Reprint from
 aequationes mathematicae

Very Slowly Varying Functions

J. Marshall Ash ${ }^{1}$), P. Erdős, and L. A. Rubel ${ }^{2}$)
(Chicago, Illinois, U.S.A., Budapest, Hungary, and Urbana, Illinois, U.S.A.)

Abstract

A real-valued function f of a real variable is said to be φ-slowly varying (φ-s.v.) if $\lim _{x \rightarrow \infty}$ $\varphi(x)[f(x+\alpha)-f(x)]=0$ for each α. It is said to be uniformly φ-slowly varying (u. φ-s.v.) if $\lim _{x \rightarrow \infty} \sup _{\alpha \in I} \varphi(x)|f(x+\alpha)-f(x)|=0$ for every bounded interval I.

It is supposed throughout that φ is positive and increasing. It is proved that if φ increases rapidly enough, then every φ-s.v. function f must be u. φ-s.v. and must tend to a limit at ∞. Regardless of the rate of increase of φ, a measurable function f must be u. φ-s.v. if it is φ-s.v. Examples of pairs (φ, f) are given that illustrate the necessity for the requirements on φ and f in these results.

Introduction

The theory of slowly varying functions plays a role in analysis and number theory and has recently come to the fore in probability theory [3]. We consider here some simple, but basic questions about slowly varying functions. We prove four theorems and a lemma.

I. Statement of Results

Let φ be a positive non-decreasing real-valued function defined on $[0, \infty)$ and let f be any real-valued (not necessarily measurable) function defined on $[0, \infty$). The object of this paper is to study the condition

$$
\begin{equation*}
\text { for every } \alpha, \quad \varphi(x)[f(x+\alpha)-f(x)] \rightarrow 0 \quad \text { as } x \rightarrow \infty . \tag{1.1}
\end{equation*}
$$

Whenever (1.1) holds, we will say that f is φ-slowly varying, and abbreviate this by φ-s.v. If (1.1) holds uniformly for α in each bounded interval, then we say that f is uniformly φ-slowly varying (u. φ-s.v.). In other words, f is u. φ-s.v. if

$$
\lim _{x \rightarrow \infty} \sup _{\alpha \in I} \varphi(x)|f(x+\alpha)-f(x)|=0 \quad \text { for each bounded interval } I .
$$

Throughout this paper, the words 'measurable' and 'measure' refer to Lebesgue measure.

[^0]Of course, if f is u. φ-s.v. then it is φ-s.v. The converse is 'almost' true.
THEOREM 1. If f is φ-slowly varying and measurable, then f is uniformly φ slowly varying.

THEOREM 2. If f is φ-slowly varying and if φ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\varphi(n)}<\infty \tag{1.2}
\end{equation*}
$$

then f tends to a finite limit at ∞. Conversely, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\varphi(n)}=\infty \tag{1.3}
\end{equation*}
$$

then there is a continuous function f (whose choice depends on φ) that is φ-slowly varying (and, hence, uniformly φ-slowly varying by Theorem 1), but that does not tend to a limit, finite or infinite, at ∞.

THEOREM 3. (a) If f is φ-slowly varying and if φ satisfies

$$
\begin{equation*}
\varphi(x) \sum_{j=0}^{\infty} \frac{1}{\varphi(x+j)} \leqslant B<\infty \quad \text { for all } x \geqslant 0 \tag{1.4}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\varphi(x) \int_{x}^{\infty} \frac{d t}{\varphi(t)} \leqslant C<\infty \quad \text { for all } x \geqslant 0 \tag{1.4}
\end{equation*}
$$

then f is uniformly φ-slowly varying.
(b) Conversely, if φ does not satisfy (1.4), then there is a function $f=f(\varphi)$ which is φ-s.v. but not uniformly φ-s.v. ${ }^{3}$)

The proof of the first part of Theorem 3 may be easily modified to prove the next result.

