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Introduction .

	

Let S be an infinite set of power n , and let m > 2

be an integer . We denote by m(S) or [S]m the set of all subsets of s ,
of power m . A corollary of the main theorem proves that : if we denote by

Kn the complete hypergraph having Pm(S) as a set of edges ( so its degree

is n ) , then Km has n for chromatic index . This result gives a

positive answer to a conjecture of C . Berge .

2 .

	

Notations .

	

Subsequently we assume the axiom of choice

	

particularly

every infinite cardinal is an initial ordinal, denoted by wa . Moreover wo
is written w . If S is a set, its cardinality is denoted by ISI .

If m < ISI is a cardinal, then Pm(S) or [S] m is the set of all subsets

Y of S so that JYI - m : an element of [S] m is called a m-tuple .

3 .

	

Theorem 1 .

	

Let p , m and n be three cardinals so that p < m < n

and 1 < p < w < n . If S is a set of power n , there exists a partition

(Ak ) k
E I of [S]m , with III nm , such that for every k in I , every

p-tuple is included in exactly one m-tuple, member of Ak .

If p = i , each Ak defines a partition of S : the distinct

sets, members of Ak , are disjoint, and A k is a covering of S . This

solves a conjecture of C . Berge : for 2 , m < w and ISI > w , the

complete hypergraph has a coloring of the edges such that each vertex

meets all the colors .

From 1 , p < w , it follows that for any p -tuple Z of S and
any m-tuple A of S , the condition Z C A is equivalent to

lZn Al = IZI - p . So this result is a corollary of the following theorem



u

4 .

	

Theorem 2 .

	

Let p , m and n be three cardinals so that
1 < p < m < n and np - n : w If S is a set of power n , there

exists a partition (dk)k E I of [S] m , with III - nm , so that for
every kel, on the one hand for every p-tuple Z of S , there is a

m-tuple A , member of dk , so that IZn AI

	

P

	

IZI , on the other
hand, for distinct members A' and A" of dk

	

we have IA'n A"I < p

In this theorem, and contrary to what happens in theorem 1, whenever

p >- w , we cannot suppose that every p-tuple is included in exactly onee

member of dk . In fact, if we consider a p-tuple Z and suppose there

is a unique set A in dk which contains Z , then let z be an

element of S - A , so IZ U{z)I

	

p , and there is a set A' , member

of dk , which contains Z U (z)

	

From A' ¢ A" , we obtain a contradiction .

Moreover, we cannot suppose that for every p-tuple Z in S , there is

exactly one member A of dk such that IZ n AI = p - IZI : this is a

consequence of the following remark : the union o£ two distinct p-tuples

has p for power .

5 .

	

Proof of theorem 2 .

	

If such a partition exists, on one hand np - n,

on the other hand for every distinct sets A' and A" of A k , we must

have IA'n A"I < p . Therefore IAk l = n , and so III a nm . Moreover
np = n - wn and nm = wa , so we denote by (B~)~ < w an enumeration

a
of [S] m and by (2

X
) X <

w
an enumeration of [SJ p

	

If m is finite,

m - p > o is an integer, n otherwise m - p is the cardinal m .

Suppose we defined the family ('V k < y , when y < wa , in such a

way that we have

a. for k' < k" < Y

	

the sets dk , and dk „ are disjoint .

b . for k < Y

	

if A' and A" are distinct sets of dk then

IA'() A " I < p
c . for k < y and for every p-tuple Z in S

	

there is at least one

set A

	

member of dk , such that IZn AI = p = IZI ,

d . if

	

< Y , for some k < Y , the m-tuple B~ is a member of dk .

We will construct the family (d

	

)

	

of sets of m-tuples
Y I P P < w n

such that the union of this family is d
Y

.

1 . If BY is a set, member of an already constructed A k , then dY O is

the empty set .
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1 . I£ B Y belongs to no Ak , for k < Y , then
{B ) ,

Y

A

	

is the singleton
Y,o

Let a' be the smallest a so that IZ .,nAI < p for every set

A , member of A

	

(we have V - o iff : A

	

is empty ; or
(,o

	

Y,o

IZo r1B Y I < p) . If AY o is the empty set, we put s o = Z X , , otherwise

we put So = Z A,U B Y For every k < Y there is at most one subset C k

of S , member of Ak so that ZX , C C k . We know that [S - Sj m-p has

nm
p

' nm elements and thus there is a subset D of S

	

So verifying

IDI

	

m-p and so that : for every k < Y , the set D U Z,, which is a

m-tuple, is not a member of Ak . We remark that for every A , member

of AY'o , we have

	

I(Z,, U D)n AI = IZ X ,n AJ < p . Let t' be the

smallest

	

in wn so that

1 . for k < y , the set B &I does not belong to Ak .

2, we have IZ1,f1B,,I - p .

