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1 . Introduction . In his paper [1], Erdös introduced the sequences
of positive integers b 1 < b, < . . ., with (b ;, bj ) = 1, for i ~A j, and 'bi 1

< oo . With any such arbitrary sequence of integers, he associated the
sequence {di} of all positive integers not divisible by any bj , and he showed
that if b1 > 2, there exists a 0 < 1 (independent of the sequence {b i })
such that d i 1 - di < d°, for i > i o . Later, Szemerédi [4] made an important
progress on the problem, showing that 0 can be taken to be any number
greater than

In this paper, we study this sequence from a different point of view .
We study the number N (n) of solutions of the equation n = p + d, where
p is a prime and d 4' 0(modbj ) for any j . In fact we derive an asymptotic
formula for N(n), when b 1 > 3. We also study N(n) when the condition
(b i , bj ) = 1 is dropped .

2 . In what follows, we let C 1 , C27 . . . denote positive absolute constants
and let C be a positive constant. p, q with or without subscript, always
denote primes.

THEOREM 1. Let 2 < b 1 < b 2 < . . . be a sequence of natural numbers
with the properties (b27 b1 ) = 1 whenever i zA j and

w
(2 .1)

	

1 bj-1< oc .
j=1

Then the number -Y (n) of solutions of the equation n = p +t, where p is
a prime and t is a natural number not divisible by any bj , is given by

(2.2)

	

N(n) = n(log n) -1 n (1-( (bj ))-1)+o(na(log n)
(bj, n)=1

Remarks . If either b 1 > 3 or if n is even then N(n) is asymptotic
to the main term in (2.2) . Similar remarks apply to Theorem 2 below, which
can be proved along the same lines as Theorem 1 . Also it easily follows from
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the prime number theorem for arithmetic progressions and the sieve

of Eratosthenes that if (b i , bj ) = 1 and 00 1 = oo then íY(n) = on) .
j=1 b ;

	

(loge).

THEORElvi 2 . Let l be any non-zero integer. Under the assumptions of
Theorem 1, the number N, (x), of princes p not exceeding x such that p + Z
is not divisible by any b;, satisfies

NI (x) = x(logx) - '

	

o(x(logx)-') .
(bi , i)=1

3. Proof of Theorem 1 . We denote by v, natural . numbers not divis-
ible by any bj , and by d all finite power products jjb;7 where e; = 0 or 1,
and we write h (d) _ (-1)'ej . We begin with

LEtimzn 1 . We have

I v-s = C(s)11(1-b s) and 11 (1-b3 3 ) _ fh(d)d-3 .

Proof. The proof follows from the fact that every natural number
m can be written uniquely in the form

m = (11 b ?)v (a; - 0 are integers) .

This can be proved in the following way . Define aj as the greatest integer
such that b?j divides m. This gives existence and the uniqueness is trivial .

LEnnra 2 . The two series

I(T(b;)) - '

	

and ~(y (d))-1

are convergent.
Proof. Let B, be the set of those b's which are primes and let B2

be the set of the remaining b's . Clearly, the number of b's in B2 not
exceeding x is less than -6. Thus (2 .1) implies convergence of the first
series. Convergence of the second series follows from convergence of the
first series and the identity

(~(d)) - ' _

	

Í1-(~(bi))-11

LEAnIA 3 . Let N' (n) be the number of solutions of

n = p +t', t' > 0,

	

t' # 0 (modb i) for every b i < loglogn .

Then

N'(n) = n(logn)_ ,

	

(1-(q~(bi))- ') +o(~c(log
(bi, n)= 1

Proof. Let d' denote a product of the form Ijb?i, where ei = 0 or
1 and b.i S loglogn . By Siegel-Walfisz theorem (see [3], Satz 8.3, p . 144)
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and by Lemmas 1 and 2, we have

N'(n) _ 1 1 = f h(d') =

	

h(d')+ ~, h(d') _ Z1 +E2 .
n=p+t'

	

p+md'=n

	

p+md'=n

	

p+md'=n
(d',n)=1

	

(d',n)>1

Note that, if d (n) denotes the number of divisors of n, then

-E2 = I 1 h(d') < 1

	

h(P) < 1 d(n-p) << n 1 J 2 1ogn,
p+md'=n

	

p~n d'in-p

	

pin
(d', n) =p

	

(d', n) =p

since I h (d') I < 1 and d (n) << W for any 8 > 0 .

~

	

h(d') n
1,1 =

	

<p(d
	 ) loge (1 + O((logn) -1»

(d',n)=1
n

	

h(d)

	

n

loge ( n)=1
cp(d)} +o (logn) .

