<u>THE CHROMATIC INDEX</u> OF AN INFINITE COMPLETE HYPERGRAPH : <u>A PARTITION THEOREM</u>

R. Bonnet, University of Lyon,

P. Erdös, Hungarian Academy of Science

1. Introduction. Let S be an infinite set of power n, and let $m \ge 2$ be an integer. We denote by $P_m(S)$ or $[S]^m$ the set of all subsets of S, of power m. A corollary of the main theorem proves that : if we denote by K_n^m the complete hypergraph having $P_m(S)$ as a set of edges (so its degree is n), then K_n^m has n for chromatic index. This result gives a positive answer to a conjecture of C. Berge.

2. <u>Notations</u>. Subsequently we assume the axiom of choice : particularly every infinite cardinal is an initial ordinal, denoted by ω_{α} . Moreover ω_{α} is written ω . If S is a set, its cardinality is denoted by |S|. If m < |S| is a cardinal, then $P_m(S)$ or $[S]^m$ is the set of all subsets Y of S so that |Y| = m: an element of $[S]^m$ is called a <u>m-tuple</u>.

3. <u>Theorem 1.</u> Let p, m and n be three cardinals so that $p \le m \le n$ and $1 \le p \le \omega \le n$. If S is a set of power n, there exists a partition $(\Delta_k)_{k \in I} \quad of \quad [S]^m$, with $|I| = n^m$, such that for every k in I, every p-tuple is included in exactly one m-tuple, member of Δ_k .

If p = 1, each Δ_k defines a partition of S: the distinct sets, members of Δ_k , are disjoint, and Δ_k is a covering of S. This solves a conjecture of C. Berge : for $2 \leq m < \omega$ and $|S| \geq \omega$, the complete hypergraph has a coloring of the edges such that each vertex meets all the colors.

From $1 \le p < \omega$, it follows that for any p-tuple Z of S and any m-tuple A of S, the condition ZCA is equivalent to : $|Z \cap A| = |Z| = p$. So this result is a corollary of the following theorem :

			II 5 15 a S	et of power	n , there
	partition (A	∆ _k) _{k∈I <u>of</u>}	[S] ^m , with	$ I = n^m$, s	o that for
the second se			r every p-tuple that $ Z \cap A =$	-	

In this theorem, and contrary to what happens in theorem 1, whenever $p \ge \omega$, we cannot suppose that every p-tuple is included in exactly one member of Δ_k . In fact, if we consider a p-tuple Z and suppose there is a unique set A in Δ_k which contains Z, then let z be an element of S - A, so $|Z \cup \{z\}| = p$, and there is a set A', member of Δ_k , which contains $Z \cup \{z\}$. From A' \neq A", we obtain a contradiction. Moreover, we cannot suppose that for every p-tuple Z in S, there is exactly one member A of Δ_k such that $|Z \cap A| = p = |Z|$: this is a consequence of the following remark : the union of two distinct p-tuples has p for power.

5. <u>Proof of theorem 2</u>. If such a partition exists, on one hand $n^p = n$, on the other hand for every distinct sets A' and A'' of Δ_k , we must have $|A' \cap A''| < p$. Therefore $|\Delta_k| = n$, and so $|I| = n^m$. Moreover $n^p = n = \omega_n$ and $n^m = \omega_\alpha$, so we denote by $(B_{\xi})_{\xi} < \omega_\alpha$ an enumeration of $[S]^m$ and by $(Z_{\lambda})_{\lambda} < \omega_n$ an enumeration of $[S]^p$. If m is finite, m - p > o is an integer, n otherwise m - p is the cardinal m.

Suppose we defined the family $(\Delta_k)_{k\ <\ \gamma}$, when $\ \gamma\ <\ \omega_\alpha$, in such a way that we have :

a. for k' < k" < y, the sets Δ_k , and Δ_k " are disjoint. b. for k < y, if A' and A" are distinct sets of Δ_k then $|A' \cap A''| < p$.

c. for $k < \gamma$, and for every p-tuple Z in S, there is at least one set A, member of Δ_k , such that $|Z \cap A| = p = |Z|$.

d. if $\xi < \gamma$, for some $k < \gamma$, the m-tuple B_{ξ} is a member of Δ_k .

We will construct the family $(\Delta_{\gamma,\rho})_{\rho < \omega}$ of sets of m-tuples such that the union of this family is Δ_{γ} . 1. If B_Y is a set, member of an already constructed Δ_k , then $\Delta_{\gamma,0}$ is the empty set. 2. If B_{γ} belongs to no Δ_k , for $k < \gamma$, then $\Delta_{\gamma,o}$ is the singleton (B_) .