3 . for *Very A in
AY,o

, we have IB~,n AJ < p ( this is verified

whenever A

	

is the empty set ) .
Y,o

We put AY'1 -
AY,o

U {B~,}

Suppose we defined
(A Y ' v ) v < p , when 1 5 p < wn

	

and verifying

the following properties

i . for v' < v" < p the set A

	

, is included in A
Y, v

	

Y, v~~
for distinct m-tuples A' and A" in A y ,v , then IA ,n A"I < p

iii- if A is a set of A

	

for every k < y

	

the set A does not
Y,v

belong to Ak .

If p is a limit ordinal, then AY'p is the union, for v < p ,

of pY,v
If p is an isolated ordinal, p

	

B + 1 , let S' I be the union

	

thato

f all mambers A of A Y
'a

	

From JAI

	

m < n and IpI < n , it follows

I S~

	

,8

1J < n

	

Let a" be the smallest a so that for every set A ,

member of AY'9

	

we have IZX„('IAI < p . Such a k" exists because

IS - S' l l

	

n . We put S,

	

ZA„ us, 1 . For every k < y there is at most

a set Dk , member of Ak

	

so that Z X „ C Dk . We know that [S - Sj m-p

has nnrp

	

nII1 elements, and thus there is a (m-p) -tuple

	

G of S - S 1

$o that : on the one hand IZ a„ U GI = m ( obvious )

	

on the other hand

U G does At belong to every already constructed k
. Moreover for

every srt A , member of ..\ Y'9 , we have IZ V „U G)r)AI = IZ,„(1AI < p

do let

	

be the smallest

	

so that

i • for any k < y , the sec B,,, is not a member of A k •



ii . we have IZa„(1B,„I = p .

iii . for every member A of AY
e ,

we have IA(1B t„I < p .

Hence, we put
AYIP

= AY e U{B~ .,}

From the construction, it follows that the family (AY v ) v : p
verifies the conditions (i) , (ü) and (iii) . Moreover if the family

(A Y p ) p < w is constructed, then we put A Y =L-) AY ~ p
T1

	

p<w n

So the family (A k ) k ;
Y

verifies (a), (b), (c) and (d) .

Our transfinite induction is complete, and so the family (A k )k<w
verifies the conclusion of theorem 2 .

	

CE

6 .

	

The case when n p > n . Now, we assume the general continuum

hypothesis ( g .c .h . ) . Let n and p be two infinite cardinals such

that np > n . From g .c .h ., it follows ( by well known theorems [3] )

that n - w n is a singular cardinal and that its cofinal type cf(w n) - w s

verifies cf(n) = w s <, p - w d . Moreover, if n = wn , then n+ = wn+l .

6 .1

	

Theorem 3 .

	

Let p , m and n be three infinite cardinals such

that w <. p < m < n < n p , cf(n) < p and cf(n) # cf(p)

	

If S is a set

of power n , there exists a partition (Ak )k E I of [SI m , with 	II = nm ,

so that for every k E I, on the one hand for every p-tuple Z of S ,

there is at least a m-tuple A , member of Ak , such that IZ n AI = p = IZI

on the other hand, for distinct members A' and A" of Ak , we have

IA ,n A"I < p .
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Proof . Let S be a set of power n . So S is the union of an increasing

family of sets (S V ) v
< w

	

such that : on one hand for v' < v" < w s

the set S v , is included s in Sv„ , on the other hand, for every v < W s ,

we have m < IS v
I = n < n

	

and nv is a regular cardinal . From g .c .h .,

it follows that ESv
]~ is a set of power n v . Let L be the union of

[Sv] p for v < w s

	

we have ILI = n

	

If we denote by (Z~)~ < w

	

an

enumeration of L by the method used in the proof of theorem 2 , n we can

construct a partition (Ak ) k E I of [S]m such that for every k in I ,

on one hand, for every p-tuple Z' , member of L , there is a m-tuple A

in Ak such that IZ'nAI = p , on the other hand, for distinct members

A' and A" of A k , we have

1 A'n A"I < p
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a . p is a regular cardinal . Let Z be a p-tuple in S , there exists a

v < w s so that ZO S v - Z' verifies IZ'j - p : since w s = cf(n) < p

and p - cf(p) . Therefore, there is at least a member A of A k so that

IZ'n A, - p ( indeed Z' belongs to IS V~p ) and so IZr1AI = p . From

these remarks

	

it follows that the family (nk)k E 1 satisfies the

conclusions of the theorem .

b . p is a singular cardinal such that cf(n) < cf(p) < p . Let Z be a

p-tuple in S , there is some v so that IZr1s vl - p : otherwise let Z v

be the set Z nsv ; from IZ . I < p and

z - ~~ Zvv<w s

it follows that IZI < p ( this is a consequence of w - cf(n) < cf(p) ) .
P

So, we conclude as before .

c . p is a singular cardinal such that cf(p) < cf(n) <

p-tuple in S , there is at least a v such that IZr1S
v I = P

v0 Chere are n

there are at least

Is„n Z'nz"I = p
o

p . If Z is a

let Zv be the set Zr1S v , so Z is the union of Zv for v < w s = cf(n)

and we have IZ v I - pv < p

	

It follows that p is the lower upper bound

of the family (p v )v<w

	

Since ws is a regular cardinal, we can suppose

that we have p v , < pvs, for v' < v" < w S

	

Therefore, cf(n) - cf(p) ,

and we have a contradiction . We conclude as before .

