J. Austral. Math. Soc. 20 (Series A) (1975), 124-128.

## DISTRIBUTION OF RATIONAL POINTS ON THE REAL LINE

P. ERDÖS and T. K. SHENG

(Received 2 January 1974)

Communicated by E. S. Barnes

## 1. Introduction

Denote by  $N_n(\alpha, \beta)$  the number of distinct fractions p/q, where  $1 \le q \le n$ and  $\alpha < p/q < \beta$ . Let

$$D(\alpha) = \lim_{n \to \infty} \frac{1}{n} N_n \left( \alpha - \frac{1}{2n}, \alpha + \frac{1}{2n} \right).$$

It is shown in Sheng (1973) that

$$D(\alpha) = \frac{3}{\pi^2}$$
 if  $\alpha$  is irrational

and that

$$D\left(\frac{p}{q}\right) = \frac{2}{q} \sum_{r=1}^{\lfloor 4q \rfloor} \left(1 - \frac{2r}{q}\right) \frac{\phi(r)}{r}$$
$$= \frac{3}{\pi^2} + O\left(\frac{\log q}{q}\right)$$

if q > 1 and (p,q) = 1. In this paper we prove two theorems.

THEOREM 1. If (p, q) = 1 and q > 1, then

$$\left| D\left(\frac{p}{q}\right) - \frac{3}{\pi^2} \right| < \frac{2}{q} \left( 1 + \frac{2}{q} \right).$$

THEOREM 2. Let  $\{\alpha_n\}$  and  $\{\beta_n\}$  be two sequences satisfying  $1 > \beta_n > \alpha_n > 0$ and  $\lim_{n \to \infty} n(\beta_n - \alpha_n) = \infty$ . Then

$$\lim_{n\to\infty}\frac{N_n(\alpha_n,\beta_n)}{n^2(\beta_n-\alpha_n)}=\frac{3}{\pi^2}.$$

In other words, the distribution of fractions is uniform over sufficiently long intervals.

Throughout this paper,  $\mu(n)$  denotes the Möbius function,  $\phi(n)$  denotes Euler's  $\phi$ -function, and [x] denotes the maximum integer  $\leq x$ .

## 2. Lemmas

LEMMA 1. Let n be a positive integer. Then

$$\sum_{d=1}^{n} \mu(d) \left[ \frac{n}{d} \right] = 1.$$

PROOF. This follows from

$$\mu(1)=1$$

and, for n > 1,

$$\sum_{d=1}^{n} \mu(d) \left[ \frac{n}{d} \right] - \sum_{d=1}^{n-1} \mu(d) \left[ \frac{n-1}{d} \right] = \sum_{d \mid n} \mu(d) = 0.$$

LEMMA 2. If  $\lambda > 1$  and

$$f(\lambda) = \sum_{r=1}^{[\lambda]} \left(1 - \frac{r}{\lambda}\right) \frac{\phi(r)}{r},$$

then

$$\left|f(\lambda)-\frac{3\lambda}{\pi^2}\right|<1+\frac{1}{\lambda}.$$

PROOF. Using  $\phi(r) = r \sum_{d|r} \frac{\mu(d)}{d}$ , we obtain (see Hardy and Wright (1960), page 268, lines 9-10)

$$f(\lambda) = \sum_{d=1}^{[\lambda]} \mu(d) \left\{ \frac{1}{d} \left[ \frac{\lambda}{d} \right] - \frac{1}{2\lambda} \left[ \frac{\lambda}{d} \right]^2 - \frac{1}{2\lambda} \left[ \frac{\lambda}{d} \right] \right\}$$
$$= \frac{1}{2\lambda} \sum_{d=1}^{[\lambda]} \frac{\mu(d)}{d^2} - \frac{1}{2\lambda} \sum_{d=1}^{[\lambda]} \mu(d) \left\{ \frac{\lambda}{d} - \left[ \frac{\lambda}{d} \right] \right\}^2 - \frac{1}{2\lambda} \sum_{d=1}^{[\lambda]} \mu(d) \left[ \frac{\lambda}{d} \right].$$

