COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

A NON-NORMAL BOX PRODUCT

P. ERDÖS - M.E. RUDIN

We use the convention that a cardinal is the smallest ordinal of that cardinality, and an ordinal is the set of ordinals less than it is. The topology on an ordinal is the order topology.

If $\left\{X_{n}\right\}_{n \in \omega_{0}}$ is a collection of topological spaces, then the box product of $\left\{X_{n}\right\}_{n \in \omega_{0}}$ is $\prod_{n \in \omega_{0}} X_{n}$ with the topology induced by using $\left\{\prod_{n \in \omega_{0}} U_{n} \subset \prod_{n \in \omega_{0}} X_{n} \mid U_{n}\right.$ is open in X_{n} for all $\left.n\right\}$ as a basis.

Suppose X is the box product of $\left\{\alpha_{n}\right\}_{n \in \omega_{0}}$ where each α_{n} is an ordinal; if $f \in X$, then $f(n)$ will denote the n-th coordinate of f.

We say F is a scale (of cardinality κ) provided F is a family $\left\{f_{\alpha}\right\}_{\alpha<\kappa}$ of members of $\omega_{0}^{\omega_{0}}$, such that:
(1) $\alpha<\beta<\kappa$ implies $f_{\alpha}(n)<f_{\beta}(n)$ for all but finitely many n,
(2) $f \in \omega_{0}^{\omega_{0}}$ implies there is an $\alpha<\kappa$ and an $m<\omega$ with $f(m)<$ $<f_{\alpha}(m)$ for all $m>n$.

Suppose κ is cardinal for which there is a scale. Clearly $\omega_{1} \leqslant \kappa \leqslant$ $\leqslant 2^{\omega_{0}}$; so the Continuum Hypothesis [CH$]$ yields $\kappa=\omega_{1}$. But it is consistent with the usual axioms of set theory that κ be ω_{1} or ω_{2} or ω_{3}, \ldots.

In [1] it is proved among other things that:
(a) $[\mathrm{CH}]$ implies X is paracompact if $\alpha_{n}=\omega_{0}+1$ for all n.
(b) $[\mathrm{CH}]$ implies X is paracompact if $\alpha_{n}=\omega_{n}+1$ for all n.
(c) [CH] implies X is normal (but not paracompact) if $1<k \in \omega_{0}$ and $\alpha_{0}=\omega_{k}$ but $\alpha_{n}=\omega_{0}+1$ for all $n>1$.
(d) No conclusion is reached if $\alpha_{0}=\omega_{1}$ and $\alpha_{n}=\omega_{0}+1$ for $n>0$.

Consider these facts in the light of the theorem proved in this paper:
Theorem (Erdôs): If $\kappa \neq \omega_{1}$ is the minimal cardinality of a scale, then X is not normal where $\alpha_{0}=\kappa$ and $\alpha_{n}=\omega_{0}+1$ for all $n>0$.

Thus it is consistent with the usual axioms of set theory that the box product $\omega_{k} \times\left(\omega_{0}+1\right) \times\left(\omega_{0}+1\right) \times \ldots$ be either normal or not normal for all integers $k>1$. But the problem with $k=1$ is still untouched and seems harder than ever. Also the conjecture of Rudin that (a) is true without [CH] in the hypotheses seems more interesting.

Proof of the Theorem. Assume $\kappa>\omega_{1}$ is the cardinality of a scale $\left\{f_{\alpha}\right\}_{\alpha<\kappa}$ and there is no shorter scale. Also assume X is the box product $\left(\kappa \times\left(\omega_{0}+1\right) \times\left(\omega_{0}+1\right) \times \ldots\right)$. For each $\alpha<\kappa$ and $i<\omega_{0}$, define $h_{\alpha i} \in X$ by $h_{\alpha i}(0)=\alpha$ and $h_{\alpha i}(n)=f_{\alpha}(n-1)+i$ for $n>0$. Let $H=\left\{h_{\alpha i} \mid \alpha<\kappa\right.$ and $\left.i<\omega_{0}\right\}$. For each $\alpha<\kappa$, define $k_{\alpha} \in X$ by $k_{\alpha}(0)=\alpha$ and $k_{\alpha}(n)=\omega_{0}$ for all $n>0$. Let $K=\left\{k_{\alpha} \mid \alpha<\kappa\right\}$.

