An asymptotic formula in additive number theory by

P. ERDÖS (Budapest), G. JOGESH BABU and K. RAMACHANDRA (Bombay)

1. Introduction. In his paper [1], Erdös introduced the sequences of positive integers $b_1 < b_2 < \ldots$, with $(b_i, b_j) = 1$, for $i \neq j$, and $\sum b_i^{-1} < \infty$. With any such arbitrary sequence of integers, he associated the sequence $\{d_i\}$ of all positive integers not divisible by any b_j , and he showed that if $b_1 \ge 2$, there exists a $\theta < 1$ (independent of the sequence $\{b_i\}$) such that $d_{i+1} - d_i < d_i^{\theta}$, for $i \ge i_0$. Later, Szemerédi [4] made an important progress on the problem, showing that θ can be taken to be any number greater than $\frac{1}{2}$.

In this paper, we study this sequence from a different point of view. We study the number N(n) of solutions of the equation n = p + d, where p is a prime and $d \not\equiv 0 \pmod{b_j}$ for any j. In fact we derive an asymptotic formula for N(n), when $b_1 \ge 3$. We also study N(n) when the condition $(b_i, b_j) = 1$ is dropped.

2. In what follows, we let C_1, C_2, \ldots denote positive absolute constants and let C be a positive constant. p, q with or without subscript, always denote primes.

THEOREM 1. Let $2 \leq b_1 < b_2 < ...$ be a sequence of natural numbers with the properties $(b_i, b_j) = 1$ whenever $i \neq j$ and

(2.1)
$$\sum_{j=1}^{\infty} b_j^{-1} < \infty.$$

Then the number N(n) of solutions of the equation n = p + t, where p is a prime and t is a natural number not divisible by any b_i , is given by

(2.2)
$$N(n) = n(\log n)^{-1} \prod_{(b_j,n)=1} (1 - (\varphi(b_j))^{-1}) + o(n(\log n)^{-1}).$$

Remarks. If either $b_1 \ge 3$ or if *n* is even then N(n) is asymptotic to the main term in (2.2). Similar remarks apply to Theorem 2 below, which can be proved along the same lines as Theorem 1. Also it easily follows from

the prime number theorem for arithmetic progressions and the sieve of Eratosthenes that if $(b_i, b_j) = 1$ and $\sum_{j=1}^{\infty} \frac{1}{b_j} = \infty$ then $N(n) = o\left(\frac{n}{\log n}\right)$.

THEOREM 2. Let l be any non-zero integer. Under the assumptions of Theorem 1, the number $N_l(x)$, of primes p not exceeding x such that p+lis not divisible by any b_i , satisfies

$$N_{l}(x) = x(\log x)^{-1} \prod_{(b_{j}, l)=1} (1 - (\varphi(b_{j}))^{-1}) + o(x(\log x)^{-1}).$$

3. Proof of Theorem 1. We denote by v, natural numbers not divisible by any b_j , and by d all finite power products $\prod b_j^{e_j}$ where $e_j = 0$ or 1, and we write $h(d) = (-1)^{2e_j}$. We begin with

LEMMA 1. We have

$$\sum v^{-s} = \zeta(s) \prod (1-b_j^{-s})$$
 and $\prod (1-b_j^{-s}) = \sum h(d) d^{-s}$.

Proof. The proof follows from the fact that every natural number m can be written uniquely in the form

$$m = \left(\prod b_j^{a_j}\right)
u$$
 ($a_j \geqslant 0$ are integers).

This can be proved in the following way. Define a_j as the greatest integer such that b_j^{aj} divides *m*. This gives existence and the uniqueness is trivial.

LEMMA 2. The two series

$$\sum (\varphi(b_j))^{-1}$$
 and $\sum (\varphi(d))^{-1}$

are convergent.

Proof. Let B_1 be the set of those b's which are primes and let B_2 be the set of the remaining b's. Clearly, the number of b's in B_2 not exceeding x is less than \sqrt{x} . Thus (2.1) implies convergence of the first series. Convergence of the second series follows from convergence of the first series and the identity

$$\sum (\varphi(d))^{-1} = \prod (1-(\varphi(b_i))^{-1}).$$

LEMMA 3. Let N'(n) be the number of solutions of

 $n = p + t', \quad t' > 0, \quad t' \not\equiv 0 \pmod{b_i} \quad for every \ b_i \leqslant \log \log n.$

Then

$$N'(n) = n(\log n)^{-1} \prod_{(b_i, n)=1} (1 - (\varphi(b_i))^{-1}) + o(n(\log n)^{-1}).$$

