A PARTITION THEOREM

R. Bonnet, University of Lyon,
P. Erdös, Hungarian Academy of Science

1. Introduction. Let S be an infinite set of power n, and let $m \geqslant 2$ be an integer. We denote by $P_{m}(S)$ or $[S]^{m}$ the set of all subsets of S, of power m. A corollary of the main theorem proves that : if we denote by K_{n}^{m} the complete hypergraph having $P_{m}(S)$ as a set of edges (so its degree is n), then K_{n}^{m} has n for chromatic index. This result gives a positive answer to a conjecture of C. Berge .
2. Notations. Subsequently we assume the axiom of choice : particularly every infinite cardinal is an initial ordinal, denoted by ω_{α}. Moreover ω_{o} is written ω. If S is a set, its cardinality is denoted by $|S|$. If $m<|S|$ is a cardinal, then $P_{m}(S)$ or $[S]^{m}$ is the set of all subsets Y of S so that $|Y|=m$: an element of $[S]^{m}$ is called a m-tuple.
3. Theorem 1. Let p, m and n be three cardinals so that $p<m<n$ and $1 \leqslant p<\omega \leqslant n$. If S is a set of power n, there exists a partition $\left(\Delta_{k}\right)_{k \in I}$ of $[s]^{m}$, with $|I|=n^{m}$, such that for every k in I, every p-tuple is included in exactly one m-tuple, member of Δ_{k}.

If $p=1$, each Δ_{k} defines a partition of S : the distinct sets, members of Δ_{k}, are disjoint, and Δ_{k} is a covering of S. This solves a conjecture of C. Berge : for $2 \leqslant m<\omega$ and $|s| \geqslant \omega$, the complete hypergraph has a coloring of the edges such that each vertex meets all the colors.

From $1 \leqslant p<\omega$, it follows that for any p-tuple z of S and any m-tuple A of S, the condition $Z \subset A$ is equivalent to : $|z \cap A|=|z|=p$. So this result is a corollary of the following theorem :
4. Theorem 2. Let p, m and n be three cardinals so that
$1 \leqslant p<m<n$ and $n^{p}=n \geqslant \omega$. If S is a set of power n, there exists a partition $\left(\Delta_{k}\right)_{k \in I}$ of $[s]^{m}$, with $|I|=n^{m}$, so that for every $k \varepsilon I$, on the one hand for every p-tuple 2 of S, there is a m-tuple A, member of Δ_{k}, so that $|Z \cap A|=p=|z|$, on the other hand, for distinct members A^{\prime} and $A^{\prime \prime}$ of Δ_{k}, we have $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$.

In this theorem, and contrary to what happens in theorem 1 , whenever $p \geqslant \omega$, we cannot suppose that every p-tuple is included in exactly one member of Δ_{k}. In fact, if we consider a $p-t u p l e ~ Z ~ a n d ~ s u p p o s e ~ t h e r e ~$ is a unique set A in Δ_{k} which contains Z, then let z be an element of $S-A$, so $|z \cup\{z\}|=p$, and there is a set A^{\prime}, member of Δ_{k}, which contains $Z \cup\{z\}$. From $A^{\prime} \neq A^{\prime \prime}$, we obtain a contradiction. Moreover, we cannot suppose that for every p-tuple Z in S, there is exactly one member A of Δ_{k} such that $|z \cap A|=p=|z|$: this is a consequence of the following remark : the union of two distinct p-tuples has P for power .
5. Proof of theorem 2. If such a partition exists, on one hand $n^{P}=n$, on the other hand for every distinct sets A^{\prime} and $A^{\prime \prime}$ of Δ_{k}, we must have $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$. Therefore $\left|\Delta_{k}\right|=n$, and so $|I|=n^{m}$. Moreover $n^{P}=n=\omega_{n}$ and $n^{m}=\omega_{\alpha}$, so we denote by $\left(B_{\xi}\right)_{\xi}<\omega_{\alpha}$ an enumeration of $[\mathrm{S}]^{\mathrm{m}}$ and by $\left(\mathrm{Z}_{\lambda}\right)_{\lambda}<\omega_{\eta}$ an enumeration of $[\mathrm{s}]^{\mathrm{p}}$. If m is finite, $m-p>0$ is an integer, n otherwise $m-p$ is the cardinal m.

