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A NOTE ON RATIONAL APPROXIMATION

by

P. ERDŐS (Budapest) and A . R . REDDY (East Lansing)

Recently (cf. [1], [2]) we have studied the problem of approximating
reciprocals of certain entire functions by reciprocals of polynomials under the
uniform norm on the positive real axis . In this connection we present here
some results .

NOTATION . Let rcn denote the class of all algebraic polynomials of degree
at most n. Denote by
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For every r > 0, let an(x ; r) E zn denote the best Chebyshev approximation to
f in [0, r], i.e .,

j! f - an(x ; r) UL- LO,r] = lnf II f - o`n IIL - [ 0,r] = an(r) .
ara E ",In

Let P,(x ; r) = o, n (x ; r) + b n (r) for each n > 0 .

THEOREM 1 . If g(n) tends to infinity arbitrarily fast, then there is an entire
function f(x) of infinite order such that for infinitely many n

PROOF . Let uk

	

very fast and n k co even much faster . Put
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If nk

	

oc fast enough, then f (x) is an entire function of infinite order, Uk

depends on g(n) and nk on uk and on g(n) .
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Set 0 < x < ( ui+I) 2 , then
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if nl+I is sufficiently large .

On the other hand, let 2x > ut+I, then

0 < (j + I
1 xnk -1

	

1
(4}

	

- -
k=1 ukk

	

f(x)

if u1+I is sufficiently large .

The result (2) follows from (3) and (4) .
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THEOREM 2 . Let f (z) _ Zakzk, a o > 0, ak > 0 (k > 1) be any entire
k=o

function offinite lower order ,8 . Then there exists a sequence of ordinary polynomials
{Pn(x) I =o with Pn E :rn for each n > 0, such that for any e > 0
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PROOF . By hypothesis f(z) is an entire function of finite lower order fl
Therefore for each s i 0, we obtain

(6)

	

lim log M(s) 0, where M(s) = Max I f(z) 1 .
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Then (6) implies that there exist arbitrary large values of s, for which
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0 < r < s .
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From (7), we get with s = rel '«+8

(8)
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and

M(s) < {M(r))" .

We have from ([2], p . 181)
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From ([2], 3 .4)) it follows that
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akrk .
k=n+1

Hence from (9) and (11), we get for 0 < x < r
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From (8) and (12), we get for all those values of r for which (7) is valid

which is permissible because 1í1(r) -• oc as r oo . Then from (13) and (14),
we get
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Now we choose here
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From (10) and (14), we get
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Set P,,(x ; r) = P,(x), then from (15) and (16), we get the required result (5),

REMARK . Theorem 2 improves considerably a recent result of ERDŐS

and REDDY ([1], Theorem 3) . It is easy to construct an entire function, with
order infinity and lower order finite, for this function clearly lim (7 a, n ) 1 ~n 1
(cf. [2], Theorem 1) .
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