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Abstract

A real-valued function f of a real variable is said to be (p-slowly varying ((p-s .v.) if limn_.
rp (x) [ f (x + a) - f (x)] = 0 for each a. It is said to be uniformly 9-slowly varying (u . (P-s .v .) if
limn-. . sup, e r rp(x) ; f (x-a) - f (x)I =0 for every bounded interval I.

It is supposed throughout that rp is positive and increasing . It is proved that if w increases
rapidly enough, then every rp-s .v . function fmust be u.9-s .v . and must tend to a limit at x . Regard-
less of the rate of increase of rp, a measurable function fmust be u.9-s .v . if it is w-s.v . Examples of
pairs (,, f) are given that illustrate the necessity for the requirements on w and f in these results .

Introduction

The theory of slowly varying functions plays a role in analysis and number theory
and has recently come to the fore in probability theory [3] . We consider here some
simple, but basic questions about slowly varying functions . We prove four theorems
and a lemma .

I. Statement of Results
Let cp be a positive non-decreasing real-valued function defined on [0, cc) and

let f be any real-valued (not necessarily measurable) function defined on [0, oc) . The
object of this paper is to study the condition

for every a, cp (x) [f (x + u) - f (x)] -- 0 as x , oo . (1.1)

Whenever (1 .1) holds, we will say that f is cp-slowly varying, and abbreviate this by
cp-s .v . If (1 .1) holds uniformly for a in each bounded interval, then we say that f is
uniformly cp-slowly varying (u.(p-s .v .) . In other words, f is u.(p-s .v. if

lim sup 9 (x) j f (x + (x) - f (x)I = 0 for each bounded interval I .
X-*c aer

Throughout this paper, the words `measurable' and `measure' refer to Lebesgue
measure .
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Of course, iffis u .cp-s .v . then it is (p -s .v . The converse is 'almost' true .

THEOREM 1 . If f is 9-slowly varying and measurable, then f is uniformly (P-
slowly varying.

THEOREM 2 . Iff is (p-slowly varying and if cp satisfies

then f tends to a finite limit at co . Conversely, if

or, equivalently,
=o

co

x

X -

< co ,

	

(1.2)

0o

1
_ 00,

	

(1 .3)

then there is a continuous function f (whose choice depends on gyp) that is (P-slowly
varying (and, hence, uniformly ~p-slowly varying by Theorem 1), but that does not
tend to a limit, finite or infinite, at oo .

THEOREM 3. (a) Iff is (p-slowly varying and if 9 satisfies

(p (x)	 1 - < B < oo

	

for all x > 0,

	

(1 .4)
co (x + i)

cp (x)	 ) < C < 00 for all x > 0,
W

then f is uniformly (p-slowly varying .
(b) Conversely, if 9 does not satisfy (1 .4), then there is a function f=f ((p) which

is (p-s .v . but not uniformly (p-s .v . 3)
The proof of the first part of Theorem 3 may be easily modified to prove the next

result .

THEOREM 3' . If f is (p-slowly varying and if ~ is a positive increasing fi .tnction
on [0, oo) such that cp/fir is increasing, then f is uniformly (plo-slowly varying provided

3 ) The completion of this half of the theorem, together with Theorem 4, was inspired by a
note communicated to us by Tord Ganelius [5] .



and

i=0

for all x>,0 and sonic finite constant B .
The following result shows that the more strongly (1 .4) fails, the more disjoint

become the conditions of slowly varying and of uniformly slowly varying .

THEOREM 4 . If

n=1

then there is a function f= f (gyp) which is (p-slowly varying, but not even uniformly
1-slowly varying .

The changes of variables h=e
-x ,

a=e - ", f (x)=g(e-x), ri(h)=1 /9 (log lfh)
convert condition (1 .1) to

for every a > 0, g
(ah~

(h)g (h)
_> 0 ash->O+

	

(1.6)

and conditions (1 .2) and (1 .4) respectively, to

k=0

rl (e-n ) < co
n - 1

r

q
(e -x-k) < B < óo .

