An asymptotic formula in additive number theory

by

P. Erdös (Budapest), G. Jogesh Babu and K. Ramachandra (Bombay)

1. Introduction. In his paper [1], Erdös introduced the sequences of positive integers $b_{1}<b_{2}<\ldots$, with $\left(b_{i}, b_{j}\right)=1$, for $i \neq j$, and $\sum b_{i}^{-1}$ $<\infty$. With any such arbitrary sequence of integers, he associated the sequence $\left\{d_{i}\right\}$ of all positive integers not divisible by any b_{j}, and he showed that if $b_{1} \geqslant 2$, there exists a $\theta<1$ (independent of the sequence $\left\{b_{i}\right\}$) such that $d_{i+1}-d_{i}<d_{i}^{\theta}$, for $i \geqslant i_{0}$. Later, Szemerédi [4] made an important progress on the problem, showing that θ can be taken to be any number greater than $\frac{1}{2}$.

In this paper, we study this sequence from a different point of view. We study the number $N(n)$ of solutions of the equation $n=p+d$, where p is a prime and $d \not \equiv 0\left(\bmod b_{j}\right)$ for any j. In fact we derive an asymptotic formula for $N(n)$, when $b_{1} \geqslant 3$. We also study $N(n)$ when the condition $\left(b_{i}, b_{j}\right)=1$ is dropped.
2. In what follows, we let C_{1}, C_{2}, \ldots denote positive absolute constants and let C be a positive constant. p, q with or without subscript, always denote primes.

Theorem 1. Let $2 \leqslant b_{1}<b_{2}<\ldots$ be a sequence of natural numbers with the properties $\left(b_{i}, b_{j}\right)=1$ whenever $i \neq j$ and

$$
\begin{equation*}
\sum_{j=1}^{\infty} b_{j}^{-1}<\infty \tag{2.1}
\end{equation*}
$$

Then the number $N(n)$ of solutions of the equation $n=p+t$, where p is a prime and t is a natural number not divisible by any b_{j}, is given by

$$
\begin{equation*}
N(n)=n(\log n)^{-1} \prod_{\left(b_{j}, n\right)=1}\left(1-\left(\varphi\left(b_{j}\right)\right)^{-1}\right)+o\left(n(\log n)^{-1}\right) . \tag{2.2}
\end{equation*}
$$

Remarks. If either $b_{1} \geqslant 3$ or if n is even then $N(n)$ is asymptotic to the main term in (2.2). Similar remarks apply to Theorem 2 below, which can be proved along the same lines as Theorem 1. Also it easily follows from
the prime number theorem for arithmetic progressions and the sieve of Eratosthenes that if $\left(b_{i}, b_{j}\right)=1$ and $\sum_{j=1}^{\infty} \frac{1}{b_{j}}=\infty$ then $N(n)=o\left(\frac{n}{\log n}\right)$.

Theorem 2. Let l be any non-zero integer. Under the assumptions of Theorem 1, the number $N_{l}(x)$, of primes p not exceeding x such that $p+l$ is not divisible by any b_{j}, satisfies

$$
N_{l}(x)=x(\log x)^{-1} \prod_{\left(b_{j}, l\right)=1}\left(1-\left(\varphi\left(b_{j}\right)\right)^{-1}\right) \div o\left(x(\log x)^{-1}\right) .
$$

3. Proof of Theorem 1. We denote by v, natural numbers not divisible by any b_{j}, and by d all finite power products $\Pi b_{j}^{e_{j}}$ where $e_{j}=0$ or 1 , and we write $h(d)=(-1)^{\Sigma e_{j}}$. We begin with

Lemma 1. We have

$$
\sum v^{-s}=\zeta(s) \prod\left(1-b_{j}^{-s}\right) \quad \text { and } \quad \prod\left(1-b_{j}^{-s}\right)=\sum h(d) d^{-s}
$$

Proof. The proof follows from the fact that every natural number m can be written uniquely in the form

$$
m=\left(\prod b_{j}^{a_{j}}\right) v \quad\left(\alpha_{j} \geqslant 0 \text { are integers }\right)
$$

This can be proved in the following way. Define α_{j} as the greatest integer such that $b_{j}^{a_{j}}$ divides m. This gives existence and the uniqueness is trivial.