Suppose we defined the family $\left(\Delta_{k}\right)_{k<\gamma}$, when $\gamma<\omega_{\alpha}$, in such a way that we have :
a. for $k^{\prime}<k^{\prime \prime}<\gamma$, the sets $\Delta_{k^{\prime}}$ and $\Delta_{k^{\prime \prime}}$ are disjoint.
b. for $k<\gamma$, if A^{\prime} and $A^{\prime \prime}$ are distinct sets of Δ_{k} then $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$.
c. for $k<\gamma$, and for every p-tuple Z in S, there is at least one set A, member of Δ_{k}, such that $|z \cap A|=p=|z|$. d. if $\xi<\gamma$, for some $k<\gamma$, the m-tuple B_{ξ} is a member of Δ_{k}.

We will construct the family $\left(\Delta_{\gamma, \rho}\right)_{\rho}<\omega_{\eta}$ of sets of m-tuples such that the union of this family is Δ_{γ}.

1. If B_{Y} is a set, member of an already constructed Δ_{k}, then $\Delta_{Y, 0}$ is the empty set.
2. If B_{γ} belongs to no Δ_{k}, for $k<\gamma$, then $\Delta_{\gamma, 0}$ is the singleton (B_{Y}).

Let λ^{\prime} be the smallest λ so that $\left|z_{\lambda}, \cap A\right|<p$ for every set A, member of $\Delta_{\gamma, 0}$ (we have $\lambda^{\prime}=0$ iff: $\Delta_{Y, 0}$ is empty ; or $\left.\left|Z_{o} \cap B_{Y}\right|<p\right)$. If $\Delta_{Y, 0}$ is the empty set, we put $S_{0}=Z_{\lambda}$, otherwise we put $S_{o}=Z_{\lambda}, \cup B_{\gamma}$. For every $k<\gamma$ there is at most one subset C_{k} of S, member of Δ_{k} so that $Z_{\lambda}, \subset c_{k}$. We know that $\left[S-S_{0}\right]^{m-p}$ has $n^{m-P}=n^{m}$ elements and thus there is a subset D of $S-S_{o}$ verifying $|D|=m \sim p$ and so that : for every $k<\gamma$, the set $D \cup Z_{\lambda}$, which is a m-tuple, is not a member of A_{k}. We remark that for every A, member of $\Delta_{Y, O}$, we have $\left|\left(Z_{\lambda}, \cup D\right) \cap A\right|=\left|Z_{\lambda}, \cap A\right|<p$. Let ξ ' be the smallest ξ in ω_{a} so that :

1. For $k<\gamma$, the set B_{ξ}, does not belong to Δ_{k}.
2. we have $\left|z_{\lambda}, \cap B_{\xi},\right|=p$.
3. for every A in $\Delta_{\gamma, 0}$, we have $\left|B_{\xi}, \cap A\right|<p$ (this is verified whenever $\Delta_{Y, 0}$ is the empty set) .

We put $\Delta_{\gamma, 1}=\Delta_{\gamma, 0} \cup\left\{B_{\xi},\right\}$
Suppose we defined $\left(\Delta_{\gamma, v}\right)_{v}<\rho$, when $1 \leqslant \rho<\omega_{\eta}$, and verifying the following properties :
i. for $v^{\prime}<v^{\prime \prime}<\rho$ the set $\Delta_{\gamma, v^{\prime}}$ is included in $\Delta_{\gamma, v^{\prime \prime}}$
ii. for distinct m-tuples A^{\prime} and $A^{\prime \prime}$ in $\Delta_{\gamma, v}$, then $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$ iii. if A is a set of $\Delta_{Y, \nu}$, for every $k<\gamma$, the set A does not belong to A_{k}.

If ρ is a limit ordinal, then $\Delta_{\gamma, p}$ is the union, for $\nu<p$, of $\Delta_{Y_{2} v}$.