Proof. Let d' denote a product of the form $\prod b_i^{e_i}$, where $e_i = 0$ or 1 and $b_i \leq \log \log n$. By Siegel-Walfisz theorem (see [3], Satz 8.3, p. 144)

and by Lemmas 1 and 2, we have

$$N'(n) = \sum_{n=p+t'} 1 = \sum_{p+md'=n} h(d') = \sum_{\substack{p+md'=n \\ (d',n)=1}} h(d') + \sum_{\substack{p+md'=n \\ (d',n)>1}} h(d') = \Sigma_1 + \Sigma_2.$$

Note that, if d(n) denotes the number of divisors of n, then

$$\Sigma_2 = \Big|\sum_{\substack{p+md'=n\\(d',n)=p}} h(d')\Big| \leqslant \sum_{p|n} \sum_{\substack{d'|n-p\\(d',n)=p}} h(p) \leqslant \sum_{p|n} d(n-p) \ll n^{1/2} \log n,$$

since $|h(d')| \leq 1$ and $d(n) \leq n^{\varepsilon}$ for any $\varepsilon > 0$.

$$\begin{split} \Sigma_1 &= \sum_{(d',n)=1} \left(\frac{h(d')}{\varphi(d')} \frac{n}{\log n} \left(1 + O\left((\log n)^{-1} \right) \right) \right) \\ &= \frac{n}{\log n} \left(\sum_{(d,n)=1} \frac{h(d)}{\varphi(d)} \right) + O\left(\frac{n}{\log n} \right). \end{split}$$

Thus

$$N'(n) = \Sigma_1 + \Sigma_2 = n(\log n)^{-1} \prod_{(b_i, n)=1} (1 - (\varphi(b_i))^{-1}) + o(n(\log n)^{-1}).$$

This completes the proof of the lemma.

LEMMA 4. There exists a function $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that the number of primes $p \leq n$ satisfying

$$p - p \equiv 0 \pmod{b_i}, \quad for some \ b_i \in (n^{1-\epsilon}, n]$$

is less than

 $(\eta(\varepsilon)+o(1))n(\log n)^{-1},$ for every $\varepsilon \in (0, \frac{1}{4}).$

Proof. First note that the number of composite b_i 's not exceeding n is at most $n^{1/2}$. For a fixed $b_i \in (n^{1-\epsilon}, n]$, $n-p \equiv 0 \pmod{b_i}$ has at most $(n/b_i) < n^{\epsilon}$ solutions. Thus the contribution of the composite b_i 's is less than $n^{1/2+\epsilon}$. To complete the proof it, thus, suffices to show that the number of solutions of

$$n \equiv p \pmod{q}, \quad n^{1-\epsilon} < q < n, q \text{ prime},$$

is less than

$$(\eta(\varepsilon)+o(1))n(\log n)^{-1}.$$

In other words we have to prove that the number of solutions of

 $n = p + aq, \quad p, q ext{ primes not exceeding } n ext{ and } a < n^e$

is less than

$$(\eta(\varepsilon)+o(1))n(\log n)^{-1}.$$

First note that the number of solutions of

n = p + aq, $a < n^{e}$, (a, n) > 1 and p, q primes not exceeding n

is less than

$$\sum_{a < n^{\varepsilon}} \sum_{p \mid a} 1 \ll n^{2\varepsilon} = o\left(n \left(\log n\right)^{-1}\right),$$

since $\varepsilon < 1/4$.

Now for a fixed $a < n^{\epsilon}$ and (n, a) = 1, the number of primes q < n, for which n - aq is a prime, by Lemma 1.4 of [2], if C_2 is a sufficiently small constant, is less than

$$C_1 rac{n}{a} \prod_{2$$

Thus summing for all $a < n^{\epsilon}$, (a, n) = 1, we immediately obtain that the number of solutions of

n-aq = p, $a < n^{\varepsilon}$, (a, n) = 1 and p, q primes $(\leq n)$

is less than

$$\eta(\varepsilon) n (\log n)^{-1}$$
.

Now the lemma follows easily.

To complete the proof of Theorem 1, it is enough to show, in view of Lemma 3, that

$$N(n) - N'(n) = o(n(\log n)^{-1}).$$

To show this it will clearly be sufficient to show that the number of solutions of

 $n = p + R, \quad R > 0, \ R \equiv 0 \pmod{b_j} \ ext{for some } b_j > \log \log n$

is

 $o(n(\log n)^{-1}).$

First observe that if $b_i \leq n^{1-\epsilon}$ ($\epsilon > 0$, small), then the number of primes $p \leq n$ with $n \equiv p \pmod{b_j}$ is, by Brun-Titchmarsh Theorem (see [3], Satz 4.1, p. 44), less than $(C_5 n/\epsilon \varphi(b_i) \log n)$. Thus the number of primes $p \leq n$ for which $n \equiv p \pmod{b_i}$ for some $b_i \epsilon (\log \log n, n^{1-\epsilon})$ is less than

$$(C_5n/\varepsilon \log n) \sum_{b_i > \log \log n} (\varphi(b_i))^{-1} = o(n/\varepsilon \log n).$$

Now the theorem follows from Lemma 4.