Lemma 2. The two series

$$
\sum\left(\varphi\left(b_{j}\right)\right)^{-1} \quad \text { and } \quad \sum(\varphi(d))^{-1}
$$

are convergent.
Proof. Let B_{1} be the set of those b 's which are primes and let B_{2} be the set of the remaining b 's. Clearly, the number of b 's in B_{2} not exceeding x is less than \sqrt{x}. Thus (2.1) implies convergence of the first series. Convergence of the second series follows from convergence of the first series and the identity

$$
\sum(\varphi(d))^{-1}=\prod\left(1-\left(\varphi\left(b_{i}\right)\right)^{-1}\right)
$$

Lemma 3. Let $N^{\prime}(n)$ be the number of solutions of

$$
n=p+t^{\prime}, \quad t^{\prime}>0, \quad t^{\prime} \not \equiv 0\left(\bmod b_{i}\right) \quad \text { for every } b_{i} \leqslant \log \log n
$$

Then

$$
N^{\prime}(n)=n(\log n)^{-1} \prod_{\left(b_{i}, n\right)=1}\left(1-\left(\varphi\left(b_{i}\right)\right)^{-1}\right)+o\left(n(\log n)^{-1}\right)
$$

Proof. Let d^{\prime} denote a product of the form $\Pi b_{i}^{e_{i}}$, where $e_{i}=0$ or 1 and $b_{i} \leqslant \log \log n$. By Siegel-Walfisz theorem (see [3], Satz 8.3, p. 144)
and by Lemmas 1 and 2, we have

$$
N^{\prime}(n)=\sum_{n=p+t^{\prime}} 1=\sum_{p+m d^{\prime}=n} h\left(d^{\prime}\right)=\sum_{\substack{p+m^{d^{\prime}}=n \\\left(d^{\prime} ; n\right)=1}} h\left(d^{\prime}\right)+\sum_{\substack{p+m d^{\prime}=n \\\left(d^{\prime}, n\right)>1}} h\left(d^{\prime}\right)=\Sigma_{1}+\Sigma_{2} .
$$

Note that, if $\boldsymbol{d}(n)$ denotes the number of divisors of n, then

$$
\Sigma_{2}=\left|\sum_{\substack{p+m^{\prime}=n \\\left(d^{\prime}, n\right)=p}} h\left(d^{\prime}\right)\right| \leqslant \sum_{p \mid n} \sum_{\substack{d^{\prime} \mid n-p \\\left(d^{\prime}, n\right)=p}} h(p) \leqslant \sum_{p \mid n} d(n-p) \ll n^{1 / 2} \log n,
$$

since $\left|h\left(d^{\prime}\right)\right| \leqslant 1$ and $d(n) \ll n^{\varepsilon}$ for any $\varepsilon>0$.

$$
\begin{aligned}
\Sigma_{1} & =\sum_{\left(d^{\prime}, n\right)=1}\left(\frac{h\left(d^{\prime}\right)}{\varphi\left(d^{\prime}\right)} \frac{n}{\log n}\left(1+O\left((\log n)^{-1}\right)\right)\right) \\
& =\frac{n}{\log n}\left(\sum_{(d, n)=1} \frac{h(d)}{\varphi(d)}\right)+o\left(\frac{n}{\log n}\right) .
\end{aligned}
$$

Thus

$$
N^{\prime}(n)=\Sigma_{1}+\Sigma_{2}=n(\log n)^{-1} \prod_{\left(b_{i}, n\right)=1}\left(1-\left(\varphi\left(b_{i}\right)\right)^{-1}\right)+o\left(n(\log n)^{-1}\right) .
$$