If ρ is an isolated ordinal, $\rho=\theta+1$, let S_{1}^{\prime} be the union of all members A of $\Delta_{\gamma, \theta}$. From $|A|=m<n$ and $|\rho|<n$, it follows that $\left|S^{\prime}{ }_{1}\right|<n$. Let $\lambda^{\prime \prime}$ be the smallest λ so that for every set A, member of $\Delta_{\gamma, \theta}$, we have $\left|z_{\lambda^{\prime \prime}} \cap A\right|<p$. Such a $\lambda^{\prime \prime}$ exists because $\left|s-S^{\prime}{ }_{1}\right|=n_{n}$. We put $S_{1}=Z_{\lambda^{\prime \prime} \cup S_{1}^{\prime}}^{1}$. For every $k<\gamma$ there is at most a set D_{k}, member of A_{k}, so that $z_{\lambda^{\prime \prime}} \subset D_{k}$. We know that $\left[S-S_{1}\right]^{m " p}$ has $n^{n-p}=n^{m}$ elements, and thus there is a (m-p)-tuple G of $S-S_{1}$ so that : on the one hand $\left|Z_{\lambda^{\prime \prime}} \cup G\right|=m$ (obvious), on the other hand Z^{2} " $\cup G$ does not belong to every already constructed Δ_{k}. Moreover for every set A, member of $A_{Y, \theta}$, we have $\left.\mid Z_{\lambda^{\prime \prime}} \cup G\right) \cap A\left|=\left|Z_{\lambda^{\prime \prime}} \cap A\right|<p\right.$. So let $\xi^{\prime \prime}$ be the smallest ξ so that :
i. for any $k<\gamma$, the set $B_{\zeta^{\prime \prime}}$ is not a member of Δ_{k}.
ii. we have $\left|Z_{\lambda^{\prime \prime}} \cap_{B_{\xi^{\prime \prime}}}\right|=\mathrm{p}$.
iii. for every member A of $\Delta_{\gamma, \theta}$, we have $\left|A \cap B_{\xi^{\prime \prime}}\right|<p$.

Hence, we put $\Delta_{\gamma, \rho}=\Delta_{\gamma, \theta} \cup\left\{B_{\xi^{\prime \prime}}\right\}$ -
From the construction, it follows that the family $\left(\Delta_{\gamma, v}\right)_{v} \leqslant \rho$ verifies the conditions (i) , (ii) and (iii). Moreover if the family $\left(\Delta_{\gamma, \rho}\right)_{\rho}<\omega_{\eta}$ is constructed, then we put $\Delta_{\gamma}=\underbrace{\longrightarrow}_{\rho<\omega_{\eta}} \Delta_{\gamma, \rho}$. So the family $\left(\Delta_{k}\right)_{k \leqslant \gamma}$ verifies (a), (b), (c) and (d).

Our transfinite induction is complete, and so the family $\quad\left(\Delta_{k}\right)_{k<\omega_{\alpha}}$ verifies the conclusion of theorem 2 .
6. The case when $n^{P}>n$. Now, we assume the general continuum hypothesis (g.c.h.) . Let n and p be two infinite cardinals such that $n^{p}>n$. From g.c.h., it follows (by well known theorems [3]) that $n=\omega_{\eta}$ is a singular cardinal and that its cofinal type $\operatorname{cf}\left(\omega_{n}\right)=\omega_{8}$ verifies $\operatorname{cf}(n)=\omega_{\beta} \leqslant p=\omega_{\delta}$. Moreover, if $n=\omega_{n}$, then $n^{+}=\omega_{n+1}$.
6.1 Theorem 3. Let p, m and n be three infinite cardinals such that $\omega \leqslant p<m<n<n^{p}, \quad c f(n)<p$ and $c f(n) \neq c f(p)$. If S is a set of power n, there exists a partition $\left(\Delta_{k}\right)_{k} \in I$ of $[S]^{m}$, with $|I|=n^{m}$, so that for every $k \in I$, on the one hand for every p-tuple Z of S, there is at least a mrtuple A, member of Δ_{k}, such that $|z \cap A|=p=|z|$ on the other hand, for distinct members A^{\prime} and $A^{\prime \prime}$ of Δ_{k}, we have $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$.

Proof. Let S be a set of power n. So S is the union of an increasing family of sets $\left(S_{v}\right)_{\nu}<\omega_{B}$ such that : on one hand for $v^{\prime}<v^{\prime \prime}<\omega_{B}$ the set $S_{V^{\prime}}$ is included ${ }^{\beta}$ in $S_{\nu^{\prime \prime}}$, on the other hand, for every $v<\omega_{\beta}$, we have $m<\left|S_{v}\right|=n_{v}<n$ and n_{v} is a regular cardinal. From g.c.h., it follows that $\left[S_{\nu}\right]^{p}$ is a set of power n_{v}. Let L be the union of $\left[S_{v}\right]^{P}$ for $v<\omega_{B}$, we have $|L|=n$. If we denote by $\left(Z_{\lambda}^{\prime}\right)_{\lambda}<\omega_{n}$ an enumeration of L, by the method used in the proof of theorem $2,{ }^{n}$ we can construct a partition $\left(\Delta_{k}\right)_{k \in I}$ of $[S]^{m}$ such that for every k in I, on one hand, for every p-tuple Z^{\prime}, member of L, there is a m-tuple A in Δ_{k} such that $\left|Z^{\prime} \cap A\right|=p$, on the other hand, for distinct members A^{\prime} and $A^{\prime \prime}$ of Δ_{k}, we have