( ,
Thus

Z, + .f, = n(log n)-, 11 (1- (99(bí.))-1)+o(n(log n)
(bi, n)=1

This completes the proof of the lemma .
LEnnviA 4 . There exists a function ri(e)->-0 as e-->0, such that the number

of primes p < n satisfying

n-p - 0(modbi), for some b j E (n1-E , n]
is less than

(ri(E) o(1})n(logn}-1 ,

	

for every EE (0, 41) .

Proof. First note that the number of composite bi's not exceeding
n is at most n 1 J 2 . For a fixed bi E (n1-', n], n -p - 0 (modbi ) has at most
(n/b i.) < ns solutions . Thus the contribution of the composite bi's is less
than n'r 2+'To complete the proof it, thus, suffices to show that the number
of solutions of

n = p (modq), n1_ E
< q < n, q prime,

is less than
(ri(e) +o (1))n(logn)-1 .

In other words we have to prove that the number of solutions of

n = p + aq,

is less than

p, q primes not exceeding n and a < nE

(27 (E) +o(1 ))it(logn)-,

First note that the number of solutions of

n = p+aq, a < n8 , ( a, n) > 1 and p, q primes not exceeding n
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is less than

a<W p I a

since s < 1/4 .
Now for a fixed a < nE and (n, a) = 1, the number of primes q < n,

for which n - aq is a prime, by Lemma 1 .4 of [2 ], if C2 is a sufficiently small
constant, is less than

'a 1 1 1

	

2)

	

(1

	

1)

	

3 a 1 1

	

2 )j 1 1

	

1 )
C-

	

1--

	

-- < C-

	

1---

	

1+
2<p<nC2

	

p pin

	

p

	

2<p<nc2

	

p pin

	

p

< C,,
n

(logn)_2
a

	

11 (1 1) .
P

pin

Thus summing forr all a < W5 , ( a, n) = 1, we immediately obtain
that the number of solutions of

is less than
n(s)n(logn)- 1 .

Now the lemma follows easily .
To complete the proof of Theorem 1, it is enough to show, in view of

Lemma 3, that
íl' (n) - N' ( ,n) = o (n (log ,n) -1 ) .

To show this it will clearly be sufficient to show that the number
of solutions of

n = p + R, R > 0, R - 0(mod b;) for some b; > log loge

is

n-aq =p? a <

	

(a, n) = 1 and p, q primes (,< n)

+(logn)-1) .

First observe that if b i < nl-E (s > 0, small), then the number of primes
p < n with is - p(modb;) is, by Brun-Titchniarsh Theorem (see [3],
Satz 4.1, p. 44), less than (Cs n/scp(bi)logn) . Thus the number of primes
p < n for which n -p(mod bi ) for some bi E (loglogn, nl- E] is less than

(Csn/slogn)

	

I (g)(b i )) -1 = o(n/slogn) .
bi>loglogn

Now the theorem follows from Lemma 4.
4. If (b i , b;) = 1, for i 0 j, is not assumed, it is easy to give a sequence

2 < b, < b 2 < . . . for which
CO

i=1
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but there is an infinite sequence 0 < nl < n2 < . . . so that the number
of solutions of

ni = p + t, p prime, t > 0 and t # 0 (mod b;), for all j,
is

is less than

Since
(4.1)
we have

Thus

i=1

0(nahogni) as i~oo .
We define b l < b2< . . . as follows. Suppose {na} be an increasing se-

quence of natural numbers tending to infinity sufficiently fast and si

_ (loglogn i )-1 . Now take the b's to be the integers of the form

ni - p,

	

p < (1- sa)ni,

	

i = 1, 2, . . .

Clearly the number of

ni = p+t, t>0, t # 0(modb;), for all j,

(ei+ o(1))(nijlogni ) = o(niIlogni ) .

T(ub) > C6m(loglogm) -1 ,

1

	

C6 ni loglogni

	

C6 (loglogni )
W(na -p) < logni

	

ei n_-

	

log n_-P«1-s ni

(p(bi)) <

	

(99(ni-p))-1
i=1 P«1-e )ni

if ni-*oo sufficiently fast.
It might be possible to construct a sequence 2 < b l < b2< . .* of

integers such that Jbi 1 is convergent and for which

n = p+t, pprime, t > 0, t # 0(modb i), for all i,

has no solution for infinitely many n . But we are unable to find such
a sequence .