Let λ' be the smallest λ so that $|Z_{\lambda}, \cap A| < p$ for every set A, member of $\Delta_{\gamma,0}$ (we have $\lambda' = o$ iff: $\Delta_{\gamma,0}$ is empty; or $|Z_{\Omega} \cap B_{\gamma}| < p$). If $\Delta_{\gamma,0}$ is the empty set, we put $S_0 = Z_{\lambda}$, otherwise we put $S_0 = Z_{\lambda} \cup B_{\gamma}$. For every $k < \gamma$ there is at most one subset C_k of S, member of Δ_k so that $Z_{\lambda}, \subset C_k$. We know that $[S - S_0]^{m-p}$ has $n^{m-p} = n^m$ elements and thus there is a subset D of S - S verifying |D| = m-p and so that : for every $k < \gamma$, the set $D \cup Z_{\lambda}$, which is a m^{-tuple} , is not a member of Δ_k . We remark that for every A, member of $\Delta_{\gamma,0}$, we have $|(Z_{\lambda}, \cup D) \cap A| = |Z_{\lambda}, \cap A| < p$. Let ξ' be the smallest ξ in ω_{α} so that :

1. for $k < \gamma$, the set B_{g} , does not belong to A_{k} .

2. we have $|Z_1, \cap B_{F_1}| = p$.

3. for every A in $\Delta_{\gamma,0}$, we have $|B_{\xi}, \cap A| < p$ (this is verified whenever $\Delta_{\gamma,0}$ is the empty set).

We put $\Delta_{\gamma,1} = \Delta_{\gamma,0} \cup \{B_{\xi'}\}$

Suppose we defined $(\Delta_{\gamma,\nu})_{\nu} < \rho$, when $1 \le \rho < \omega_{\eta}$, and verifying the following properties :

i. for v' < v'' < p the set $\Delta_{\gamma,v'}$, is included in $\Delta_{\gamma,v''}$ ii. for distinct m-tuples A' and A'' in $\Delta_{\gamma,v}$, then $|A' \cap A''| < p$ iii. if A is a set of $\Delta_{\gamma,v}$, for every $k < \gamma$, the set A does not belong to Δ_k .

If ρ is a limit ordinal, then $\Delta_{\gamma,\rho}$.is the union, for $\nu < \rho$, of $\Delta_{\gamma,\nu}$.

If ρ is an isolated ordinal, $\rho = \theta + 1$, let S'₁ be the union of all members A of $\Delta_{\gamma,\theta}$. From |A| = m < n and $|\rho| < n$, it follows that $|S'_1| < n$. Let λ^m be the smallest λ so that for every set A, member of $\Delta_{\gamma,\theta}$, we have $|Z_{\lambda^m} \cap A| < p$. Such a λ^m exists because $|S - S'_1| = n$. We put $S_1 = Z_{\lambda^m} \cup S'_1$. For every $k < \gamma$ there is at most a set D_k, member of Δ_k , so that $Z_{\lambda^m} \subset D_k$. We know that $[S - S_1]^{m-p}$ has $n^{m-p} = n^m$ elements, and thus there is a (m-p)-tuple G of $S - S_1$ so that : on the one hand $|Z_{\lambda^m} \cup G| = m$ (obvious), on the other hand $Z_{\lambda^m} \cup G$ does not belong to every already constructed Δ_k . Moreover for every set A, member of $\Delta_{\gamma,\theta}$, we have $|Z_{\lambda^m} \cup G| = |Z_{\lambda^m} \cap A| < p$. So let ξ^m be the smallest ξ so that : i, for any $k < \gamma$, the set B_{r^m} is not a member of Δ_k . ii. we have $|Z_{\lambda^{"}} \cap B_{\xi^{"}}| = p$. iii. for every member A of $\Delta_{\gamma,\theta}$, we have $|A \cap B_{\xi^{"}}| < p$. Hence, we put $\Delta_{\gamma,\theta} = \Delta_{\gamma,\theta} \cup \{B_{\xi^{"}}\}$.

Hence, we put $\Delta_{\gamma,\rho} = \Delta_{\gamma,\theta} \bigcup \{B_{\xi^n}\}$. From the construction, it follows that the family $(\Delta_{\gamma,\nu})_{\nu \leq \rho}$ verifies the conditions (i), (ii) and (iii). Moreover if the family $(\Delta_{\gamma,\rho})_{\rho < \omega_{\eta}}$ is constructed, then we put $\Delta_{\gamma} = \bigcup_{\rho < \omega_{\eta}} \Delta_{\gamma,\rho}$. So the family $(\Delta_{k})_{k < \gamma}$ verifies (a), (b), (c) and (d).

Our transfinite induction is complete, and so the family $(\Delta_k)_{k<\omega_{\alpha}}$ verifies the conclusion of theorem 2.