From (1 .6), we see that for studying differentiation theory, the function cp(x)=ex,
which corresponds to q (h)=h, is of special import . In fact, Theorem 2 with cp (x)=ex
provides a negative answer to question (c) on page 501 of [1] . Another change of
variables converts our study to that of multiplicatively slowly oscillating functions -
we omit the details (see [6], p. 79). The next lemma supplies an affirmative answer
to question (b) on page 501 of [1] .

LEMMA 1 . The function f is (p-slowly varying if it satisfies the apparently weaker
condition

for each ti belonging to a set E of positive measure,

	

(1 .7)
9(x)[f(x+1)-f(x)]->0 as x-4co .
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that

cp ( )

	

1

	

< B0 (x) (1 .5)
~P +(x J)
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11. Proofs of Results
Proof of Theorem 1 . We give a slight variation on the proof given in [6 ; pp. 81-82]

for the case (p (x)-1 . We assume that f is measurable and (p-s .v . For simplicity, we
will prove that

and let
Wn=an +Wn ={rl : n=a n +a for some PeWn } .

Since Vn Vn+1 and since every ae [0, 2] lies in some Vn , we have I Vn > 2 if n is suffi-
ciently large, where denotes Lebesgue measure . Similarly, I Wn = I Wn > z if n is

sufficiently large . Since W,, g [0, 2], we see that W,, n Vn is not empty for some large n .
This leads to a contradiction, since if ye W„, we have

I fG + Xn) - f (XJ 19 (xn) i I f(an + xn) - .f(xn) I (P (xn)

11f(I + xn) - .f(yn + xn) IP (kn + an)
(P (xn)

(p (xn + an)
>6-6/2=b/2

so that j cannot belong to V,, .
Proof of Theorem 2 . We begin with the proof of the first assertion, and suppose

that Y I1(p(n)< oo . If f satisfies (1 .1) . then f cannot tend to an infinite limit at 00,

since for every positive integer n,

lim sup (p (x) I f (x + a) - f (x) I =0 .

	

(2.1)
x - xe[0, 1]

Supposing, by way of contradiction, that (2 .1) fails, there is a b>0, and there exist
sequences {x.} and {a n } such that x n-). oo and a n e [0,1 ] such that for each positive
integer n,

Let
(xn) 1 f (xn + an) - f (x,,) I > s .

Vn = {a e [0, 2] : I f (a + xk ) - f(xk ) I cp (xk ) < S/2 for all k > n} ,

Wn = { fl e [0, 1] : I f (P + ak + xk) - f(k + xk) I (p (xk+ak) < S/2 for all k > n}

n-1
If (n)I '< If (1)I + I I f (k + 1) - f (k)i < If (1)I + B J_ 1/(p (k) < oc .

k=1

	

k=1

AEQ.MATH .

(2.2)

Therefore, if f does not have a finite limit at oo, we may assume without loss of gener-
ality that

lim sup f (x) > 1 and lim inf f (x) < - t,

	

(2.3)

since we could otherwise replace f by cf+d for suitable constants c and d. Since f is
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9-s.v ., we see in particular that

(P (x) I f (x + 1) - f (X) I < 1

	

(2.4)

if x is sufficiently big, say x > M. Also, since Y 1 /cp (n) converges, we have

This leads to a contradiction since on the one hand

If(x+n)-f(y+ n)1=
~p(y+n)[f(y+n+(x-y))-f(y+ n)]

cp(y+n)

for n a sufficiently large positive integer, while on the other hand, for any positive
integer n,

%f(x)-

	

1

k=[ 1

and similarly f (y+n) < - 2 i so thatf (x+n)- f (y+n)> 1 .
To prove the second half of Theorem 1, let a non-decreasing positive function

q be given that satisfies (1 .3), namely, I l /1p (n) = oo . We will construct a continuous
function f that is T-s.v. and that satisfies

lim sup f (x) _ + co ,

	

lim inf f (x) _ - oo .

