)$ $=\xi-A_{\xi}, h(\xi)=\sup g(\xi)$. We can choose a regular cardinal τ such that $\lambda \leqslant \tau<\varkappa$ otherwise $\lambda^{+}=x, \lambda^{\lambda} \geqslant x$.

The set $K_{\tau}=\{\xi<\kappa: \operatorname{cf}(\xi)=\tau\}$ is stationary in χ and $h(\xi)<\xi$ for $\xi \in K_{\tau}$. By Fodor's theorem there are $\varrho<\%$ and a stationary set $C \subset K_{\tau}$ such that $h(\xi)=\varrho$ for $\xi \in C$. By $|\varrho|^{\lambda}<x$, there is $C^{\prime} \subset C, C^{\prime}$ cofinal in x such that $g(\xi)=g(\eta)$ for $\xi, \eta \in C^{\prime}$. Choose $\xi<\eta \in C^{\prime}$ such that $A_{\xi} \subset \eta$. Then $A_{\xi} \subset A_{\eta}$ a contradiction.
(5) and (7) prove the first part of our theorem.

We now prove
(8) Assume $P(\varkappa, x)$. Then \approx is weakly compact.

Proof. By the assumption $P(\varkappa, \lambda)$ holds for $\lambda<\varkappa$ hence, by (5), $2^{\lambda}<x$ for $\lambda<x ; x$ is strongly inaccessible. Assume x is not weakly compact. Then there is an Aronszajn tree $\langle\tau, \zeta\rangle$ on x. Let T_{ξ} denote the set of elements of rank ξ in the tree and put $S_{\xi}=\bigcup_{\eta<\xi} T_{\eta} . P$ is said to be a path of length ξ if P is a chain $\subset S_{\xi}$ and $P \cap T_{\eta} \neq \varnothing$ for $\eta<\xi$. It is well-known that there is a set $K \subset \varkappa,|K|=\varkappa$ such that there is a maximal path P_{ξ} of length ξ for each $\xi \in K$.

Put $F=\left\{S_{\xi}-P_{\xi}: \xi \in K\right\}$. Assume $\xi<\eta, \xi, \eta \in K$. Then by the maximality of $P_{\xi} S_{\xi}-P_{\xi} \not \subset S_{\eta}-P_{\eta}$ and obviously $S_{\eta}-P_{\eta} \not \subset S_{\xi}-P_{\xi}$.

On the other hand let $L \subset K,|L|=x, x, y \notin\left\{S_{\xi}-P_{\xi}: \xi \in L\right\}$. Then there is a $\xi \in L$ such that the ranks of x and y are less than ξ, hence $x, y \in P_{\xi}$ and $x \leqslant y$ or $y \leqslant x$.

It follows that $x-\bigcup\left\{S_{\xi}-P_{\xi}: \xi \in L\right\}$ is a chain and thus it has cardinality less than x.

Thus F establishes not $P(x, x)$. Hence if x holds \approx must be weakly compact. This proves (8) (see Problem 73 of [1]).

Finally we have to prove
(9) If x is weakly compact then $P(\varkappa, \varkappa)$ is true.

Proof. Let F be a system of sets satisfying (3) and (4). It is well known that then there are $A \subset x$ and $\left\{A_{\xi}: \xi<x\right\} \subset F$ such that $A \cap \xi$ $=A_{\eta} \cap \xi$ for $\xi \leqslant \eta<x$. First we claim that $\varkappa-A$ is cofinal in x. Otherwise there is ξ such that $x-\xi \subset A$. Then there is $\xi<\eta$ such that $A_{\xi} \subset \eta$ and then because of $\eta-\xi \subset A, A_{\xi} \subset A_{\eta}$.

Then by transfinite induction one can easily choose two increasing sequences $\sigma_{\eta}, \tau_{\eta} ; \eta<x$ such that $\sigma_{\eta} \in \varkappa-A, A_{\tau_{\eta}} \subset \sigma_{\eta}$ for $\nu<\eta$, and $\tau_{\nu}>\sigma_{\eta}$ for $\nu \geqslant \eta$. Then

$$
\left\{\sigma_{\eta}: \eta<x\right\} \subset \varkappa-\bigcup\left\{A_{\tau_{\eta}}: \eta<\varkappa\right\}
$$