This completes the proof of the lemma.
Lemma 4. There exists a function $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that the number of primes $p \leqslant n$ satisfying

$$
n-p \equiv 0\left(\bmod b_{i}\right), \quad \text { for some } b_{i} \epsilon\left(n^{1-\varepsilon}, n\right]
$$

is less than

$$
(\eta(\varepsilon)+o(1)) n(\log n)^{-1}, \quad \text { for every } \varepsilon \in\left(0, \frac{1}{4}\right) .
$$

Proof. First note that the number of composite b_{i} 's not exceeding n is at most $n^{1 / 2}$. For a fixed $b_{i} \epsilon\left(n^{1-\varepsilon}, n\right], n-p \equiv 0\left(\bmod b_{i}\right)$ has at most $\left(n / b_{i}\right)<n^{\varepsilon}$ solutions. Thus the contribution of the composite b_{i} 's is less than $n^{1 / 2+\varepsilon}$. To complete the proof it, thus, suffices to show that the number of solutions of

$$
n \equiv p(\bmod q), \quad n^{1-\varepsilon}<q<n, q \text { prime },
$$

is less than

$$
(\eta(\varepsilon)+o(1)) n(\log n)^{-1} .
$$

In other words we have to prove that the number of solutions of

$$
n=p+a q, \quad p, q \text { primes not exceeding } n \text { and } a<n^{\varepsilon}
$$

is less than

$$
(\eta(\varepsilon)+o(1)) n(\log n)^{-1} .
$$

First note that the number of solutions of

$$
n=p+a q, \quad a<n^{\varepsilon}, \quad(a, n)>1 \text { and } p, q \text { primes not exceeding } n
$$

is less than

$$
\sum_{a<n^{\varepsilon}} \sum_{p \mid a} 1 \ll n^{2 \varepsilon}=o\left(n(\log n)^{-1}\right)
$$

since $\varepsilon<1 / 4$.
Now for a fixed $a<n^{\varepsilon}$ and $(n, a)=1$, the number of primes $q<n$, for which $n-a q$ is a prime, by Lemma 1.4 of [2], if C_{2} is a sufficiently small constant, is less than

$$
\begin{aligned}
C_{1} \frac{n}{a} \prod_{2<p<n}\left(1-\frac{2}{p}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right)^{-1} & <C_{3} \frac{n}{a} \prod_{2<p<n}\left(1-\frac{2}{p}\right) \prod_{p \mid n}\left(1+\frac{1}{p}\right) \\
& <C_{4} \frac{n}{a}(\log n)^{-2} \prod_{p \mid n}\left(1+\frac{1}{p}\right)
\end{aligned}
$$

Thus summing for all $a<n^{\varepsilon},(a, n)=1$, we immediately obtain that the number of solutions of

$$
n-a q=p, \quad a<n^{\varepsilon},(a, n)=1 \text { and } p, q \text { primes }(\leqslant n)
$$

is less than

$$
\eta(\varepsilon) n(\log n)^{-1}
$$

Now the lemma follows easily.
To complete the proof of Theorem 1, it is enough to show, in view of Lemma 3, that

$$
N(n)-N^{\prime}(n)=o\left(n(\log n)^{-1}\right)
$$

To show this it will clearly be sufficient to show that the number of solutions of

$$
n=p+R, \quad R>0, R \equiv 0\left(\bmod b_{j}\right) \text { for some } b_{j}>\log \log n
$$

is

$$
o\left(n(\log n)^{-1}\right)
$$

First observe that if $b_{i} \leqslant n^{1-\varepsilon}(\varepsilon>0$, small $)$, then the number of primes $p \leqslant n$ with $n \equiv p\left(\bmod b_{j}\right)$ is, by Brun-Titchmarsh Theorem (see [3], Satz 4.1, p. 44), less than $\left(C_{5} n / \varepsilon \varphi\left(b_{i}\right) \log n\right)$. Thus the number of primes $p \leqslant n$ for which $n \equiv p\left(\bmod b_{i}\right)$ for some $b_{i} \epsilon\left(\log \log n, n^{1-\varepsilon}\right]$ is less than

$$
\left(C_{5} n / \varepsilon \log n\right) \sum_{b_{i}>\log \log n}\left(\varphi\left(b_{i}\right)\right)^{-1}=o(n / \varepsilon \log n)
$$