6. The case when $n^p > n$. Now, we assume the general continuum hypothesis (g.c.h.). Let n and p be two infinite cardinals such that $n^p > n$. From g.c.h., it follows (by well known theorems [3]) that $n = \omega_n$ is a singular cardinal and that its cofinal type $cf(\omega_n) = \omega_\beta$ verifies $cf(n) = \omega_\beta \le p = \omega_\delta$. Moreover, if $n = \omega_n$, then $n^+ = \omega_{n+1}$.

6.1 Theorem 3. Let p, m and n be three infinite cardinals such that $\omega \leq p \leq m \leq n \leq n^p$, $cf(n) \leq p$ and $cf(n) \neq cf(p)$. If S is a set of power n, there exists a partition $(\Delta_k)_{k \in I}$ of $[S]^m$, with $|I| = n^m$, so that for every $k \in I$, on the one hand for every p-tuple Z of S, there is at least a m-tuple A, member of Δ_k , such that $|Z \cap A| = p = |Z|$ on the other hand, for distinct members A' and A'' of Δ_k , we have $|A' \cap A''| \leq p$.

<u>Proof.</u> Let S be a set of power n. So S is the union of an increasing family of sets $(S_v)_{v < \omega_{\beta}}$ such that : on one hand for $v' < v'' < \omega_{\beta}$ the set S_v , is included^{β} in $S_{v''}$, on the other hand, for every $v < \omega_{\beta}$, we have $m < |S_v| = n_v < n$ and n_v is a regular cardinal. From g.c.h., it follows that $[S_v]^p$ is a set of power n_v . Let L be the union of $[S_v]^p$ for $v < \omega_{\beta}$, we have |L| = n. If we denote by $(Z'_{\lambda})_{\lambda < \omega}$ an enumeration of L, by the method used in the proof of theorem 2, we can construct a partition $(\Delta_k)_{k \in I}$ of $[S]^m$ such that for every k in I, on one hand, for every p-tuple Z', member of L, there is a m-tuple A in Δ_k such that $|Z' \cap A| = p$, on the other hand, for distinct members A' and A'' of Δ_v , we have

 $|A' \cap A''| < p$

57

a. p is a regular cardinal. Let Z be a p-tuple in S, there exists a $v < \omega_{\beta}$ so that $Z \cap S_v = Z'$ verifies |Z'| = p: since $\omega_{\beta} = cf(n) < p$ and p = cf(p). Therefore, there is at least a member A of Δ_k so that $|Z' \cap A| = p$ (indeed Z' belongs to $[S_v]^p$) and so $|Z \cap A| = p$. From these remarks, it follows that the family $(\Delta_k)_{k \in I}$ satisfies the conclusions of the theorem.

<u>b.</u> p is a singular cardinal such that cf(n) < cf(p) < p. Let Z be a p-tuple in S, there is some v so that $|Z \cap S_v| = p$: otherwise let Z_v be the set $Z \cap S_v$; from $|Z_v| < p$ and

$$z = \bigcup_{v < \omega_{\beta}} z_{v}$$

it follows that |Z| < p (this is a consequence of $\omega_{\beta} = cf(n) < cf(p)$). So, we conclude as before.

<u>c</u>. p is a singular cardinal such that cf(p) < cf(n) < p. If Z is a p-tuple in S, there is at least a v such that $|Z \cap S_v| = p$. Otherwise let Z_v be the set $Z \cap S_v$, so Z is the union of Z_v for $v < \omega_\beta = cf(n)$ and we have $|Z_v| = p_v < p$. It follows that p is the lower upper bound of the family $(p_v)_{v < \omega_\beta}$. Since ω_β is a regular cardinal, we can suppose that we have $p_v, < p_v^{(n)}$ for $v' < v'' < \omega_\beta$. Therefore, cf(n) = cf(p), and we have a contradiction. We conclude as before.

<u>Remark</u>. Under theorem hypotheses, if L is a subset of $[S]^p$ such that for every distinct members Z' and Z" of L, we have $|Z' \cap Z"| < p$, then $|L| \le n$. Otherwise $|L| \ge n^+ = 2^n$ and for every Z, member of L, let v(Z) be a $v < \omega_{\beta}$ such that $|Z \cap S_v| = p$. From $n^+ = 2^n$ is a regular cardinal and from $cf(n) = \omega_{\beta} < n < n^+$, it follows that for some v_o there are n^+ members Z of L such that $v(Z) = v_o$. Consequently there are at least two members Z' and Z" of L such that $|S_v \cap Z' \cap Z"| = p$ (this is a consequence of $|[S_v]^p| = |S_v| < n^+$), and we obtain a contradiction. This result is due to Tarski [4].