THEOREM 3^{\prime}. If f is φ-slowly varying and if ψ is a positive increasing function on $[0, \infty)$ such that φ / ψ is increasing, then f is uniformly φ / ψ-slowly varying provided
${ }^{3}$) The completion of this half of the theorem, together with Theorem 4, was inspired by a note communicated to us by Tord Ganelius [5].
that

$$
\begin{equation*}
\varphi(x) \sum_{j=0}^{\infty} \frac{1}{\varphi(x+j)} \leqslant B \psi(x) \tag{1.5}
\end{equation*}
$$

for all $x \geqslant 0$ and some finite constant B.
The following result shows that the more strongly (1.4) fails, the more disjoint become the conditions of slowly varying and of uniformly slowly varying.

THEOREM 4. If

$$
\sum_{n=1}^{\infty} \frac{1}{\varphi(n)}=\infty
$$

then there is a function $f=f(\varphi)$ which is φ-slowly varying, but not even uniformly 1-slowly varying.

The changes of variables $h=e^{-x}, a=e^{-x}, f(x)=g\left(e^{-x}\right), \eta(h)=1 / \varphi(\log 1 / h)$ convert condition (1.1) to

$$
\begin{equation*}
\text { for every } a>0, \quad \frac{g(a h)-g(h)}{\eta(h)} \rightarrow 0 \quad \text { as } h \rightarrow 0+ \tag{1.6}
\end{equation*}
$$

and conditions (1.2) and (1.4) respectively, to

$$
\sum_{n=1}^{\infty} \eta\left(e^{-n}\right)<\infty
$$

and

$$
\frac{1}{\eta\left(e^{-x}\right)} \sum_{k=0}^{\infty} \eta\left(e^{-x-k}\right) \leqslant B<\infty
$$

From (1.6), we see that for studying differentiation theory, the function $\varphi(x)=e^{x}$, which corresponds to $\eta(h)=h$, is of special import. In fact, Theorem 2 with $\varphi(x)=e^{x}$ provides a negative answer to question (c) on page 501 of [1]. Another change of variables converts our study to that of multiplicatively slowly oscillating functions we omit the details (see [6], p. 79). The next lemma supplies an affirmative answer to question (b) on page 501 of [1].

LEMMA 1. The function f is φ-slowly varying if it satisfies the apparently weaker condition

$$
\left.\begin{array}{c}
\text { for each } \lambda \text { belonging to a set } E \text { of positive measure, } \tag{1.7}\\
\varphi(x)[f(x+\lambda)-f(x)] \rightarrow 0 \text { as } \quad x \rightarrow \infty
\end{array}\right\}
$$

II. Proofs of Results

Proof of Theorem 1. We give a slight variation on the proof given in [6; pp. 81-82] for the case $\varphi(x) \equiv 1$. We assume that f is measurable and φ-s.v. For simplicity, we will prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{\alpha \in[0,1]} \varphi(x)|f(x+\alpha)-f(x)|=0 \tag{2.1}
\end{equation*}
$$

Supposing, by way of contradiction, that (2.1) fails, there is a $\delta>0$, and there exist sequences $\left\{x_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ such that $x_{n} \rightarrow \infty$ and $\alpha_{n} \in[0,1]$ such that for each positive integer n,

$$
\begin{equation*}
\varphi\left(x_{n}\right)\left|f\left(x_{n}+\alpha_{n}\right)-f\left(x_{n}\right)\right|>\delta . \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
& V_{n}=\left\{\alpha \in[0,2]:\left|f\left(\alpha+x_{k}\right)-f\left(x_{k}\right)\right| \varphi\left(x_{k}\right)<\delta / 2 \text { for all } k \geqslant n\right\}, \\
& W_{n}=\left\{\beta \in[0,1]:\left|f\left(\beta+\alpha_{k}+x_{k}\right)-f\left(\alpha_{k}+x_{k}\right)\right| \varphi\left(x_{k}+\alpha_{k}\right)<\delta / 2 \text { for all } k \geqslant n\right\}
\end{aligned}
$$

and let

$$
W_{n}^{\prime}=\alpha_{n}+W_{n}=\left\{\eta: \eta=\alpha_{n}+\beta \text { for some } \beta \in W_{n}\right\} .
$$

