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1. Introduction. In his paper [1], Erdds introduced the sequences
of positive integers b, < b, < ..., with (b;, b;) =1, for i #j, and > b;"
< oco. With any such arbitrary sequence of integers, he associated the
sequence {d,} of all positive integers not divisible by any b;, and he showed
that if b, = 2, there exists a 6 < 1 (independent of the sequence {b;})
such that d;., —d; < d, for i = i,. Later, Szemerédi [4] made an important
progress on the problem, showing that 6 can be taken to be any number
greater than }.

In this paper, we study this sequence from a different point of view.
We study the number N (n) of solutions of the equation n = p -+ d, where
p is a prime and d = 0(modd;) for any j. In fact we derive an asymptotic
formula for N (»), when b, > 3. We also study N (») when the condition
(bsy b;) = 1 is dropped.

2. In what follows, we let ¢y, C,, ... denote positive absolute constants
and let ¢ be a positive constant. p, ¢ with or without subscript, always
denote primes.

THEOREM 1. Let 2 < b, < b, < ... be a sequence of natural numbers
with the properties (b, b;) = 1 whenever © + j and

(2.1) D bi'< .

j=1
Then the number N (n) of solutions of the equation n = p+t, where p is
@ prime and t is a natural number not divisible by any b;, is given by

2.2) Nm) =n(logn)™ [T (1—(p)))+oln(logn)™).
[b_f,n}=1

Remarks. If either b, >3 or if » is even then N (n) is asymptotic
to the main term in (2.2). Similar remarks apply to Theorem 2 below, which
can be proved along the same lines as Theorem 1. Also it easily follows from
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the prime number theorem for arithmetic progressions and the sieve

oy |
of Eratosthenes that if (b;, ;) = 1and Z— = oo then ¥ (n) = o( )

THEOREM 2. Let | be any non-zero integer. Under the assumptions of
Theorem 1, the number N;(z), of primes p not exceeding x such that p 41
s not divisible by any b;, satisfies

Ny(») = x(logz)™! H (1—{p )" =e(z(ogz)™).
(bj.3}=1

3. Proof of Theorem 1. We denote by », natural.numbers not divis-
ible by any b;, and by d all finite power products | [b5i where ¢; = 0 or 1,
and we write h(d) = (—1). We begin with

LeMMA 1. We have

Zv——s _ C(s)n(l_bf_s) and ” (1—53__8) = Zh(d)d"’.

Proof. The proof follows from the fact that every natural number
m can be written uniquely in the form

m = ( H b;-‘i)v (a; = 0 are integers).
This ean be proved in the following way. Define ¢; as the greatest integer

such that by divides m. This gives existence and the uniqueness is trivial.
Lemva 2. The two series

Z(‘P(E’p‘))_l and Z(Q?(d))_l

are convergent.

Proof. Let B, be the set of those b’s which are primes and let B,
be the set of the remaining b’s. Clearly, the number of #’s in B, not

exceeding x is less than Va. Thus (2.1) implies convergence of the first
series. Convergence of the second series follows from convergence of the
first series and the identity

D@ = [T ~(e@)™).

LeMMA 3. Let N'(n) be the number of solutions of
n=p+t, >0, ¥ =0 (modb;) for everyb; < loglogn.
Then
N'(n) =n(logn)™ [] (1—{p())")+o(n(logn)™).

(bi' fy=1

Proof. Let d' denote a product of the form []bf, where ¢; = 0 or
1 and b; < loglogn. By Siegel-Walfisz theorem (see [3], Satz 8.3, p. 144)
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and by Lemmas 1 and 2, we have

FNm= 1= 3 &)= D bd)+ D W) =Z+5.
n=p+t’ pP+md’'=n p+md’=n prmd’=n
(d',n)=1 (d n)>1
Note that, if d(n) denotes the number of divisors of »n, then

=] Y md|< 3 mp< Yan—p) <n'logn,

ptmd’=n pin d'\n—p pin
(@, n)=p (d',n)=p
since |h(d')| <1 and d(n) < #° for any & > 0.
h(d’) n
Sy = 1 1 Tt
‘ (517 g 2 +0lcenr™)

n h(d) "
- logfn( Z: ¢{d))+o(log%)'
Thus

N'(n) =2, +Z, = n(logn)™" n [1—(90(!;5))“1)+o(%(logn)“).
(bj.n)=1

This completes the proof of the lemma.