$$
\left|A^{\prime} \cap A^{\prime \prime}\right|<p
$$

a. p is a regular cardinal. Let Z be a p-tuple in S, there exists a $v<\omega_{B}$ so that $Z \cap S_{v}=Z^{\prime}$ verifies $\left|Z^{\prime}\right|=p$: since $\omega_{B}=c f(n)<p$ and $p=c f(p)$. Therefore, there is at least a member A of Δ_{k} so that $\left|z^{\prime} \cap A\right|=p$ (indeed z^{\prime} belongs to $\left[s_{v}\right]^{p}$) and so $|z \cap A|=p$. From these remarks, it follows that the family $\left(\Delta_{k}\right)_{k \in I}$ satisfies the conclusions of the theorem.
b. p is a singular cardinal such that $c f(n)<c f(p)<p$. Let z be a p -tuple in S , there is some v so that $\left|Z \cap S_{v}\right|=p$: otherwise let Z_{v} be the set $Z \cap S_{v}$; from $\left|z_{v}\right|<p$ and

$$
z=\sum_{v<\omega_{B}} z_{v}
$$

it follows that $|z|<p$ (this is a consequence of $\omega_{\beta}=c f(n)<c f(p)$). So, we conclude as before.
c. p is a singular cardinal such that $c f(p)<c f(n)<p$. If z is a p-tuple in S, there is at least a v such that $\left|z \cap s_{v}\right|=p$. Otherwise let Z_{v} be the set $Z \cap S_{v}$, so Z is the union of Z_{v} for $v<\omega_{B}=\operatorname{cf}(n)$ and we have $\left|z_{v}\right|=p_{v}<p$. It follows that p is the lower upper bound of the family $\left(p_{\nu}\right)_{\nu<\omega_{\beta}}$. Since ω_{β} is a regular cardinal, we can suppose that we have $p_{v^{\prime}},<p_{v^{\prime \prime}}$ for $v^{\prime}<v^{\prime \prime}<\omega_{\beta}$. Therefore, $\mathrm{cf}(\mathrm{n})=\mathrm{cf}(\mathrm{p})$, and we have a contradiction. We conclude as before.

Remark. Under theorem hypotheses, if L is a subset of $[s]^{P}$ such that for every distinct members Z^{\prime} and $Z^{\prime \prime}$ of L, we have $\left|z^{\prime} \cap z^{\prime \prime}\right|<p$, then $|L| \leqslant n$. Otherwise $|L| \geqslant n^{+}=2^{n}$ and for every z, member of L, let $v(Z)$ be a $v<\omega_{B}$ such that $\left|z \cap S_{v}\right|=p$. From $n^{+}=2^{n}$ is a regular cardinal and from $\mathrm{cf}(\mathrm{n})=\omega_{B}<\mathrm{n}<\mathrm{n}^{+}$, it follows that for some ν_{0} there are n^{+}members Z of L such that $\nu(\mathrm{Z})=\nu_{0}$. Consequently there are at least two members z^{\prime} and $z^{\prime \prime}$ of L such that $\left|s_{v_{0}} \cap Z^{\prime} \cap Z^{\prime \prime}\right|=p \quad$ (this is a consequence of $\left|\left[s_{v_{0}}\right]^{p}\right|=\left|s_{v_{0}}\right|<n^{+}$), and we obtain a contradiction. This result is due to Tarski [4].
6.2

Theorem 4. Let p, m and n be three infinite cardinals such that $\omega \leqslant p<m<n<\overline{n^{p}}$, and either $c f(n)=p$, or $c f(n)=c f(p)$. If S is a set of power n, there is no subset Δ of $[s]^{m}$ so that on one hand, for every p-tuple Z in S there is at least a member A of such that $|Z \cap A|=P$, on the other hand for distinct members A^{\prime} and $A^{\prime \prime}$ of Δ, we have $\left|A^{\prime} \cap A^{\prime \prime}\right|<p$.

Consequently, there is no partition $\left(\Delta_{k}\right)_{k} \in I$ of $[S]^{m}$ such that every Δ_{k} verifies the properties of the Δ above. Frascella, in [2], uses some similar idea.