This proves (9) and Theorem 1.
Proof of Theorem 2. Assume $\operatorname{cf}(x)<x$. Let $\left\{\chi_{\boldsymbol{p}}: \nu<\operatorname{cf}(x)\right\}$ be a normal sequence of type \approx of cardinals less than κ, tending to ψ such that $\varkappa_{0}=\operatorname{cf}(\varkappa)$. Then

$$
x=x_{0} \cup \bigcup_{v<\operatorname{ct}(x)]} x_{\nu+1}-x_{v}
$$

For $x_{0} \leqslant \xi<\chi$ let $\nu(\xi)$ be the unique ν for which $\xi \in \mu_{\nu+1}-\varkappa_{\nu}$. Put A_{ξ} $=x_{v+1}-\{\nu(\xi), \xi\}$ for $x_{0} \leqslant \xi<x$ and $F=\left\{A_{\xi}: x_{0} \leqslant \xi<x\right\}$.

Assume $\xi \neq \eta<x$. If $v(\xi) \neq v(\eta)$ then $\nu(\xi) \in A_{\eta}-A_{\xi}$. If $v(\xi)=\nu(\eta)$ then $\xi \in A_{\eta}-A_{\xi}$. Hence $A_{\eta} \not \subset A_{\xi}$. On the other hand if $L \subset \varkappa-\varkappa_{0}$ is cofinal in x then obviously

$$
\bigcup\left\{A_{\xi}: \xi \in L\right\}=\varkappa
$$

§ 3. Remarks.

1) First we mention that the weak assumption (4) is insufficient to obtain set mapping theorems of type (2) as is shown by the following example

For $n \epsilon \omega$ define

$$
f(n)=\{m<n: m \text { is even }\} \cup\{m+1\} \quad \text { if } n \text { is even }
$$

and

$$
f(n)=\{m<n: m \text { is odd }\} \cup\{n+1\} \quad \text { if } n \text { is odd }
$$

Then $f(n) \not \subset f(m)$ if $n \neq m$ and there is no free set of three elements. (Two independent points obviously exist.)
2) The following would be a Ramsey-type generalization of the positive part of Theorem 1.
(10) Let $2 \leqslant k<\omega$ and let $F:[\omega]^{k} \rightarrow[\omega]^{<\omega}$ be such that $F(X) \not \subset F(\bar{X})$ for $X \neq \Psi \in[\omega]^{k}$. Then there is $A \subset \omega,|A|=\omega$ such that

$$
\left|\omega-\bigcup\left\{F^{\prime}(X): X \in[A]^{k}\right\}\right| \geqslant \omega .
$$

We have examples to show that (10) is false for $k=2$ even if we assume that $F=\left\{F(X): X \in[\omega]^{k}\right\}$ satisfies the following stronger condition.
(11) No member of F is contained in the union of l others for some $2 \leqslant l<\omega$.

We suppress the proof.
3) We also mention that some of the counterexamples can be obtained with set-systems F satisfying the stronger condition (11).

Using the fact that for each $1 \leqslant l<\omega$ there is $G \subset P(\omega)$ such that the intersection of l members of G is infinite and the intersection of $l+1$ members of G is finite one can strengthen the counterexample of Theorem 1 to
(12) For $\omega_{1} \leqslant \varkappa \leqslant 2^{\omega}$ there is $F \subset P(x),|F|=\chi$ satisfying (11) and such that

$$
\left|\varkappa-\bigcup F^{\prime}\right|<\omega \quad \text { for } \quad F^{\prime} \subset F,\left|F^{\prime}\right|=\varkappa .
$$

The existence of the required G was pointed out to us by L. Pósa. Assuming C. H., we know that there is an F satisfying (12) and the following condition stronger than (11). No member of F is contained in the union of finitely many others. We did not investigate how far these results can be generalized.
4) Finally we mention a rather technical problem. Let F : $[\omega]^{2} \rightarrow[\omega]^{<\omega}$ be such that $F(X) \not \subset F(\bar{Y})$ for $X \neq Y \epsilon[\omega]^{2}$. Does there exist an infinite path $I \subset[\omega]^{2}$ such that $|\omega-\bigcup\{F(X): X \in I\}| \geqslant \omega$

References

[1] P. Erdös and A. Hajnal, Unsolved problems in set theory, Proceedings of Symposia in Pure Mathematics, 13, Part 1. A.M.S. Providence, R. I. (1971), pp. 17-48.
[2] - - and A. Máté, Chain conditions on set mappings and free sets, Acta Sci. Math. 34 (1973), pp. 69-79.
[3] G. Fodor, On a problem in set theory, Acta Sci. Math. 15 (1953-54), pp. 240-242.
[4] A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), pp. 123-128.

Regu par la Rédaction le 24. 4. 1973

