DISTRIBUTION OF RATIONAL POINTS ON THE REAL LINE

P. ERDÖS and T. K. SHENG

(Received 2 January 1974)
Communicated by E. S. Barnes

1. Introduction

Denote by $N_{n}(\alpha, \beta)$ the number of distinct fractions p / q, where $1 \leqq q \leqq n$ and $\alpha<p / q<\beta$. Let

$$
D(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}\left(\alpha-\frac{1}{2 n}, \alpha+\frac{1}{2 n}\right) .
$$

It is shown in Sheng (1973) that

$$
D(\alpha)=\frac{3}{\pi^{2}} \quad \text { if } \alpha \text { is irrational }
$$

and that

$$
\begin{aligned}
D\left(\frac{p}{q}\right) & =\frac{2}{q} \sum_{r=1}^{\left[\frac{1 q]}{}\right.}\left(1-\frac{2 r}{q}\right) \frac{\phi(r)}{r} \\
& =\frac{3}{\pi^{2}}+O\left(\frac{\log q}{q}\right)
\end{aligned}
$$

if $q>1$ and $(p, q)=1$. In this paper we prove two theorems.
Theorem 1. If $(p, q)=1$ and $q>1$, then

$$
\left|D\left(\frac{p}{q}\right)-\frac{3}{\pi^{2}}\right|<\frac{2}{q}\left(1+\frac{2}{q}\right)
$$

Theorem 2. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be two sequences satisfying $1>\beta_{n}>\alpha_{n}>0$ and $\lim _{n \rightarrow \infty} n\left(\beta_{n}-\alpha_{n}\right)=\infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{N_{n}\left(\alpha_{n}, \beta_{n}\right)}{n^{2}\left(\beta_{n}-\alpha_{n}\right)}=\frac{3}{\pi^{2}}
$$

In other words, the distribution of fractions is uniform over sufficiently long intervals.

Throughout this paper, $\mu(n)$ denotes the Möbius function, $\phi(n)$ denotes Euler's ϕ-function, and $[x]$ denotes the maximum integer $\leqq x$.

2. Lemmas

Lemma 1. Let n be a positive integer. Then

$$
\sum_{d=1}^{n} \mu(d)\left[\frac{n}{d}\right]=1 .
$$

Proof. This follows from

$$
\mu(1)=1
$$

and, for $n>1$,

$$
\sum_{d=1}^{n} \mu(d)\left[\frac{n}{d}\right]-\sum_{d=1}^{n-1} \mu(d)\left[\frac{n-1}{d}\right]=\sum_{d \mid n} \mu(d)=0 .
$$

Lemma 2. If $\lambda>1$ and

$$
f(\lambda)=\sum_{r=1}^{[\lambda]}\left(1-\frac{r}{\lambda}\right) \frac{\phi(r)}{r},
$$

then

$$
\left|f(\lambda)-\frac{3 \lambda}{\pi^{2}}\right|<1+\frac{1}{\lambda}
$$

Proof. Using $\phi(r)=r \sum_{d \mid r} \frac{\mu(d)}{d}$, we obtain (see Hardy and Wright (1960), page 268, lines 9-10)

$$
\begin{aligned}
f(\lambda) & =\sum_{d=1}^{[\lambda]} \mu(d)\left\{\frac{1}{d}\left[\frac{\lambda}{d}\right]-\frac{1}{2 \lambda}\left[\frac{\lambda}{d}\right]^{2}-\frac{1}{2 \lambda}\left[\frac{\lambda}{d}\right]\right\} \\
& =\frac{1}{2} \lambda \sum_{d=1}^{[\lambda]} \frac{\mu(d)}{d^{2}}-\frac{1}{2 \lambda} \sum_{d=1}^{[\lambda]} \mu(d)\left\{\frac{\lambda}{d}-\left[\frac{\lambda}{d}\right]\right\}^{2}-\frac{1}{2 \lambda} \sum_{d=1}^{[\lambda]} \mu(d)\left[\frac{\lambda}{d}\right] .
\end{aligned}
$$

By Lemma 1,

$$
\begin{aligned}
\left|f(\lambda)-\frac{3 \lambda}{\pi^{2}}\right| & <\frac{1}{2} \lambda \sum_{d=[\lambda]+1}^{\infty} \frac{1}{d^{2}}+\frac{[\lambda]}{2 \lambda}+\frac{1}{2 \lambda}<\frac{\lambda}{2[\lambda]}+\frac{[\lambda]}{2 \lambda}+\frac{1}{2 \lambda} \\
& =1+\frac{(\lambda-[\lambda])^{2}}{2 \lambda[\lambda]}+\frac{1}{2 \lambda}<1+\frac{1}{\lambda} .
\end{aligned}
$$

Lemma 3. If $(p, q)=1$ and $n \geqq q v>0$, then

$$
\begin{equation*}
N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{v}{n}\right)=\frac{n}{q} \sum_{r=1}^{[v q]}\left(1-\frac{r}{v q}\right) \frac{\phi(r)}{r}+O(v q \log v q) . \tag{2.1}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 4 in Sheng (1973).
Lemma 4. If $(p, q)=1$ and $n \geqq q v>0$, then

$$
\begin{equation*}
\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{v}{n}\right)=\frac{3 v}{\pi^{2}}+O\left(\frac{1}{q}\right)+O\left(\frac{v q \log v q}{n}\right) . \tag{2.2}
\end{equation*}
$$

Proof. This follows from (2.1) and Lemma 2.