On the other hand, if B (x), defined b,

B(x) _ 11,
ó_--x

is not too large, then the condition (bi , bj ) = 1, for i j, is quite unnecess-
ary. In this direction, we have the following

Timom, T 3 . Let 3 < b 1 < b2 < . . . be a sequence of integers such that

(4.2)

	

B(x) = o(x/((logX) 2 loglogx)) .

5 - ACTA Arithmetica XXVIrI . 4

00

i=1

(loglog n_-) 2
log ni
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Then
N(n) > On (log n)-' .

Proof of Theorem 3. Let, for any, k ->- 1, N(n, k) be the number
of solutions of n = p T t, p prince, t > 0 and t E4 0 (mod b,), for all j < k,
and let A (n, k) be the number of solutions of n = p T t, t > 0, t - 0 (mod b;)
for some j > k . We need the following lemmas .

LEAZnA 5. For every k > 1, there exists n (k) such that

N(n, k) > C,(nj(log •n)(log k)),

	

for all n > n(k) .

Proof. Since each bí > 3, either bi - 0(mod2 2 ), or there exists a prime
qí, 3 such that bí - 0(mod gí) . Let 1(k) be the number of distinct primes
in the set {qí} . Let these be denoted by qí , i = 1, . . ., l(k) .

Note that, N(n, k) is not less than the number of solutions of

	n = p Tt, t > 0, t - 0(mod 2 2 ) and t - 0(mod q .i ) for all i < l(k) .

This latter number solutions, by Theorem 1, is not less than

(	1 )

	

(	 1
)

	 n

	

(n1-	~ 1-
q2(4)

	

9'(qi) loge
+o

loge
i<l(k)

1

	

1

	

?Z

	

42

2
i

	

1 p2 -1

In

+
o
(loge

> C$
	 YZ

	

for all n > n(k),logk loge

where p i is the ith odd prime number and n(k) is a sufficiently large
integer . This completes the proof of Lemma 5 .

LE3n-IA 6 . We have

(4.3)

	

((p (bi)) ' = o((logk)-') .

Proof. By (4.1), (4 .2) and by partial integration, we have

~~ (

	

) 1

	

y

loglogbí

	

f

loglogt

.-.1

	

(b-~)

	

«

	

b .

	

t
i>-k

	

i~k

	

a

	

bk

dB (t)

00

_ B(t)loglogt]bk - f B(t)
-(loglogt- lo	 t)dtt2

	

ubk

	

b

= o((logb k )-2) o f	dt

	

-
t(logt)2

	

o((logbk) -'})
bk.

= o((logk)-') .



LEtiti~t4 7 . There exists a k o such that, for every k > k o , there exists
no (k) satisfying

A(n, k) <
C,	

n

	

for all n - n a (k) .
2logk loge

Proof. Since the number of solutions of n =-p(modbi ) is, by Brun-
Titchmarsh theorem for b i V/ n, less than (C $ n/gq (bi)logn), thus, for any
k > 1, the number of solutions of

n = p+t, p < n, t =- 0(mod bj), for bj < Vn and j > k

is less than

(4.4)

	

C.n (log n)-1

	

(rp(bi))-')
i>k

By Lemma 6, there exists a k o such that for k > k o , (4.4) is less than

(4 .5)
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n = p(mo(lbj ),

c,

	

n
101oglc loge

Let, next, bj > Vn. By Brun-Titchmarsh Theorem the number of
solutions of

n -p(mod bj ), p<n,
is less than

7L
C9nIT(bj)log

b
) .

So, if s > 1 and 2'8 < lin, then the number of solutions of

is less than
28

q
+1 < bj <

23
, p

s
(4.6)

	

B(n/23)C,,
s

loglogn = 0(8-' n(logn)-2 ) as ~a->Do .

Here we used (4.2) . Since, for each bj e (n/2, n], there exists at most one
prime p < it such that n - p(modbj), the number of solutions of

n =- p(niodb,),

	

p < ,a, b j E (v.(2, n]
is less than
(4.7)

	

B(n) = o(n/((logn)zloglogia)) .

By summing (4.6) over s and adding (4.7) to the result, we get that the
number of solutions of

n -- p (modb,), for some bj > J/n, p < n
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is
o (n (log n) - ') .

Now the lemma follows from (4.5) .
To complete the proof of Theorem 3, first note that for any k > 1

(4.8)

	

N(n) > N(n, k)-A(n, k) .

Now the theorem follows immediately from (4 .8) and Lemmas 5 and 7 .
Without much difficulty we could obtain an asymptotic formula

for N(n) even if we only assume

x
B (x) = o	

logxloglogx

We hope to return to this problem on another occasion .
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