6.2 Theorem 4. Let p, m and n be three infinite cardinals such that $\omega \leq p < m < n < n^{p}$, and either cf(n) = p, or cf(n) = cf(p). If S is a set of power n, there is no subset Δ of $[S]^{m}$ so that on one hand, for every p-tuple Z in S there is at least a member A of such that $|Z\cap A| = p$, on the other hand for distinct members A' and A^{m} of Δ , we have $|A'\cap A^{m}| < p$. Consequently, there is no partition $(\Delta_k)_{k \in I}$ of $[S]^m$ such that every Δ_k verifies the properties of the Δ above. Frascella, in [2], uses some similar idea.

Proof. First, we will prove that if such a Δ exists, then $|\Delta| \ge n^* = 2^n$. To show this, we suppose $|\Delta| \le n$, and thus $|\Delta| = n = \omega_n$. We denote by $(A_{\xi})_{\xi < n}$ an enumeration of all members of Δ . We know that $n = \omega_n$ is the union of $cf(n) = \omega_\beta$ strictly increasing sets n_0 for $v < \omega_\beta$, with $|n_0| < n$. **a**. if we have cf(n) = p, then we can construct, by transfinite induction, a sequence of elements w_0 in S, such that w_0 does not belong to the union V_0 of A_{ξ} for $\xi \in n_0$, and w_0 is distinct from every already constructed w_0 , . This is possible : indeed let W_0 be the union of V_0 .

and the set of w_{v} , for v' < v, we have $|W_{v}| < n$ and thus $|S - W_{v}| = n$. We denote by Z the set of all w_{v} for v < p. <u>b</u>. if we have cf(n) = cf(p) < p, then p is a singular cardinal. Let $(p_{v})_{v < cf(p)}$ be a partition of p so that $|p_{v}| < p$ for v < cf(p). We construct, by transfinite induction, a sequence of subsets Z_v of S, for v < cf(p), such that : on one hand Z_v is disjoint from every already constructed Z_v, on the other hand Z_v is disjoint from the union of A_ξ for $\xi \in n_{v}$. We denote by Z the union of Z_v for v < cf(p).

In these two cases Z verifies |Z| = p. From the construction of Z, it follows that for every member A_{ξ} of Δ , we have $|Z \cap A_{\xi}| < p$. Contradiction. So $|\Delta| \ge n^{+} = 2^{n}$.

Every set A_{ξ} , member of Δ , meets, for some $\nu < cf(n) = \omega_{\beta}$ the set S_{ν} in a set $B_{\xi,\nu}$ of power $\geqslant p$ (since p < m). From $n^{+} = 2^{n}$, and from $\omega_{\beta} = cf(n) \leqslant p < n < n^{+}$, it follows that for some $\nu' < cf(n) < n^{+}$, there are n^{+} sets A_{ξ} , members of Δ , such that $|B_{\xi,\nu}, \nu| \ge p$. For such (ξ,ν') let $C_{\xi,\nu}$, be a subset of $B_{\xi,\nu}$, of power p. So $C_{\xi,\nu}$, is included in $A_{\xi} \cap S_{\nu}$, and $C_{\xi,\nu}$, belongs to $[S_{\nu}, 1]^{p}$. Therefore, from $|S_{\nu'}| < n$, and so $|[S_{\nu'}, 1]^{p}| < n < n^{+}$ (this is a consequence of g.c.h.), it follows that there are two distinct sets $A_{\xi'}$ and $A_{\xi''}$, members of Δ , so that $C_{\xi',\nu}, = C_{\xi'',\nu'}$. So $|A_{\xi}, \cap A_{\xi''}| \ge p$, and we have a contradiction.

<u>Remark</u>. Under theorem hypotheses, if S is a set of power n, there is a subset L of $[S]^p$, of power $n^* = 2^n$, such that for every distinct

59

members Z' and Z'' of L, we have $|Z' \cap Z''| < p$ (this result is in Tarski [4]).

7. <u>Problem</u>. We don't know if the theorem 2 is true whenever $p = \omega$, $m = \omega_1$, $n = \omega_2$ and $n^p = \omega_3 = 2^p$: we do not suppose g.c.h.

REFERENCES

- 1. C. Berge, Graphes et hypergraphes, Dunod (1970) .
- W. J. Frascella, Certain counterexamples to the construction of combinatorial designs on infinite sets, <u>Notre-Dame journal of</u> <u>formal logic</u>, 12, n°4, (1971), p. 461-466.
- K. Kuratowski and A. Mostowski, <u>Set theory</u>, North Holland and Polish scientific publishers (1968).
- A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, <u>Fundamenta Mathematicae</u>, <u>12</u>, (1928),
 p. 188-205; <u>14</u>, (1929), p. 205-215.