LeMMA 4. There exists a function n(e)—0 as eé—0, such that the number
of primes p < n satisfying

—p = 0(modbd;), for some be (n'°, n]
i8 less than
(n(2)+o(1))n(logn)™",  for every ee(0, }).
Proof. First note that the number of composite b,’s not exceeding
n is at most n'% For a fixed b;e (n'~°, n], n —p = 0(modbd;) has at most
(n/b;) < »n° solutions. Thus the contribution of the composite b,’s is less

than »'?*% To complete the proof it, thus, suffices to show that the number
of solutions of

= p(modgq), n'"*<g<mn, ¢ prime,
is less than

(n(e) +0(1))n(logn)~".
In other words we have to prove that the number of solutions of
w=p-+aq, P,q primes not exceeding # and a << n*

is less than
(n(e) +0(1))n(logn) ™.

First note that the number of solutions of

n=ptaqg, a<<n’, (an)>1 and p,q primes not exceeding =
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is less than

2 Z‘ 1 < #* = o(n(logn)™'),

a<nfbla
since &< 1/4.
Now for a fixed &« << »° and (%, a) = 1, the number of primes ¢ < n,
for which # — aq is & prime, by Lemma 1.4 of [2], if C, is a sufficiently small
constant, is less than

LE I3 e L0k

2<p<m z p<n

< 043 (logn)™* H (1 -+ ;)

bin

Thus summing for all a<<»’ (a,n) =1, we immediately obtain
that the number of solutions of

n—aqg =p, a<n (a,n) =1 and p, ¢ primes (< n)

is less than
7 (e)n(logn)~".

Now the lemma follows easily.

To complete the proof of Theorem 1, it is enough to show, in view of
Lemma 3, that

N(n)—N'(n) = o[n(logn)™).

To show this it will clearly be sufficient to show that the number

of solutions of

n=p+R, R>0,R=0(modd) for some b; > loglogn
is
o(n(logn)™?).
First observe that if b, < n'~° (¢ > 0, small), then the number of primes
p<n with » = p(modd;) is, by Brun-Titchmarsh Theorem (see [3],
Satz 4.1, p. 44), less than (Cyn/ep(b;)logn). Thus the number of primes
p < n for which n = p(modbd;) for some b;e (loglogn, n'~*] is less than

(Csn/elogn) 2 (p(b)) ™" = o(n/elogn).
b;>loglogn
Now the theorem follows from Lemma 4.
4. If (b, b;) = 1,for ¢ + j, is not assumed, it is easy to give a sequence
2< by < by << ... for which

Z (‘P(bi))ql < o9,

fem=1
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but there is an infinite sequence 0 << n, << #,<C ... so that the number
of solutions of
n; =p+t&, p prime, ¢ >0 and ¢ # 0(modbd;), for all j,
is
o(n;/logn;) as 100,

We define b, << b, < ... as follows. Suppose {n,;} be an increasing se-
quence of natural numbers tending to infinity sufficiently fast and e
= (loglogn;)™'. Now take the b’s to be the integers of the form

—P, P((l—' i)ﬂ'ia 13:192)---
Clearly the number of
n; =p+t, >0, 1z 0(modb;), for all j,
is less than
(85+0{1))(ns/10gﬂﬂ = o(n;/logn,).

Since

(4<t) @(m) = Ogm(loglogm)™?,

we have

1 < Ogn; loglogm, - Oﬁ(loglog'nf)
p<(l-sgn; ¢(ni_p) logni Bini 10gﬂ-
Thus
N - (]@glogni)2
(pv)~" < 2 olm—p < 0, ) FRR <
; i=1 pquzsi)w logn;

if m;—>o0 sufficiently fast.
It might be possible to construct a sequence 2 < b, < by < ... of
integers such that >'b;' is convergent and for which

n =p+4§, pprime, t>0, ¢t % 0(modbd,), for all i,

has no solution for infinitely many ». But we are unable to find such
a sequence,
On the other hand, if B(x), defined b,

B(z) = 2‘1,
=z

is not too large, then the condition (b;, b;) = 1, for ¢ + j, is quite unnecess-
ary. In this direction, we have the following
THEOREM 3. Let 3 < b, < by < ... be a sequence of integers such thai

(4.2) B(») = o(w/ ((loga:)ﬂloglogw)).