Since $V_{n} \subseteq V_{n+1}$ and since every $\alpha \in[0,2]$ lies in some V_{n}, we have $\left|V_{n}\right|>\frac{3}{2}$ if n is sufficiently large, where $|\cdot|$ denotes Lebesgue measure. Similarly, $\left|W_{n}^{\prime}\right|=\left|W_{n}\right|>\frac{1}{2}$ if n is sufficiently large. Since $W_{n}^{\prime} \subseteq[0,2]$, we see that $W_{n}^{\prime} \cap V_{n}$ is not empty for some large n. This leads to a contradiction, since if $\gamma \in W_{n}^{\prime}$, we have

$$
\begin{aligned}
&\left|f\left(\gamma+x_{n}\right)-f\left(x_{n}\right)\right| \varphi\left(x_{n}\right) \geqslant\left|f\left(\alpha_{n}+x_{n}\right)-f\left(x_{n}\right)\right| \varphi\left(x_{n}\right) \\
& \quad-\left\{\left|f\left(\gamma+x_{n}\right)-f\left(\alpha_{n}+x_{n}\right)\right| \varphi\left(x_{n}+\alpha_{n}\right) \frac{\varphi\left(x_{n}\right)}{\varphi\left(x_{n}+\alpha_{n}\right)}\right\} \\
&>\delta-\delta / 2=\delta / 2
\end{aligned}
$$

so that γ cannot belong to V_{n}.
Proof of Theorem 2. We begin with the proof of the first assertion, and suppose that $\sum 1 / \varphi(n)<\infty$. If f satisfies (1.1), then f cannot tend to an infinite limit at ∞, since for every positive integer n,

$$
|f(n)| \leqslant|f(1)|+\sum_{k=1}^{n-1}|f(k+1)-f(k)| \leqslant|f(1)|+B \sum_{k=1}^{\infty} 1 / \varphi(k)<\infty .
$$

Therefore, if f does not have a finite limit at ∞, we may assume without loss of generality that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup f(x)>1 \quad \text { and } \quad \lim _{x \rightarrow \infty} \inf f(x)<-1 \tag{2.3}
\end{equation*}
$$

since we could otherwise replace f by $c f+d$ for suitable constants c and d. Since f is
φ-s.v., we see in particular that

$$
\begin{equation*}
\varphi(x)|f(x+1)-f(x)|<1 \tag{2.4}
\end{equation*}
$$

if x is sufficiently big, say $x \geqslant M$. Also, since $\sum 1 / \varphi(n)$ converges, we have

$$
\begin{equation*}
\sum_{n=[x]}^{\infty} \frac{1}{\varphi(n)}<\frac{1}{2} \tag{2.5}
\end{equation*}
$$

if $x \geqslant N$, say. By (2.3) we may find two numbers x and y with $x>y$ and

$$
x>\max (M, N), \quad f(x)>1
$$

and

$$
y>\max (M, N), \quad f(y)<-1
$$

This leads to a contradiction since on the one hand

$$
\left.|f(x+n)-f(y+n)|=\frac{\varphi(y+n)[f(y+n+(x-y))-f(y+n)]}{\varphi(y+n)} \right\rvert\, \leqslant 1
$$

for n a sufficiently large positive integer, while on the other hand, for any positive integer n,

$$
\begin{array}{r}
f(x+n)=f(x)+\sum_{k=1}^{n}[f(x+k)-f(x+k-1)]>f(x)-\sum_{k=1}^{n} \frac{1}{\varphi(x+k-1)} \\
\geqslant f(x)-\sum_{k=[x]}^{\infty} \frac{1}{\varphi(k)}>1-\frac{1}{2}=\frac{1}{2}
\end{array}
$$

and similarly $f(y+n)<-\frac{1}{2}$, so that $f(x+n)-f(y+n)>1$.
To prove the second half of Theorem 1, let a non-decreasing positive function φ be given that satisfies (1.3), namely, $\sum 1 / \varphi(n)=\infty$. We will construct a continuous function f that is φ-s.v. and that satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup f(x)=+\infty, \quad \lim _{x \rightarrow \infty} \inf f(x)=-\infty \tag{2.6}
\end{equation*}
$$