	

( 2 .6)

Let A = A (9) be the set of positive integers m satisfying cp (m+ 1), 2cp (m) . By (1 .3), we
have

since

nOA

y>max(M,N), f(y)<-1 .

H=1

< 2

if x > N, say. By (2.3) we may find two numbers x and y with x > y and

x>max(M,N), f(x)>1
and

X_x

1

	

1

	

1

(n)

	

(p (n) -
n¢A

n

f(x+n)=f(x)+

	

[f(x+k)-f(x+k-1)]>f(x)-

k=1
W

1

	

1

	

1

	

1

	

1

	

1

	

2

co(n) \ co( 1 ) +2 cp( 1 ) +22(P(1 ) +

	

(p(1)
<co .

,1

> 1 - 1 _ 12 - 2,
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In particular, A is infinite, and we write A = {m l , m2i n13, . . .} . Now there are positive
constants a, with a, +1 <a, for i=1, 2, 3, . . . and a,(p(mi)-+0 as i-+ co and i a,=oo
(see [2], p. 47) . We now define a sequence {b i } by bi = ±a,, where the signs are chosen
in blocks so that Y, b i has both + x and - oo as limits of subsequences of its partial
sums. We definef byf =0 on [0, mi],f ==b i on [771, + 1, 771 2 ],f =bi +b 2 on [771 2+ 1, 7713],

. . .,f =b 1 +b2 + • . . +b k on [m k + ], mk+i], . . ., and extend f to be linear and continuous
on each interval [Mk, Mk + 1], k=1, 2, 3, . . . . It is clear that (2.6) holds . To verify that
f is (p-s .v ., we note that

(p(x)If(x+a ) -f(x)1=(p(x)If(x+a)-f([x+7]+1)
[x+a]-[x]

•

	

y_ {f([x] + i + 1) - f([x] + i)}
i=0

+f([x])- f(x)1

If([x+a])-f([x+a]+1)1(p([x+x]+1)
[x+a]-[x]

•

	

y_ IA[x]+i+1)
i=0

-A[X]+0I(p([x]+i+1)
•

	

If([x]) - f([x] + 1) I~o ([x] + 1), 1

since f is monotone between consecutive integers and (p is non-decreasing . For fixed a,
there are at most [a]+4 terms on the right hand side of (2.8), and as x-+ 00, each
term tends to 0 since

If(m)-f(n1+1)1(p(711+1)= 0 if in 0A
~ak(P (117 k + 1) if m = m, e A

and

ak (p (771k +

	

p (711k + 1)
1) =	ak(P (mk) < 2ak(P (Mk),

79 (Mk)

which tends to 0 as k-+oo .
Proof of Theorem 3(a) . We prove a stronger result than asserted, using the same

idea we used to prove Theorem 2 . Namely, we prove that if f is (p-s .v . and if (p satisfies
(1 .4), then

lim sup (p (x) I f (x +,x) - AX) 1 = 0 .

	

(2.9)
X- 0C a30

Since (1.4) implies (1 .2), we know by Theorem 2 that f tends to a finite limit L at 00 .

It follows from (2 .9), on letting x-+oo, that

lim <p (x) l f (x) - Li = 0 .

	

(2.10)
X_x

For the proof of (2 .9), suppose it is false . Then we can find 6 > 0 and arbitrarily large
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x such that for a = a (x) > 0 we have

Jf(x + a+ k) - f(x + k) ~ =

Let

k-1

j=0

k-1

=o

{f(x+a+j+1)- fix +a+j)}

{f(x+j+1)-f(x+M+f(x+a)-f(x)~

>

S

	

E(X+a+j)+E(x+j)

(P (X)

	

rP (x + j)

where E(y)=(p(y)j f (y+1)-f (y)j, which tends to 0 as y- oc . Now choose x so
large in (2 .11) that e (y) < S/4B for y >, x, to get 9 (x + k) j f (x+ a + k) - f (x + k) j > d/2,
which contradicts the hypothesis that f is (p-s .v ., since (x+a+ k)- (x+k)=a, which is
independent of k .