§ — ACTA Arithmetica XXVIIT, 4
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Then
N(n) > Cn(logn)™".
Proof of Theorem 3. Let, for any k> 1, N(n, k) be the number
of solutions of # = p-+1, p prime, ¢t >0 and ¢ 3 0(modbd;), for all j < &,

and let A (n, k) be the number of solutions of n = p +1,1 > 0,1 = 0(modd;)
for some j > k. We need the following lemmas.

Leyna 5. For every k= 1, there exists n(k) such that
N(n, k) = C,(n/(logn)(logk)), for all n= n(k).

Proof. Since each b; > 3, either b; = 0(mod 2?), or there exists a prime
;> 3 such that b; = 0(modg;). Let I(k) be the number of distinct primes
in the set {g;}. Let these be denoted by ¢;, i =1, ..., I(k).

Note that, N (n, k) is not less than the number of solutions of

wn=p+t, >0,%=0(mod2% and ?t = 0(modg,) for all ¢ <I(k).

This latter number solutions, by Theorem 1, is not less than

1 1 % 7
1——— 1— =
( rp(é))i;[,( fp(ql-}) logn H(logn)
ST

i=k
C-!s "
2 e
logk logn

(s i
+o
) logn (logn)

for all n = n(k),

where p; is the ith odd prime number and n(k) is a sufficiently large
integer. This completes the proof of Lemma 5.
LeMMA 6. We have

(4.3) Deba)) " = of(logk)™).

iz=k

Proof. By (4.1), (4.2) and by partial integration, we have

2(?(55) Z loglogb _ J loglogt aB(1)

i=k ‘

1 ”B(t} 1
— = B(#)log] °°¢f loglogt— — |
. B(f)loglogily, - b (Og ogt logt)
k

Foodi
= o((logh,)™? +o(f W) = o{(logh,)™’)
b

= of(logk)™).
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LemMA 7. There exists a k, such that, for every k = k,, there ewists
ny (k) satisfying

C n
An, k) < —T or all n=ng(k).
(. 5) 2logk logwn 4 o()

Proof. Since the number of solutions of » = p(modb;) is, by Brun-

Titchmarsh theorem for b; < V-:;, less than (Oan/@(bf)]ogﬂ), thus, for any
k= 1, the number of solutions of

n=p+t, p<n,t=0(modd;), for b; < Vn and i>k

is less than

(4.4) Con(logn)™ D' (g(b) "
ik
By Lemma 6, there exists a k, such that for k> k,, (4.4) is less than
C
4.5) , n

10logk logn

Let, next, b, > Vn. By Brun-Titechmarsh Theorem the number of
solutions of
n = p(modbd;), p<mn,
is less than

Vi3
(Ogﬂﬂp(bj)logb—).
¢
So, if § > 1 and 2° < Vn, then the number of solutions of

7 = p(modb;), —E—< b; < :

9s+1 _2'5" p<mn,

is less than
23
(4.6) B(n/za)om-g—loglogn =o(s'n(logn)~?) as m—>co.
Here we used (4.2). Since, for each b;e (#/2, n], there exists at most one
prime p < n such that » = p(modbd;), the number of solutions of

n = p(modb;), p<n, bjc(n/2,n]
is less than
(4.7) B(n) = o[n/((logn)*loglognl).

By summing (4.6) over s and adding (4.7) to the result, we get that the
number of solutions of

n = p(modbd;), for some b; > ]/;;,p< n
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is
o(n(logm)™").

Now the lemma follows from (4.5).
To complete the proof of Theorem 3, first note that for any k> 1

(4.8) N(n)=> N(n, k)—A(n, k).

Now the theorem follows immediately from (4.8) and Lemmas 5 and 7.
Without much difficulty we could obtain an asymptotiec formula
for N(n) even if we only assume

B(x) = o( & )
= logzlogloga |

We hope to return to this problem on another occasion.
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