Let $A=A(\varphi)$ be the set of positive integers m satisfying $\varphi(m+1) \leqslant 2 \varphi(m)$. By (1.3), we have

$$
\begin{equation*}
\sum_{n \in A} \frac{1}{\varphi(n)}=\sum_{n=1}^{\infty} \frac{1}{\varphi(n)}-\sum_{n \notin A} \frac{1}{\varphi(n)}=\infty \tag{2.7}
\end{equation*}
$$

since

$$
\sum_{n \notin A} \frac{1}{\varphi(n)} \leqslant \frac{1}{\varphi(1)}+\frac{1}{2} \frac{1}{\varphi(1)}+\frac{1}{2^{2}} \frac{1}{\varphi(1)}+\cdots=\frac{2}{\varphi(1)}<\infty
$$

In particular, A is infinite, and we write $A=\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$. Now there are positive constants a_{i} with $a_{i+1}<a_{i}$ for $i=1,2,3, \ldots$ and $a_{i} \varphi\left(m_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$ and $\sum_{i=1}^{\infty} a_{i}=\infty$ (see [2], p. 47). We now define a sequence $\left\{b_{i}\right\}$ by $b_{i}= \pm a_{i}$, where the signs are chosen in blocks so that $\sum b_{i}$ has both $+\infty$ and $-\infty$ as limits of subsequences of its partial sums. We define f by $f=0$ on $\left[0, m_{1}\right], f=b_{1}$ on $\left[m_{1}+1, m_{2}\right], f=b_{1}+b_{2}$ on $\left[m_{2}+1, m_{3}\right]$, $\ldots, f=b_{1}+b_{2}+\cdots+b_{k}$ on $\left[m_{k}+1, m_{k+1}\right], \ldots$, and extend f to be linear and continuous on each interval $\left[m_{k}, m_{k}+1\right], k=1,2,3, \ldots$. It is clear that (2.6) holds. To verify that f is φ-s.v., we note that

$$
\begin{align*}
\varphi(x)|f(x+\alpha)-f(x)| & =\varphi(x) \mid f(x+\alpha)-f([x+\alpha]+1) \\
& +\sum_{i=0}^{[x+\alpha]-[x]}\{f([x]+i+1)-f([x]+i)\} \\
& +f([x])-f(x) \mid \leqslant \tag{2.8}\\
& |f([x+\alpha])-f([x+\alpha]+1)| \varphi([x+\alpha]+1) \\
& +\sum_{i=0}^{[x+\alpha]-[x]} \mid f([x]+i+1) \\
& -f([x]+i) \mid \varphi([x]+i+1) \\
& +|f([x])-f([x]+1)| \varphi([x]+1)
\end{align*}
$$

since f is monotone between consecutive integers and φ is non-decreasing. For fixed α, there are at most $[\alpha]+4$ terms on the right hand side of (2.8), and as $x \rightarrow \infty$, each term tends to 0 since

$$
|f(m)-f(m+1)| \varphi(m+1)=\left\{\begin{array}{ll}
0 & \text { if } m \notin A \\
a_{k} \varphi\left(m_{k}+1\right)
\end{array} \text { if } m=m_{k} \in A\right.
$$

and

$$
a_{k} \varphi\left(m_{k}+1\right)=\frac{\varphi\left(m_{k}+1\right)}{\varphi\left(m_{k}\right)} a_{k} \varphi\left(m_{k}\right) \leqslant 2 a_{k} \varphi\left(m_{k}\right),
$$

which tends to 0 as $k \rightarrow \infty$.
Proof of Theorem 3(a). We prove a stronger result than asserted, using the same idea we used to prove Theorem 2. Namely, we prove that if f is φ-s.v. and if φ satisfies (1.4), then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{\alpha \geqslant 0} \varphi(x)|f(x+\alpha)-f(x)|=0 . \tag{2.9}
\end{equation*}
$$

Since (1.4) implies (1.2), we know by Theorem 2 that f tends to a finite limit L at ∞. It follows from (2.9), on letting $\alpha \rightarrow \infty$, that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \varphi(x)|f(x)-L|=0 . \tag{2.10}
\end{equation*}
$$

