If b is the term with no prime factor exceeding 3, there are also six possibilities.

7. $2^2 \cdot 3 | b \Rightarrow c = p^x$, $d = 2q^y \Rightarrow (c, d)$ satisfies [p, q, 2]. 8. $b = 2 \cdot 3^y \Rightarrow a = p^x \Rightarrow (a, b)$ satisfies [p, 3, 2]. 9. $b = 2^x$, $3 \nmid a \Rightarrow a = q^y \Rightarrow (b, a)$ satisfies [2, q, 1]. 10. $b = 2^x$, $3 | a \Rightarrow c = q^y \Rightarrow (b, c)$ satisfies [2, q, 1]. 11. $b = 3^x$, $2^1 || a \Rightarrow a = 2q^y \Rightarrow (b a)$ satisfies [3, q, 2]. 12. $b = 3^x$, $2^2 | a \Rightarrow c = 2q^y \Rightarrow (b, c)$ satisfies [3, q, 2].

By section 4, every possibility requires S to include a term with a prime factor exceeding 11, which is forbidden. Thus S does not exist.

The authors are indebted to Professor R. K. Guy for several expository improvements.

References

1. E. F. Ecklund, Jr., and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972) 1082-1089.

2. R. B. Eggleton and J. L. Selfridge, Factors of neighbours to a perfect power, to appear.

3. W. J. LeVeque, Topics in Number Theory, vol. 1, Addison-Wesley, Reading, 1956.

4. J. J. Sylvester, Sur une classe spéciale des diviseurs de la somme d'une série géometrique, C. R. Acad. Sci. Paris, 107 (1888) 446-450; Collected Mathematical Papers, vol. 4, 1912, p. 607, et seq.

5. W. R. Utz, A conjecture of Erdös concerning consecutive integers, Amer. Math. Monthly, 68 (1961) 896-897.

AN EXTREMAL PROBLEM OF GRAPHS WITH DIAMETER 2

BÉLA BOLLOBÁS and PAUL ERDÖS, University of Cambridge, England

Let $1 \le k < p$. We say that a graph has property P(p, k) if it has p points and every two of its points are joined by at least k paths of length ≤ 2 . The aim of this note is to discuss the following problem. At least how many edges are in a graph with property P(p, k)? Denote this minimum by m(p, k).

Construct a graph $G_0(p, k)$ with property P(p, k) as follows. Take two classes of points, k in the first class and p - k in the second, and take all the edges incident with at least one point in the first class. Thus $G_0(p, k)$ has $\binom{p}{2} - \binom{p-k}{2}$ edges.

Murty [2] proved that if $p \ge \frac{1}{2}(3+\sqrt{5})k$ then $m(p,k) = \binom{p}{2} - \binom{p-k}{2}$ and

 $G_0(p, k)$ is the only graph with property P(p, k) that has m(p, k) edges. He also suspected that the same result holds already for p > 2k. We shall show that this is not so, in fact $p \ge \frac{1}{2}(3 + \sqrt{5})k$ is almost necessary for $G_0(p, k)$ to be an extremal graph, and we determine the asymptotic value of m([ck], k) for every constant $1 < c < \frac{1}{2}(3 + \sqrt{5})$, where [x] denotes the integer part of x. THEOREM. Let $1 < c < \frac{1}{2}(3 + \sqrt{5})$, p = [ck]. Then $m(p, k) = c^{3/2}k^2/2 + o(k^2)$.

Proof. Exactly as in [2] (or by a simple counting argument) one can show that

$$m(p,k) \ge c^{3/2}k^2/2 + O(k).$$

Therefore the problem is to prove an upper bound for m(p, k), i.e., to construct graphs with property P(p, k) that have few edges.

Let $\varepsilon > 0$. Take p = [ck] points and choose each edge with probability $d = c^{-\frac{1}{2}} + \varepsilon$. The law of large numbers implies that, as $k \to \infty$, with probability tending to 1, this graph $G_1(p, k)$ has $\binom{p}{2}(d + o(1))$ edges. Also, by another simple application of the law of large numbers, we obtain that with probability tending to 1 for every two of the points there are $(d^2 + o(1))p$ points joined to both of them. Thus as $p \to \infty$ with probability tending to 1 this graph $G_1(p, k)$ has property P(p, k) and it has $\leq (d^2 + \varepsilon) \binom{p}{2}$ edges, proving the required inequality.

If the reader is not familiar with the probabilistic terminology or does not like it, we suggest the following combinatorial translation.