Now the theorem follows from Lemma 4.
4. If $\left(b_{i}, b_{j}\right)=1$, for $i \neq j$, is not assumed, it is easy to give a sequence $2<b_{1}<b_{2}<\ldots$ for which

$$
\sum_{i=1}^{\infty}\left(\varphi\left(b_{i}\right)\right)^{-1}<\infty
$$

but there is an infinite sequence $0<n_{1}<n_{2}<\ldots$ so that the number of solutions of

$$
n_{i}=p+t, \quad p \text { prime }, t>0 \text { and } t \not \equiv 0\left(\bmod b_{j}\right), \text { for all } j,
$$

is

$$
o\left(n_{i} / \log n_{i}\right) \quad \text { as } \quad i \rightarrow \infty .
$$

We define $b_{1}<b_{2}<\ldots$ as follows. Suppose $\left\{n_{i}\right\}$ be an increasing sequence of natural numbers tending to infinity sufficiently fast and ε_{i} $=\left(\log \log n_{i}\right)^{-1}$. Now take the b 's to be the integers of the form

$$
n_{i}-p, \quad p<\left(1-\varepsilon_{i}\right) n_{i}, \quad i=1,2, \ldots
$$

Clearly the number of

$$
n_{i}=p+t, \quad t>0, t \not \equiv 0\left(\bmod b_{j}\right), \text { for all } j,
$$

is less than

$$
\left(\varepsilon_{i}+\boldsymbol{o}(1)\right)\left(n_{i} / \log n_{i}\right)=o\left(n_{i} / \log n_{i}\right) .
$$

Since

$$
\begin{equation*}
\varphi(m) \geqslant C_{6} m(\log \log m)^{-1}, \tag{4.1}
\end{equation*}
$$

we have

$$
\sum_{p<\left(1-\varepsilon_{i} n_{i}\right.} \frac{1}{\varphi\left(n_{i}-p\right)}<\frac{C_{6} n_{i}}{\log n_{i}} \frac{\log \log n_{i}}{\varepsilon_{i} n_{i}}=\frac{C_{6}\left(\log \log n_{i}\right)}{\log n_{i}} .
$$

Thus

$$
\sum_{i=1}^{\infty}\left(\varphi\left(b_{i}\right)\right)^{-1} \leqslant \sum_{i=1}^{\infty} \sum_{p<\left(1-\varepsilon_{i}\right) n_{i}}\left(\varphi\left(n_{i}-p\right)\right)^{-1} \leqslant C_{6} \sum_{i=1}^{\infty} \frac{\left(\log \log n_{i}\right)^{2}}{\log n_{i}}<\infty,
$$

if $n_{i} \rightarrow \infty$ sufficiently fast.
It might be possible to construct a sequence $2<b_{1}<b_{2}<\ldots$ of integers such that $\sum b_{i}^{-1}$ is convergent and for which

$$
n=p+t, \quad p \text { prime }, t>0, t \not \equiv 0\left(\bmod b_{i}\right), \text { for all } i,
$$

has no solution for infinitely many n. But we are unable to find such a sequence.