Proof of Theorem 3(b) . From the geometrically evident identity
W

f (P

dt

	

1

	

1

	

dt

(t)

	

(P (X + .i)

	

(x) + w (t)'
X

	

j=0

	

x

it follows that (1 .4) and (1 .4)' are equivalent . Assume now that (L4)' fails . Let
(fl;} be a Hamel basis for the real numbers, i .e ., every real number x has a unique
representation x=y_k= 1 rk#;.k with a finite number n=n(x) of non-zero rationale
{r,}. Evidently, jn(x+a)-n(x)j<n((x) . One may easily construct a function 0
such that also

.0

	

ro

7o

lim sup (p (x)
i ~(t)

dt = oo .

	

(2.12)
X

	

t
X

f (X) _

x+n(x) - 1

dt
(p (t)

.

o

x+a+n(x+a)-1

(p (X) I f (X + x) - f (x)i _ (p (X)

	

?L(t}
dt

I

	

~ ( t)
x+n(x)- 1

<(p(x)(X)
la+n(x+a)-n(x)l<~(x)(a+n(o)»,

(p (x)

If x is fixed, then, since ~1(p I and both limits of integration are greater than x,
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which tends to 0 as x tends to infinity so that f is (p-s .v . But f is not uniformly (p-s .v .
In fact,

Jim sup ( sup (p (x) I f (x + a) - f (x)I) =00 .
x-• j

	

aCEO, 11

To see this, let M> 0 be given. Pick y o >M such that

(o (YO) I

	

dt>M .

Po

Pick y, >y o such that n(y,)=1 and so close to yo that
r

For fixed a we have

which tends to 0 ; while for each x

since n(x+a) may be arbitrarily large .

(P (Yr)

	

(t) dt > Mf (p ( t)
Y1

f (x) _

also. (This can be done since all the members of the dense set {r#,,, : r is rational}
satisfy n=l .) Finally, pick ac-[O, 1] so that n(y 1 +a) is so big that

yi+a+n(y,+a)-1

(p (Y1) f

	

~W
dt=(p(y,)If(Y1 + a) - f(Y1)l

Y 1 +n(yi)-1

is also greater than M . This shows the lim sup to be greater than (an arbitrarily
chosen) M and hence infinite .

Proof of Theorem 4 . The proof proceeds essentially as the proof of 3(b) above,
so we will be brief. Equivalent to our assumption is the equality ix dtf(p(t)=00 .
Choose 0 1 0 such that fx 0(t)/(p (t) dt=x . Define

x+n(x)

~n(t)
dt .

o

x+a+n(x+a)

(x ) If (x + a) - f (x)1 _ (p (x )

	

(t) dt <, (X)'
~o

	 W.
(a + n (a))

x+x+n(x+a)

p If(x+a)-f(x)I
a CEO,

	

0W dt -00
76

s
[0,

	

x+n(x)
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Proof of Lemma 1 . Assume that (1 .7) holds and that a., µEE with A>µ. We must
prove that (1 .1) holds. First we have the inequality

(P (x Ax+~-U)-AX) I =

-~(x(P(,)-h)

`P
(x+a- it) ff(x+A)

-f(x+A 1I)}+(PW U(x+A)- .Í(x)Í

5~p(x+A-h)If((x+~-µ)+p)-f(x+ ;-u)I+(P(x)If(x+A)-f(x)I

Then we apply Steinhaus' Theorem (see [4 ; p . 68] or [8 ; pp . 97-99]) that the difference
set of a set of positive measure contains an open interval that contains 0, to deduce
that (1 .1) holds for all sufficiently small a. Now repeated application of the inequality

cp(x)If(x+2a)-f(x)I ~cp(x+a)If(x+2a)- f(x+a)I
+ (P (x) If(x + a) - f (x) I

completes the proof. (See also [7 ; pp. 266-267], and [1 ; p. 493] .)
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