4. If $(b_i, b_j) = 1$, for $i \neq j$, is not assumed, it is easy to give a sequence $2 < b_1 < b_2 < \ldots$ for which

$$\sum_{i=1}^{\infty} (\varphi(b_i))^{-1} < \infty,$$

but there is an infinite sequence $0 < n_1 < n_2 < \dots$ so that the number of solutions of

$$n_i = p + t$$
, p prime, $t > 0$ and $t \not\equiv 0 \pmod{b_j}$, for all j,

is

$$o(n_i/\log n_i)$$
 as $i \to \infty$.

We define $b_1 < b_2 < \ldots$ as follows. Suppose $\{n_i\}$ be an increasing sequence of natural numbers tending to infinity sufficiently fast and $\varepsilon_i = (\log \log n_i)^{-1}$. Now take the *b*'s to be the integers of the form

$$n_i - p$$
, $p < (1 - \varepsilon_i)n_i$, $i = 1, 2, ...$

Clearly the number of

$$n_i = p+t, \quad t > 0, t \not\equiv 0 \pmod{b_i}, \text{ for all } j,$$

is less than

$$(\varepsilon_i + o(1))(n_i/\log n_i) = o(n_i/\log n_i).$$

Since

(4.1)
$$\varphi(m) \ge C_6 m (\log \log m)^{-1},$$

we have

$$\sum_{<(1-\varepsilon_i)n_i} \frac{1}{\varphi(n_i-p)} < \frac{C_6 n_i}{\log n_i} \frac{\log \log n_i}{\varepsilon_i n_i} = \frac{C_6 (\log \log n_i)}{\log n_i}.$$

Thus

$$\sum_{i=1}^{\infty} \big(\varphi(b_i)\big)^{-1} \leqslant \sum_{i=1}^{\infty} \sum_{p < (1-e_i)n_i} \big(\varphi(n_i-p)\big)^{-1} \leqslant C_6 \sum_{i=1}^{\infty} \frac{(\log\log n_i)^2}{\log n_i} < \infty,$$

if $n_i \rightarrow \infty$ sufficiently fast.

p

It might be possible to construct a sequence $2 < b_1 < b_2 < \ldots$ of integers such that $\sum b_i^{-1}$ is convergent and for which

n = p+t, pprime, t > 0, $t \neq 0 \pmod{b_i}$, for all i,

has no solution for infinitely many n. But we are unable to find such a sequence.

On the other hand, if B(x), defined b.

$$B(x) = \sum_{b_i \leqslant x} 1,$$

is not too large, then the condition $(b_i, b_j) = 1$, for $i \neq j$, is quite unnecessary. In this direction, we have the following

THEOREM 3. Let $3 \leq b_1 < b_2 < \dots$ be a sequence of integers such that

$$(4.2) B(x) = o(x/((\log x)^2 \log \log x)).$$

5 — ACTA Arithmetica XXVIII. 4

Then

$$N(n) > Cn(\log n)^{-1}.$$

Proof of Theorem 3. Let, for any $k \ge 1$, N(n, k) be the number of solutions of n = p+t, p prime, t > 0 and $t \not\equiv 0 \pmod{b_j}$, for all $j \le k$, and let A(n, k) be the number of solutions of n = p+t, t > 0, $t \equiv 0 \pmod{b_j}$ for some j > k. We need the following lemmas.

LEMMA 5. For every $k \ge 1$, there exists n(k) such that

$$N(n, k) \ge C_7(n/(\log n)(\log k)),$$
 for all $n \ge n(k)$.

Proof. Since each $b_i \ge 3$, either $b_i \equiv 0 \pmod{2^2}$, or there exists a prime $q'_i \ge 3$ such that $b_i \equiv 0 \pmod{q'_i}$. Let l(k) be the number of distinct primes in the set $\{q'_i\}$. Let these be denoted by $q_i, i = 1, \ldots, l(k)$.

Note that, N(n, k) is not less than the number of solutions of

 $n=p+t, \quad t>0, \; t\equiv 0 (\mathrm{mod}\, 2^2) \; \mathrm{and} \; t\equiv 0 (\mathrm{mod}\, q_i) \; \mathrm{for} \; \mathrm{all} \; i\leqslant l(k).$

This latter number solutions, by Theorem 1, is not less than

$$\begin{split} \left(1 - \frac{1}{\varphi(4)}\right) \prod_{i \leqslant l(k)} \left(1 - \frac{1}{\varphi(q_i)}\right) \frac{n}{\log n} + o\left(\frac{n}{\log n}\right) \\ & \geqslant \frac{1}{2} \prod_{i \leqslant k} \left(1 - \frac{1}{p_i - 1}\right) \frac{n}{\log n} + o\left(\frac{n}{\log n}\right) \\ & \geqslant \frac{C_8}{\log k} \frac{n}{\log n} \quad \text{for all } n \geqslant n(k), \end{split}$$

where p_i is the *i*th odd prime number and n(k) is a sufficiently large integer. This completes the proof of Lemma 5.

