Paul Erdős, S. K. Zaremba

THE ARITHMETIC FUNCTION $\sum_{d / n} \frac{\log d}{d}$
The need to examine the asymptotic behaviour of the arithmetic function

$$
\sum_{d \ln } \frac{\log d}{d}
$$

which we shall denote by $S(n)$, arose in connection with work on good lattice points modulo composite numbers (see [2]).Obviously,

$$
\lim _{n \rightarrow \infty} \$(n)=0 ;
$$

the purpose of the present note is to prove the following: Theorem.

$$
\lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty}(\log \log n)^{-2} \delta(n)=e^{\gamma}
$$

where γ is the Euler constant.
Proof. Let

$$
n=\prod_{i=1}^{r} p_{i}^{\alpha(i)},
$$

where p_{1}, \ldots, p_{r} are distinct orimes, and $a_{i}(1), \ldots, \alpha(r)$ are positive integers. Then

Sponsored by the United Statea Army under Contract No. DA-31-124-- ARO -D-462.
(1)

$$
s(n)=\sum_{i=1}^{T} \sum_{\nu=1}^{\alpha(i)} \frac{\nu \log p_{i}}{p_{i}^{\nu}} \sum_{d \mid\left(p_{i}^{-\nu} n\right)} \frac{1}{d} .
$$

Hence

$$
\begin{equation*}
s(n)<\left(\sum_{i=1}^{n} \frac{\log p_{i}}{p_{i}}+\sum_{i=1}^{r} \log p_{i} \sum_{\nu=2}^{\infty} \frac{\nu}{p_{i}^{\nu}}\right) \sum_{\alpha \mid n} \frac{1}{d} . \tag{2}
\end{equation*}
$$

But if, as usual, $6(n)$ denotes the sum of all the divisors of n, we have (see, for instance, Theorem 323 in [1])
(3) $\lim _{n \rightarrow \infty} \sup (\log \log n)^{-1} \sum_{d \mid n} \frac{1}{d}=\lim _{n \rightarrow \infty} \frac{\epsilon(n)}{n \log \log n}=e^{\gamma}$.

On the other hand,

$$
\begin{equation*}
\sum_{j=2}^{\infty} \frac{\nu}{p_{i}^{\prime}}=\frac{1}{p_{i}^{2}}\left(\frac{p_{i}}{p_{i}-1}+\frac{p_{i}^{2}}{\left(p_{i}-1\right)^{2}}\right) \leqslant \frac{6}{p_{i}^{2}}, \tag{4}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\sum_{i=1}^{x} \log p_{i} \sum_{i=2}^{\infty} \frac{y}{p_{i}^{\prime}} \leqslant 6 \sum_{i=1}^{x} \frac{\log p_{i}}{p_{i}^{2}}=o(1) . \tag{5}
\end{equation*}
$$

Except for the trivial case when $1=1, p_{i}=3$, if r is given, an upper bound for the sum

$$
\sum_{i=1}^{x} \frac{\log p_{i}}{p_{i}}
$$

is obtained by assuming that p_{1}, \cdots, p_{r} are the first r consecutive primes. But any n bigger than 6 has fewer than $\log n$ distinct prime factors. Thus $r<\log n$, and by the prime
number theorem, $P_{r} \sim x \log r$. Hence there exists a constant \mathbb{A} such that if $r>1$,

$$
p_{r} \leqslant A r \log r<A \log n \log \log n
$$

On the other hand (see, for instance, Theorem 425 in [1]),

$$
\begin{equation*}
\sum_{p \leqslant x} \frac{\log p}{p}=\log x+o(1) \tag{6}
\end{equation*}
$$

Here and in what follows, p is a generic symbol for a prime. In particular,

$$
\sum_{i=1}^{r} \frac{\log p_{i}}{p_{i}}<\log \log n+\log \log \log n+\log A+O(1)
$$

and therefore

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty}(\log \log n)^{-1} \sum_{i=1}^{r} \frac{\log p_{i}}{p_{i}} \leqslant 1 \tag{7}
\end{equation*}
$$

In view of (2), according to (3), (5), and (7), we find

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\log \log n)^{-2} s(n) \leq e^{\gamma} . \tag{8}
\end{equation*}
$$

In order to prove the inverse inequality, note that for the sequence

$$
n_{j}=\prod_{p \leqslant e^{j}} p^{j}
$$

(see, for instance, the proof of Theorem 323 in [1]), we have
(9)

$$
\lim _{j \rightarrow \infty}\left(\log \log n_{j}\right)^{-1} \sum_{d \mid n_{j}} \frac{1}{d}=e^{\gamma} .
$$

But, according to (1), if the prime factors of n_{j} are $\mathrm{p}_{1}, \cdots, \mathrm{p}_{r}$,

$$
s\left(n_{j}\right) \geqslant \sum_{i=1}^{s} \frac{\log p_{i}}{p_{i}} \sum_{d \mid\left(p_{i}^{-1} n_{j}\right)} \frac{1}{d}
$$

and since

$$
\sum_{d \mid\left(p_{i}^{-1} n_{j}\right)} \frac{1}{d} \geqslant \sum_{d \mid n_{j}} \frac{1}{d}-\frac{1}{p_{i}} \sum_{d \mid n_{j}} \frac{1}{d}
$$

we have

The limit of the second fraction in the right-hand side of this inequality is given by (9). To determine the limit of the first fraction, we note that $\log n_{j}=j \vartheta\left(e^{j}\right)$, where

$$
\vartheta(x)=\sum_{p \leqslant x} \log p
$$

But (see, for instance, Theorem 414 in [1]), $\boldsymbol{N}(x)$ is exactly of the order of x. Consequently,

$$
\log \log n_{j}=j+\log j+O(1)
$$

and further

$$
\frac{1}{\log \log n_{j}} \sum_{i=1}^{n} \frac{\log p_{i}}{p_{i}}=\frac{1}{j} \sum_{p \leqslant e^{j}} \frac{\log p}{p} \cdot \frac{j}{j+\log j+0(1)}
$$

The first factor in the last expression tends to 1 according to (6), and so obviously does the second factor. Hence, owing to (5),

$$
\lim _{j \rightarrow \infty}\left(\log \log n_{j}\right)^{-1}\left(\sum_{i=1}^{n} \frac{\log p_{i}}{p_{i}}-\sum_{i=1}^{n} \frac{\log p_{i}}{p_{i}^{2}}\right)=1
$$

In view of (10), combining the last result with (9), we find

$$
\lim _{n \rightarrow \infty} \inf ^{n \rightarrow \infty}\left(\log \log n_{j}\right)^{-2} \xi\left(n_{j}\right) \geqslant e^{\gamma}
$$

Together with (8), this concludes the proof.
It can be proved that $\$(n)$ has a continuous purely singular distribution function. In other terms, the density $\psi(c)$ of integers for which $f(n)>c$ exists and is a continuous strictly increasing purely singular function (see a forthcoming paper by P. ErdBs and R. R. Hall in the Jourasl of Number Theory).

REFERENGES

[1] G.H. H ar d y, E.M. W r i g h t : An introduction to the theory of numbers. Fourth Edition. Oxford 1960.
[2] S.K. Z a r e n b a: Good lattice points modulo composite numbers. To appear in Monatsch. Math.

NATHEMATICS RESEARCH CENTER, UNIVERSITY OF WISCONSIN-MADISON, MADISON WiA. 53706, U.S.A.