For the proof of (2.9), suppose it is false. Then we can find $\delta>0$ and arbitrarily large
x such that for $\alpha=\alpha(x) \geqslant 0$ we have

$$
\begin{align*}
\mid f(x+\alpha+k)- & f(x+k) \mid=\sum_{j=0}^{k-1}\{f(x+\alpha+j+1)-f(x+\alpha+j)\} \\
& -\sum_{j=0}^{k-1}\{f(x+j+1)-f(x+j)\}+f(x+\alpha)-f(x) \tag{2.11}\\
& \geqslant \frac{\delta}{\varphi(x)}-\sum_{j=0}^{\infty} \frac{\varepsilon(x+\alpha+j)+\varepsilon(x+j)}{\varphi(x+j)}
\end{align*}
$$

where $\varepsilon(y)=\varphi(y)|f(y+1)-f(y)|$, which tends to 0 as $y \rightarrow \infty$. Now choose x so large in (2.11) that $\varepsilon(y)<\delta / 4 B$ for $y \geqslant x$, to get $\varphi(x+k)|f(x+\alpha+k)-f(x+k)|>\delta / 2$, which contradicts the hypothesis that f is φ-s.v., since $(x+\alpha+k)-(x+k)=\alpha$, which is independent of k.

Proof of Theorem 3(b). From the geometrically evident identity

$$
\int_{x}^{\infty} \frac{d t}{\varphi(t)} \leqslant \sum_{j=0}^{\infty} \frac{1}{\varphi(x+j)} \leqslant \frac{1}{\varphi(x)}+\int_{x}^{\infty} \frac{d t}{\varphi(t)}
$$

it follows that (1.4) and (1.4)' are equivalent. Assume now that (1.4)' fails. Let $\left\{\beta_{\lambda}\right\}$ be a Hamel basis for the real numbers, i.e., every real number x has a unique representation $x=\sum_{k=1}^{n} r_{k} \beta_{i_{k}}$ with a finite number $n=n(x)$ of non-zero rationals $\left\{r_{k}\right\}$. Evidently, $|n(x+\alpha)-n(x)| \leqslant n(\alpha)$. One may easily construct a function $\psi \downarrow 0$ such that also

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \varphi(x) \int_{x}^{\infty} \frac{\psi(t)}{\varphi(t)} d t=\infty \tag{2.12}
\end{equation*}
$$

Let

$$
f(x)=\int_{0}^{x+n(x)-1} \frac{\psi(t)}{\varphi(t)} d t
$$

If α is fixed, then, since $\psi / \varphi \downarrow$ and both limits of integration are greater than x,

$$
\begin{aligned}
\varphi(x)|f(x+\alpha)-f(x)|= & \left.\varphi(x) \int_{x+n(x)-1}^{x+\alpha+n(x+\alpha)-1} \frac{\psi(t)}{\varphi(t)} d t \right\rvert\, \\
& \leqslant \varphi(x) \cdot \frac{\psi(x)}{\varphi(x)} \cdot|\alpha+n(x+\alpha)-n(x)| \leqslant \psi(x)(\alpha+n(\alpha))
\end{aligned}
$$

which tends to 0 as x tends to infinity so that f is φ-s.v. But f is not uniformly φ-s.v. In fact,

$$
\limsup _{x \rightarrow \infty}\left(\sup _{\alpha \in[0,1]} \varphi(x)|f(x+\alpha)-f(x)|\right)=\infty .
$$

To see this, let $M>0$ be given. Pick $y_{0}>M$ such that

$$
\varphi\left(y_{0}\right) \int_{y_{0}}^{\infty} \frac{\psi(t)}{\varphi(t)} d t>M
$$

Pick $y_{1}>y_{0}$ such that $n\left(y_{1}\right)=1$ and so close to y_{0} that

$$
\varphi\left(y_{1}\right) \int_{y_{1}}^{\infty} \frac{\psi(t)}{\varphi(t)} d t>M
$$

also. (This can be done since all the members of the dense set $\left\{r \beta_{\lambda_{1}}: r\right.$ is rational $\}$ satisfy $n=1$.) Finally, pick $\alpha \in[0,1]$ so that $n\left(y_{1}+\alpha\right)$ is so big that

$$
\varphi\left(y_{1}\right) \int_{y_{1}+n\left(y_{1}\right)-1}^{y_{1}+\alpha+n\left(y_{1}+\alpha\right)-1} \frac{\psi(t)}{\varphi(t)} d t=\varphi\left(y_{1}\right)\left|f\left(y_{1}+\alpha\right)-f\left(y_{1}\right)\right|
$$

is also greater than M. This shows the lim sup to be greater than (an arbitrarily chosen) M and hence infinite.