LEMMA 6. We have

(4.3)
$$\sum_{i \ge k} (\varphi(b_i))^{-1} = o((\log k)^{-1}).$$

Proof. By (4.1), (4.2) and by partial integration, we have

$$\begin{split} \sum_{i \geqslant k} \big(\varphi(b_i)\big)^{-1} & \ll \sum_{i \geqslant k} \frac{\log \log b_i}{b_i} = \int_{b_k}^\infty \frac{\log \log t}{t} \, dB(t) \\ & = \frac{1}{t} \, B(t) \log \log t \big]_{b_k}^\infty + \int_{b_k}^\infty \frac{B(t)}{t^2} \left(\log \log t - \frac{1}{\log t} \right) dt \\ & = o\big((\log b_k)^{-2} \big) + o\left(\int_{b_k}^\infty \frac{dt}{t (\log t)^2} \right) = o\big((\log b_k)^{-1} \big) \\ & = o\big((\log k)^{-1} \big). \end{split}$$

LEMMA 7. There exists a k_0 such that, for every $k \ge k_0$, there exists $n_0(k)$ satisfying

$$A(n, k) \leqslant rac{C_7}{2\log k} rac{n}{\log n} \quad for \ all \ n \geqslant n_0(k).$$

Proof. Since the number of solutions of $n \equiv p \pmod{b_i}$ is, by Brun-Titchmarsh theorem for $b_i \leq \sqrt{n}$, less than $(C_{\mathfrak{g}}n/\varphi(b_i)\log n)$, thus, for any $k \geq 1$, the number of solutions of

$$n = p + t, \quad p \leqslant n, t \equiv 0 \pmod{b_j}, ext{ for } b_j \leqslant \sqrt{n} ext{ and } j > k$$

is less than

(4.4)
$$C_8 n (\log n)^{-1} \sum_{i>k} (\varphi(b_i))^{-1}.$$

By Lemma 6, there exists a k_0 such that for $k \ge k_0$, (4.4) is less than

(4.5)
$$\frac{C_7}{10\log k} \frac{n}{\log n}.$$

Let, next, $b_j > \sqrt{n}$. By Brun-Titchmarsh Theorem the number of solutions of

 $n \equiv p \pmod{b_j}, \quad p \leq n,$

is less than

$$\left(C_9 n/\varphi(b_j)\log\frac{n}{b_j}\right).$$

So, if $s \ge 1$ and $2^s < \sqrt{n}$, then the number of solutions of

$$n \equiv p \pmod{b_j}, \quad \frac{n}{2^{s+1}} < b_j \leqslant \frac{n}{2^s}, \quad p \leqslant n,$$

is less than

(4.6)
$$B(n/2^s)C_{10}\frac{2^s}{s}\log\log n = o(s^{-1}n(\log n)^{-2})$$
 as $n \to \infty$.

Here we used (4.2). Since, for each $b_j \in (n/2, n]$, there exists at most one prime $p \leq n$ such that $n \equiv p \pmod{b_j}$, the number of solutions of

$$n \equiv p \pmod{b_j}, \quad p \leqslant n, \ b_j \in (n/2, n]$$

is less than (4.7)

$$B(n) = o(n/((\log n)^2 \log \log n)).$$

By summing (4.6) over s and adding (4.7) to the result, we get that the number of solutions of

$$n \equiv p \pmod{b_i}, \quad \text{for some } b_i \ge \sqrt{n}, p < n$$

is

$$o(n(\log n)^{-1}).$$

Now the lemma follows from (4.5).

To complete the proof of Theorem 3, first note that for any $k \ge 1$

$$(4.8) N(n) \ge N(n, k) - A(n, k).$$

Now the theorem follows immediately from (4.8) and Lemmas 5 and 7.

Without much difficulty we could obtain an asymptotic formula for N(n) even if we only assume

$$B(x) = o\left(\frac{x}{\log x \log \log x}\right).$$

We hope to return to this problem on another occasion.

References

- [1] P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), pp. 175-182.
- [2] J. Kubilius, Probabilistic methods in the theory of numbers, Transl. of Math. Monographs, Amer. Math. Soc. 11 (1964).
- [3] K. Prachar, Primzahlverteilung, Berlin 1957.
- [4] E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), pp. 359-361.

MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES Budapest, Hungary SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH Colaba, Bombay 5, India

Received on 20. 4. 1974

(562)