Consider all graphs on a set V of p labelled points having $\binom{p}{2}d = q$ edges. The number of these graphs is $\binom{Q}{q}$, where $Q = \binom{p}{2}$. Let a, b be two arbitrary points and let x < k be an integer. Let us compute the number of graphs in which there are exactly x points joined to both a and b. If there are x points joined to both a and b, there are y points in $V - \{a, b\}$ joined to a and there are z points in $V - \{a, b\}$ joined to b; then the edges incident with exactly one of the points a, b can be chosen in

$$\binom{p-2}{x}\binom{p-2-x}{y}\binom{p-2-x-y}{z}$$

different ways. The remaining edges of the graph can be chosen in $\binom{Q'}{q-e}$ ways,

where $Q' = {\binom{p-2}{2}} + 1$ and e = 2x + y + z. Consequently the number of graphs in question is

$$\sum_{x \neq z \leq p-2} \binom{p-2}{x} \binom{p-2-x-y}{y} \binom{Q'}{q-e},$$

where the summation goes over all pairs of nonnegative integers (y, z) satisfying $x + y + z \leq p - 2$. Thus there are at most

$$\binom{n}{2}\sum_{x+y+z\leq p-2}\binom{p-2}{x}\binom{p-2-x}{y}\binom{p-2-x-y}{z}\binom{Q'}{q-e}$$

graphs not having property P(p, k). By a simple but laborious estimation one can prove that if k is sufficiently large then this is less than $\begin{pmatrix} Q \\ a \end{pmatrix}$ (in fact the sum divided by $\binom{Q}{q}$ tends to zero as $k \to \infty$). This proves that if k is sufficiently large there exists a graph with q edges that has property P(p, k).

REMARKS. 1. With a slight improvement of the same method one can prove that if

$$[ck] = p < \frac{3 + \sqrt{5}}{2} k - k^{\frac{1}{2}} (\log k)^{\alpha}$$

(α sufficiently large) then $m(p, k) = c^{3/2}k^2/2 + o(k^2)$ and the graph $G_0(p, k)$ is not extremal.

A problem similar to the one discussed here and in [2] was solved in [1]. By the method applied there one could improve the result in [2] slightly. One could show that $G_0(p,k)$ is extremal in a larger range than $p \ge \frac{1}{2}(3+\sqrt{5})k$, but the method would not bring the lower bound on p down to $\frac{1}{2}(3+\sqrt{5})k - k^{\frac{1}{2}}(\log k)^{\alpha}$.

It would be of interest to determine as accurately as possible the smallest value p = p(k) for which the graph $G_0(p, k)$ is extremal. Furthermore in the range where $G_0(p, k)$ is not extremal determine (again as accurately as possible) m(p, k) and characterize the extremal graphs.

2. One can also give a nonprobabilistic proof of the theorem. As before, let

$$1 < c < \frac{1}{2}(3 + \sqrt{5}), \quad \varepsilon > 0, \quad d = c^{-\frac{1}{2}} + \varepsilon.$$

Furthermore, let p be a natural number and $\alpha = \alpha(p)$ a real number. Denote by $G_1(p, \alpha, d)$ the following graph. The points are $\{1, 2, \dots, p\}$, and i is joined to j if

$$(i-j)^2\alpha - [(i-j)^2\alpha] < d.$$

It suffices to show that $\alpha = \alpha(p)$ can be chosen in a such a way that if p is sufficiently large $G_1(p, \alpha, d)$ has property P(p, k) and has $\frac{1}{2}dn^2 + o(n^2)$ edges. It indeed follows from well-known theorems on diophantine approximation that $G_1(p, \alpha, d)$ has $\frac{1}{2}dp^2 + o(p^2)$ edges, provided α is irrational. The graph has property P(p, k) if whenever $1 \le i < j \le p$, the number of integers $t, 1 \le t \le p$, for which

$$(t-i)^2\alpha - [(t-i)^2\alpha] < d$$
 and $(t-j)^2\alpha - [(t-j)^2\alpha] < d$,

is $d^2p + o(p)$ uniformly in *i* and *j*. (For sufficiently large *p* clearly $d^2p + o(p) > k$.) We could not prove this but Cassels showed that this holds if we choose $\alpha = \alpha(p) = 1/q$, where *q* is the smallest prime not less than *p*. The proof uses analytic number theory and will not be given here. The same choice of α also ensures that G_1 has $\frac{1}{2}dp^2 + o(p^2)$ edges. This result completes the proof of the theorem.

It would still be of interest to prove the result for every irrational α .

References

- 1. B. Bollobás and S. Eldridge, On graphs with diameter 2, to appear in J. Combinatorial Theory.
- 2. U. S. R. Murty, On critical graphs of diameter 2, this MAGAZINE, 41 (1968) 138-140.