Proof of Theorem 4. The proof proceeds essentially as the proof of 3(b) above, so we will be brief. Equivalent to our assumption is the equality $\int_{x}^{\infty} d t / \varphi(t)=\infty$. Choose $\psi \downarrow 0$ such that $\int_{x}^{\infty} \psi(t) / \varphi(t) d t=\infty$. Define

$$
f(x)=\int_{0}^{x+n(x)} \frac{\psi(t)}{\varphi(t)} d t
$$

For fixed α we have

$$
\varphi(x)|f(x+\alpha)-f(x)|=\varphi(x)\left|\int_{x+n(x)}^{x+\alpha+n(x+\alpha)} \frac{\psi(t)}{\varphi(t)} d t\right| \leqslant \varphi(x) \cdot \frac{\psi(x)}{\varphi(x)} \cdot(\alpha+n(\alpha))
$$

which tends to 0 ; while for each x

$$
\sup _{\alpha \in[0,1]}|f(x+\alpha)-f(x)|=\left.\sup _{\alpha \in[0,1]}\right|_{x+n(x)} ^{x+\alpha+n(x+\alpha)} \int_{x(t)}^{\varphi(t)} d t \mid=\infty
$$

since $n(x+\alpha)$ may be arbitrarily large.

Proof of Lemma 1. Assume that (1.7) holds and that $\lambda, \mu \in E$ with $\lambda>\mu$. We must prove that (1.1) holds. First we have the inequality

$$
\begin{aligned}
& \varphi(x)|f(x+\lambda-\mu)-f(x)|=\left\lvert\,-\frac{\varphi(x)}{\varphi(x+\lambda-\mu)} \varphi(x+\lambda-\mu)\{f(x+\lambda)\right. \\
& \quad-f(x+\lambda-\mu)\}+\varphi(x)\{f(x+\lambda)-f(x)\} \mid \\
& \quad \leqslant \varphi(x+\lambda-\mu)|f((x+\lambda-\mu)+\mu)-f(x+\lambda-\mu)|+\varphi(x)|f(x+\lambda)-f(x)|
\end{aligned}
$$

Then we apply Steinhaus' Theorem (see [4; p. 68] or [8; pp. 97-99]) that the difference set of a set of positive measure contains an open interval that contains 0 , to deduce that (1.1) holds for all sufficiently small α. Now repeated application of the inequality

$$
\begin{aligned}
\varphi(x)|f(x+2 \alpha)-f(x)| \leqslant \varphi(x+\alpha) \mid f(x+2 \alpha)-f(x+ & \alpha) \mid \\
& +\varphi(x)|f(x+\alpha)-f(x)|
\end{aligned}
$$

completes the proof. (See also [7; pp. 266-267], and [1; p. 493].)

REFERENCES

[1] Ash, J. M., A Characterization of the Peano derivative, Trans. Amer. Math. Soc. 149, 489-501 (1970).
[2] Bromwich, T. S., An Introduction to the Theory of Infinite Series (Macmillan, London 1926).
[3] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. II (John Wiley and Sons Inc., New York-London-Sydney 1966).
[4] Halmos, P. R., Measure Theory (Van Nostrand, Princeton 1950).
[5] Ganelius, T., Private Communication.
[6] Korevaar, J., van Aardenne-Ehrenfest, T. and de Bruinn, N. G., A note on slowly oscillating functions, Nieuw Arch. Wisk. 23(2), 77-86 (1949). MR $10 \# 358$.
[7] Matuszemska, W., A remark on my paper 'Regularly increasing functions in connection with the theory of $L^{* \varphi}$-spaces', Studia Math. 25, 265-269, (1965). MR $31 \# 304$.
[8] Steinhaus, H., Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 , 93-104 (1920).

DePaul University,
Mathematical Institute of the Hungarian Academy of Sciences, and University of Illinois

[^0]: ${ }^{1}$) The research of the first author was partially supported by NSF Grant \#GP 14986.
 ${ }^{2}$) The research of the third author was partially supported by a grant from the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant \# AF OSR 681499.