Observe that K is closed and disjoint from \bar{H}. Assume open sets $U \supset H$ and $V \supset K$. We prove $U \cap V \neq \phi$ and thus X is not normal.

For $0<\alpha<\kappa$ we assume without loss of generality that $k_{\alpha}(n)>0$ and $h_{\alpha i}(n)>0$. Thus, since U and V are open, there are $u_{\alpha i}$ and
ν_{α} of X such that $u_{\alpha i}(n)<h_{\alpha i}(n)$ and $v_{\alpha}(n)<k_{\alpha}(n)$ for all n, and $\left\{g \in X \mid u_{\alpha i}(n)<g(n) \leqslant h_{\alpha i}(n)\right\} \subset U$ and $\left\{g \in X \mid v_{\alpha}(n)<g(n) \leqslant k_{\alpha}(n)\right\} \subset V$.

For each $0<\beta<\kappa, v_{\beta}(0)<\beta$. Thus there is a $\delta<\kappa$ such that $\gamma<\kappa$ implies $\gamma<\beta$ for some β with $\nu_{\beta}(0)<\delta$. Let $\Delta=\{\beta<$ $\left.<\kappa \mid v_{\beta}(0)<\delta\right\}$. Let $\theta=\{\alpha<\kappa \mid \alpha$ has uncountable cofinality $\}$. Since $\left\{u_{\alpha i}(0)\right\}_{i \in \omega_{0}}$ is countable, for each $\alpha \in \theta$ there is $\beta_{\alpha}<\alpha$ such that $u_{\alpha i}(0)<\beta_{\alpha}$ for all $i \in \omega_{0}$. Again, since $\beta_{\alpha}<\alpha$ for all $\alpha \in \theta$ and the cofinality of κ is greater than ω_{1}, there is $\lambda<\kappa$ implies $\gamma<\alpha$ for some $\alpha \in \theta$ with $u_{\alpha i}(0)<\lambda$ for all $i \in \omega_{0}$. Let $\Lambda=\left\{\alpha<\kappa \mid u_{\alpha i}(0)<\lambda\right.$ for all $\left.i \in \omega_{0}\right\}$.

Choose $\mu<\kappa$ with $\lambda<\mu$ and $\delta<\mu$. Choose $\beta \in \Delta$ with $\mu<\beta$. There is $\eta<\kappa$ with $f_{\eta}(n)>v_{\beta}(n+1)$ for all $n>0$. Choose $\alpha \in \Lambda$ with $\alpha>\eta$ and $\alpha>\mu$. Then $f_{\alpha}(n)>v_{\beta}(n+1)$ for all but finitely many n. Thus there exists a positive integer i such that $f_{\alpha}(n)+i>v_{\beta}(n+1)$ for all n_{i} hence $h_{\gamma i}(n+1)>v_{B}(n+1)$ for all $n \in \omega_{0}$. Since $\alpha \in \Lambda$ and $\lambda<\mu<\alpha,\left(\mu, h_{\alpha i}(1), h_{\alpha i}(2), \ldots\right) \in U$. Since $\beta \in \Delta$ and $\delta<\mu<\alpha$ and $v_{\beta}(n+1)<h_{\alpha i}(n+1)<\omega_{0}$ for all $n,\left(\mu, h_{\alpha i}(1), h_{\alpha i}(2), \ldots\right) \in V$. Thus $U \cap V \neq \phi$.

REFERENCE

[1] M.E. Rudin, Countable box products of ordinals, Transactions of the A.M.S., (to appear).