On the other hand, if $B(x)$, defined b .

$$
B(x)=\sum_{b_{i} \leqslant x} 1,
$$

is not too large, then the condition $\left(b_{i}, b_{j}\right)=1$, for $i \neq j$, is quite unnecessary. In this direction, we have the following

Theorem 3. Let $3 \leqslant b_{1}<b_{2}<\ldots$ be a sequence of integers such that

$$
\begin{equation*}
B(x)=o\left(x /\left((\log x)^{2} \log \log x\right)\right) . \tag{4.2}
\end{equation*}
$$

Then

$$
N(n)>C n(\log n)^{-1}
$$

Proof of Theorem 3. Let, for any $k \geqslant 1, N(n, k)$ be the number of solutions of $n=p+t, p$ prime, $t>0$ and $t \not \equiv 0\left(\bmod b_{j}\right)$, for all $j \leqslant k$, and let $A(n, k)$ be the number of solutions of $n=p+t, t>0, t \equiv 0\left(\bmod b_{j}\right)$ for some $j>k$. We need the following lemmas.

Lemina 5. For every $k \geqslant 1$, there exists $n(k)$ such that

$$
N(n, k) \geqslant C_{7}(n /(\log n)(\log k)), \quad \text { for all } n \geqslant n(k) .
$$

Proof. Since each $b_{i} \geqslant 3$, either $b_{i} \equiv 0\left(\bmod 2^{2}\right)$, or there exists a prime $q_{i}^{\prime} \geqslant 3$ such that $b_{i} \equiv 0\left(\bmod q_{i}^{\prime}\right)$. Let $l(k)$ be the number of distinct primes in the set $\left\{q_{i}^{\prime}\right\}$. Let these be denoted by $q_{i}, i=1, \ldots, l(k)$.

Note that, $N(n, k)$ is not less than the number of solutions of

$$
n=p+t, \quad t>0, t \equiv 0\left(\bmod 2^{2}\right) \text { and } t \equiv 0\left(\bmod q_{i}\right) \text { for all } i \leqslant l(k) .
$$

This latter number solutions, by Theorem 1, is not less than

$$
\begin{aligned}
&\left(1-\frac{1}{\varphi(4)}\right) \prod_{i \leqslant l(k)}\left(1-\frac{1}{\varphi\left(q_{i}\right)}\right) \frac{n}{\log n}+o\left(\frac{n}{\log n}\right) \\
& \geqslant \frac{1}{2} \prod_{i \leqslant k}\left(1-\frac{1}{p_{i}-1}\right) \frac{n}{\log n}+o\left(\frac{n}{\log n}\right) \\
& \geqslant \frac{C_{8}}{\log } \frac{n}{\log n} \quad \text { for all } n \geqslant n(k)
\end{aligned}
$$

where p_{i} is the i th odd prime number and $n(k)$ is a sufficiently large integer. This completes the proof of Lemma 5 .

Lemina 6. We have

$$
\begin{equation*}
\sum_{i \geqslant k}\left(\varphi\left(b_{i}\right)\right)^{-1}=o\left((\log k)^{-1}\right) . \tag{4.3}
\end{equation*}
$$

Proof. By (4.1), (4.2) and by partial integration, we have

$$
\begin{aligned}
\sum_{i \geqslant k}\left(\varphi\left(b_{i}\right)\right)^{-1} & \ll \sum_{i \geqslant k} \frac{\log \log b_{i}}{b_{i}}=\int_{b_{k}}^{\infty} \frac{\log \log t}{t} d B(t) \\
& \left.=\frac{1}{t} B(t) \log \log t\right]_{b_{k}}^{\infty}+\int_{b_{k}}^{\infty} \frac{B(t)}{t^{2}}\left(\log \log t-\frac{1}{\log t}\right) d t \\
& =o\left(\left(\log b_{k}\right)^{-2}\right)+o\left(\int_{b_{k}}^{\infty} \frac{d t}{t(\log t)^{2}}\right)=o\left(\left(\log b_{k}\right)^{-1}\right) \\
& =o\left((\log k)^{-1}\right) .
\end{aligned}
$$