Remark .

	

Under theorem hypotheses , if L is a subset of IS] p such that

for every distinct members Z' and Z" of L , we have IZ'()Z"I < p

then ILIi;. n . Otherwise ILI>, n + = ? and for every Z member of L ,

let v(Z)

	

be a v < ws such that IZ n S v I - p . From n+ = 2n is a

regular cardinal and from cf(n)

	

w < n < n , it follows that for somes

members Z of L such that v(Z) = v o . Consequently

two members Z' and Z" of L such that

( this is a consequence of Ilsv ]PI = IS, I < n+ ) ,

0

	

0
and we obtain a contradiction . This result is due to Tarski [4] .

6 .2

	

Theorem 4 .

	

et p , m and n be three infinite cardinals such

Otherwise

that w << p < m ; n <

	

and either cf(n.)

	

p , or cf(n) = cf(p) . If
S is a set of power n , there is no subset	of, [S] m so that on one

hand, for every p-tuple Z in S there is at least a member A of
such that IZnAl = p , on the other hand for distinct members A' and
A" of 6 , we have IA'nA"I < p .
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Consequently, there is no partition (A k ) k E 1 of [S]m such

that every Ak verifies the properties of the A above . Frascella, in [2],

uses some similar idea

I

Proof . First, we will prove that if such a A exists, then JAI >> n+ - 2 n

To show this, we suppose JAI ~ n , and thus JAI = n = w
n

. We denote by

(A0) <n an enumeration of all members of A . We know that n wn is the

union of cf(n) - ws strictly increasing sets n v for v < w 8 with

n I < n .v
a. if we have cf(n) - p , then we can construct, by transfinite induction,

a sequence of elements w v in S , such that w v does not belong to the

union V v of A~ for E E nv , and wv is distinct from every already

constructed w v
,

	

This is possible : indeed let Wv be the union of V
v

and the set of w v , for v'< v , we have

	

Iwvl < n and thus

I S - Wv I - n . We denote by Z the set of all wv for v < p .

b . if we have cf(n) = cf(p) < p , then p is a singular cardinal

	

Let

(pv)v<cf(p) be a partition of p so that Ipv l < p for v < cf(p)

	

We

construct, by transfinite induction, a sequence of subsets 2
v of S for

v < cf(p) , such that : on one hand Z v is disjoint from every already

constructed Zv , , on the other hand Z v is disjoint from the union of A

for ~ E n v . We denote by Z the union o£ Z v for v < cf(p) .

In these two cases Z verifies IZI - p

	

From the construction

of Z , it follows that for every member A, of A , we have IZnA I < p .

Contradiction . So IAI >, n+ = 2° .

Every set A& , member of A , meets, for some v < cf(n) = w

the set Sv in a set
B
'v of

	

+ B n ,power >, p ( since p < m)

	

From n - 2

and from

	

wp+

	

cf(n) iE p < n < n , it follows that for some
p+

	

+
v' < cf(n) < n

	

there are n

	

sets AC

	

members of A , such that

I BS v,I > p . For such (g,v') let C~
v'

be a subset of B~
v'

of power

p . So CE v, is included in A~ns v , and C~ 'v , belongs to [ s v ,] p .

Therefore, from IS .,I < n , and so ILSv,)pi < n < n + ( this is a

consequence of g .c .h . ) , it follows that there are two distinct sets A,,

and A,„ , members of A , so that C V , v ,= C V1 v , . So IA& ,(nA ,I >- p ,
and we have a contradiction .

Remark .

	

Under theorem hypotheses, if S is a set of power n , there is

a subset L of [S] p , of power n + = 2 n , such that for every distinct



members Z' and Z" of L , we have

Tarski [4] ) .

6 0

I Z'n Z"I < p ( this result is in

7 .

	

Problem .

	

We don't know if the theorem 2 is true whenever p - w ,

m = w l , n - w 2 and np = w3 = 2 p : we do

	

not suppose g .c .h . .

REFERENCES

1 .

	

C . Berge, Graphes et hypergraphes, Dunod ( 1970 ) .

2 .

	

W . J. Frascella, Certain counterexamples to the construction of

combinatorial designs on infinite sets, Notre-Dame journal of

formal logic, 12, n ° 4, ( 1971 ), p . 461-466 .

3 .

	

K . Kuratowski and A . Mostowski, Set theory, North Holland and

Polish scientific publishers ( 1968 ) .
4 .

	

A . Tarski, Sur la décomposition des ensembles en sons-ensembles

presque disjoints, Fundaments Mathematicae, 12, ( 1928 ),
p . 188-205 ; 14, ( 1929 ), p . 205-215 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