Proof. First, we will prove that if such a Δ exists, then $|\Delta| \geqslant n^{+}=2^{n}$. To show this, we suppose $|\Delta| \leqslant n$, and thus $|\Delta|=n=\omega_{n}$. We denote by $\left(A_{\xi}\right)_{\xi<n}$ an enumeration of all members of Δ. We know that $n=\omega_{n}$ is the union of $\mathrm{cf}(\mathrm{n})=\omega_{B}$ strictly increasing sets n_{v} for $v<\omega_{B}$, with $\left|n_{v}\right|<n$.
a. if we have $c f(n)=p$, then we can construct, by transfinite induction, a sequence of elements ${ }_{w}{ }_{v}$ in S, such that ${ }_{w}{ }_{v}$ does not belong to the union V_{v} of A_{ξ} for $\xi \in \in_{v}$, and ${ }_{v}$, is distinct from every already constructed W_{v}, This is possible : indeed let W_{v} be the union of v_{v} and the set of $W_{v^{\prime}}$ for $v^{\prime}<v$, we have $\left|W_{v}\right|<n$ and thus $\left|S-W_{v}\right|=n$. We denote by Z the set of all w_{v} for $v<p$. b. if we have $c f(n)=c f(p)<p$, then p is a singular cardinal. Let $\left(p_{\nu}\right)_{\nu<c f(p)}$ be a partition of p so that $\left|p_{\nu}\right|<p$ for $v<c f(p)$. We construct, by transfinite induction, a sequence of subsets Z_{v} of S, for $v<c f(p)$, such that : on one hand Z_{v} is disjoint from every already constructed Z_{v}, on the other hand Z_{v} is disjoint from the union of A_{ξ} for $\xi \in n_{v}$. We denote by Z the union of Z_{v} for $v<c f(p)$.

In these two cases Z verifies $|Z|=p$. From the construction of Z, it follows that for every member A_{ξ} of Δ, we have $\left|z \cap A_{\xi}\right|<p$. Contradiction. So $|\Delta| \geqslant n^{+}=2^{n}$.

Every set A_{ξ}, member of Δ, meets, for some $v<\operatorname{cf}(n)=\omega_{B}$ the set S_{v} in a set $B_{\xi, v}$ of power $\geqslant p$ (since $p<m$). From $n^{+}=2^{n}$, and from $\omega_{\beta_{+}}=c f(n) \leqslant p<n<n^{+}$, it follows that for some $v^{\prime}<c f(n)<n^{+}$, there are $n^{+} \operatorname{set} A_{\xi}$, members of Δ, such that $\left|B_{\xi, v^{\prime}}\right| \geqslant p$. For such ($\left.\xi, v^{\prime}\right)$ let $C_{\xi, v^{\prime}}$ be a subset of $B_{\xi, v^{\prime}}$ of power P. So $C_{\xi, v^{\prime}}$ is included in $A_{\xi} \cap S_{\nu^{\prime}}$ and $C_{\xi, \nu^{\prime}}$ belongs to $\left[S_{\nu}\right]^{P}$. Therefore, from $\left|S_{v^{\prime}}\right|<n$, and so $\left|\left[S_{v^{\prime}}\right]^{\mathrm{P}}\right|<n<n^{+}$(this is a consequence of g.c.h.), it follows that there are two distinct sets $A_{\xi^{\prime}}$ and $A_{\xi^{\prime \prime}}$, members of Δ, so that $C_{\xi^{\prime}, v^{\prime}}=C_{\xi^{\prime \prime}, v^{\prime}}$. So $\left|A_{\xi^{\prime}} \cap A_{\xi^{\prime \prime}}\right| \geqslant p$, and we have a contradiction .

Remark. Under theorem hypotheses, if S is a set of power n, there is a subset L of $[S]^{p}$, of power $n^{+}=2^{n}$, such that for every distinct
members Z^{\prime} and $Z^{\prime \prime}$ of L, we have $\left|Z^{\prime} \cap Z^{\prime \prime}\right|<p$ (this result is in Tarski [4]).
7. Problem. We don't know if the theorem 2 is true whenever $p=\omega$, $m=\omega_{1}, n=\omega_{2}$ and $n^{p}=\omega_{3}=2^{p}$: we do not suppose g.c.h. .

REFERENCES

1. C. Berge, Graphes et hypergraphes, Dunod (1970) .
2. W. J. Frascella, Certain counterexamples to the construction of combinatorial designs on infinite sets, Notre-Dame journal of formal logic, $12, \mathrm{n}^{\circ} 4$, (1971), p. 461-466.
3. K. Kuratowski and A. Mostowski, Set theory, North Holland and Polish scientific publishers (1968) .
4. A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fundamenta Mathematicae, 12, (1928), p. 188-205 ; 14, (1929), p. 205-215.