Lemma 7. There exists a k_{0} such that, for every $k \geqslant k_{0}$, there exists $n_{0}(k)$ satisfying

$$
A(n, k) \leqslant \frac{C_{7}}{2 \log k} \frac{n}{\log n} \quad \text { for all } n \geqslant n_{0}(k)
$$

Proof. Since the number of solutions of $n \equiv p\left(\bmod b_{i}\right)$ is, by BrunTitchmarsh theorem for $b_{i} \leqslant \sqrt{n}$, less than $\left(C_{8} n / \varphi\left(b_{i}\right) \log n\right)$, thus, for any $k \geqslant 1$, the number of solutions of

$$
n=p+t, \quad p \leqslant n, t \equiv 0\left(\bmod b_{j}\right), \text { for } b_{j} \leqslant \sqrt{n} \text { and } j>k
$$

is less than

$$
\begin{equation*}
C_{8} n(\log n)^{-1} \sum_{i>k}\left(\varphi\left(b_{i}\right)\right)^{-1} . \tag{4.4}
\end{equation*}
$$

By Lemma 6, there exists a k_{0} such that for $k \geqslant k_{0}$, (4.4) is less than

$$
\begin{equation*}
\frac{C_{7}}{10 \log k} \frac{n}{\log n} \tag{4.5}
\end{equation*}
$$

Let, next, $b_{j}>\sqrt{n}$. By Brun-Titchmarsh Theorem the number of solutions of

$$
n \equiv p\left(\bmod b_{j}\right), \quad p \leqslant n
$$

is less than

$$
\left(C_{9} n / \varphi\left(b_{j}\right) \log \frac{n}{b_{j}}\right)
$$

So, if $s \geqslant 1$ and $2^{s}<\sqrt{n}$, then the number of solutions of

$$
n \equiv p\left(\bmod b_{j}\right), \quad \frac{n}{2^{s+1}}<b_{j} \leqslant \frac{n}{2^{s}}, \quad p \leqslant n
$$

is less than

$$
\begin{equation*}
B\left(n / 2^{s}\right) C_{10} \frac{2^{s}}{s} \log \log n=o\left(s^{-1} n(\log n)^{-2}\right) \quad \text { as } \quad n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Here we used (4.2). Since, for each $b_{j} \in(n / 2, n]$, there exists at most one prime $p \leqslant n$ such that $n \equiv p\left(\bmod b_{j}\right)$, the number of solutions of

$$
n \equiv p\left(\bmod b_{j}\right), \quad p \leqslant n, b_{j} \in(n / 2, n]
$$

is less than

$$
\begin{equation*}
B(n)=o\left(n /\left((\log n)^{2} \log \log n\right)\right) \tag{4.7}
\end{equation*}
$$

By summing (4.6) over s and adding (4.7) to the result, we get that the number of solutions of

$$
n \equiv p\left(\bmod b_{j}\right), \quad \text { for some } b_{j} \geqslant \sqrt{n}, p<n
$$

is

$$
o\left(n(\log n)^{-1}\right)
$$

Now the lemma follows from (4.5).
To complete the proof of Theorem 3, first note that for any $k \geqslant 1$

$$
\begin{equation*}
N(n) \geqslant N(n, k)-A(n, k) . \tag{4.8}
\end{equation*}
$$

Now the theorem follows immediately from (4.8) and Lemmas 5 and 7.
Without much difficulty we could obtain an asymptotic formula for $N(n)$ even if we only assume

$$
B(x)=o\left(\frac{x}{\log x \log \log x}\right) .
$$

We hope to return to this problem on another occasion.

References

[1] P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), pp. 175-182.
[2] J. Kubilius, Probabilistic methods in the theory of numbers, Transl. of Math. Monographs, Amer. Math. Soc. 11 (1964).
[3] K. Prachar, Primzahlverteilung, Berlin 1957.
[4] E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties $I I$, Acta Arith. 23 (1973), pp. 359-361.

MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
Budapest, Hungary
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Colaba, Bombay 5, India