3. Proofs of theorems

Proof of theorem 1. This follows from

$$
D\left(\frac{p}{q}\right)=\frac{2}{q} f\left(\frac{q}{2}\right)
$$

and Lemma 2.
Proof of theorem 2. Given a positive integer n and real numbers α, β, γ satisfying

$$
0<\alpha<\beta<1 \text { and } \beta-\alpha=\frac{\gamma}{n}>\frac{1}{n}
$$

we choose $\frac{p}{q} \in(\alpha, \beta)$ where

$$
q \leqq y \forall \frac{x}{y} \in(\alpha, \beta),(x, y)=1, y \geqq 1 .
$$

Let $h / k<p / q<r / s$ be consecutive terms of the Farey sequence of order q. It is easy to see that

$$
\frac{r}{s}-\frac{h}{k}=\frac{1}{s k}=\frac{v}{n}
$$

for some real number v and that

$$
\frac{h}{k} \leqq \alpha<\frac{p}{q}<\beta \leqq \frac{r}{s}
$$

Theorem 2 is proved if

$$
\begin{equation*}
\frac{1}{n \gamma} N_{n}(\alpha, \beta)=\frac{3}{\pi^{2}}+0\left(\frac{1}{\gamma}\right)+0\left(\frac{\log n}{n^{\frac{1}{2}}}\right) \tag{3.1}
\end{equation*}
$$

holds.
We prove (3.1) in three possible cases.
CASE 1. Suppose $q \gamma \leqq n^{\frac{1}{2}}$. There exist $\xi \geqq 0$ and $\eta \geqq 0$ such that

$$
\alpha=\frac{p}{q}-\frac{\xi}{n}, \beta=\frac{p}{q}+\frac{\eta}{n}, \xi+\eta=\gamma .
$$

By Lemma 4,

$$
\begin{aligned}
\frac{1}{n} N_{n}(\alpha, \beta) & =\frac{1}{n} N_{n}\left(\frac{p}{q}-\frac{\xi}{n}, \frac{p}{q}\right)+\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{\eta}{n}\right)+\frac{1}{n} \\
& =\frac{1}{n} N_{n}\left(\frac{q-p}{q}, \frac{q-p}{q}+\frac{\xi}{n}\right)+\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{\eta}{n}\right)+\frac{1}{n}
\end{aligned}
$$

$$
=\frac{3}{\pi^{2}}(\xi+\eta)+O\left(\frac{1}{q}\right)+O\left(\frac{q \gamma \log q \gamma}{n}\right)
$$

which can easily be reduced to (3.1).
CASE 2. Suppose $q \gamma>n^{\frac{1}{2}}$ and $k \leqq s$. Then there exist $\xi \geqq 0$ and $\eta>0$ such that

$$
\alpha=\frac{h}{k}+\frac{\xi}{n}, \beta=\frac{h}{k}+\frac{\eta}{n}, \eta-\xi=\gamma .
$$

By Lemma 4,

$$
\begin{align*}
\frac{1}{n} N_{n}(\alpha, \beta) & =\frac{1}{n} N_{n}\left(\frac{h}{k}, \frac{h}{n}+\frac{\eta}{n}\right)-\frac{1}{n} N_{n}\left(\frac{h}{n}, \frac{h}{k}+\frac{\xi}{n}\right) \tag{3.2}\\
& =\frac{3}{\pi^{2}}(\eta-\xi)+O\left(\frac{1}{k}\right)+O\left(\frac{k \eta \log k \eta}{n}\right) .
\end{align*}
$$

Clearly,

$$
k \eta \leqq k v=\frac{n}{s} \leqq \frac{2 n}{q}<2 n^{\frac{1}{2}} \gamma
$$

Thus

$$
\frac{k \eta \log k \eta}{\gamma n}<\frac{2 \log \left(2 n^{\frac{1}{2}} \gamma\right)}{n^{\frac{1}{2}}}=O\left(\frac{\log n}{n^{\frac{1}{2}}}\right) .
$$

It is now easy to deduce (3.1) from (3.2).
CASE 3. Suppose $q \gamma>n^{\frac{1}{2}}$ and $s<k$. Then there exist $\xi>0$ and $\eta \geqq 0$ such that

$$
\alpha=\frac{r}{s}-\frac{\xi}{n}, \beta=\frac{r}{s}-\frac{\eta}{n}, \xi-\eta=\gamma .
$$

Here

$$
\frac{1}{n} N_{n}(\alpha, \beta)=\frac{3}{\pi^{2}}(\xi-\eta)+O\left(\frac{1}{s}\right)+O\left(\frac{s \xi \log (s \xi)}{n}\right)
$$

and (3.1) follows as in Case 2 from

$$
s \xi<2 n^{\frac{1}{2}} \gamma .
$$

This essentially proves Theorem 2.
One of us, T. K. Sheng, would like to take this opportunity to correct the following misprints in Sheng (1973): on page 244, the last term of (1.4) should read $O\left(\frac{v q \log v q}{n}\right)$ instead of $O\left(\frac{v p \log v q}{n}\right)$; and on page 245, line 10 should read

$$
D\left(\frac{p}{q}\right)=\frac{2}{q} \sum_{r=1}^{\left[\frac{1}{2} q\right]}\left(1-\frac{2 r}{q}\right) \frac{\phi(r)}{r}
$$