By Lemma 1,

$$\begin{split} \left| f(\lambda) - \frac{3\lambda}{\pi^2} \right| &< \frac{1}{2}\lambda \sum_{d=\lfloor\lambda\rfloor+1}^{\infty} \frac{1}{d^2} + \frac{\lfloor\lambda\rfloor}{2\lambda} + \frac{1}{2\lambda} < \frac{\lambda}{2\lfloor\lambda\rfloor} + \frac{\lfloor\lambda\rfloor}{2\lambda} + \frac{1}{2\lambda} \\ &= 1 + \frac{(\lambda - \lfloor\lambda\rfloor)^2}{2\lambda\lfloor\lambda\rfloor} + \frac{1}{2\lambda} < 1 + \frac{1}{\lambda}. \end{split}$$

LEMMA 3. If (p,q) = 1 and  $n \ge qv > 0$ , then

(2.1) 
$$N_n\left(\frac{p}{q}, \frac{p}{q} + \frac{v}{n}\right) = \frac{n}{q}\sum_{r=1}^{\lfloor vq \rfloor} \left(1 - \frac{r}{vq}\right) \frac{\phi(r)}{r} + O(vq\log vq)$$

**PROOF.** The proof is similar to that of Theorem 4 in Sheng (1973). LEMMA 4. If (p,q) = 1 and  $n \ge qv > 0$ , then P. Erdös and T. K. Sheng

(2.2) 
$$\frac{1}{n}N_n\left(\frac{p}{q},\frac{p}{q}+\frac{v}{n}\right) = \frac{3v}{\pi^2} + O\left(\frac{1}{q}\right) + O\left(\frac{vq\log vq}{n}\right).$$

PROOF. This follows from (2.1) and Lemma 2.

## 3. Proofs of theorems

**PROOF OF THEOREM** 1. This follows from

$$D\left(\frac{p}{q}\right) = \frac{2}{q}f\left(\frac{q}{2}\right)$$

and Lemma 2.

**PROOF OF THEOREM 2.** Given a positive integer *n* and real numbers  $\alpha$ ,  $\beta$ ,  $\gamma$  satisfying

$$0 < \alpha < \beta < 1$$
 and  $\beta - \alpha = \frac{\gamma}{n} > \frac{1}{n}$ ,

we choose  $\frac{p}{q} \in (\alpha, \beta)$  where

$$q \leq y \forall \frac{x}{y} \in (\alpha, \beta), (x, y) = 1, y \geq 1.$$

Let h/k < p/q < r/s be consecutive terms of the Farey sequence of order q. It is easy to see that

$$\frac{r}{s} - \frac{h}{k} = \frac{1}{sk} = \frac{v}{n}$$

for some real number v and that

$$\frac{h}{k} \leq \alpha < \frac{p}{q} < \beta \leq \frac{r}{s}.$$

Theorem 2 is proved if

(3.1) 
$$\frac{1}{n\gamma}N_n(\alpha,\beta) = \frac{3}{\pi^2} + 0\left(\frac{1}{\gamma}\right) + 0\left(\frac{\log n}{n^{\frac{1}{2}}}\right)$$

holds.

We prove (3.1) in three possible cases.

CASE 1. Suppose  $q\gamma \leq n^{\frac{1}{2}}$ . There exist  $\xi \geq 0$  and  $\eta \geq 0$  such that

$$\alpha = \frac{p}{q} - \frac{\xi}{n}, \beta = \frac{p}{q} + \frac{\eta}{n}, \xi + \eta = \gamma.$$

By Lemma 4,

$$\frac{1}{n}N_n(\alpha,\beta) = \frac{1}{n}N_n\left(\frac{p}{q} - \frac{\xi}{n}, \frac{p}{q}\right) + \frac{1}{n}N_n\left(\frac{p}{q}, \frac{p}{q} + \frac{\eta}{n}\right) + \frac{1}{n} \\ = \frac{1}{n}N_n\left(\frac{q-p}{q}, \frac{q-p}{q} + \frac{\xi}{n}\right) + \frac{1}{n}N_n\left(\frac{p}{q}, \frac{p}{q} + \frac{\eta}{n}\right) + \frac{1}{n}$$

[3]

126

Distribution of rational points

$$= \frac{3}{\pi^2}(\xi + \eta) + O\left(\frac{1}{q}\right) + O\left(\frac{q\gamma \log q\gamma}{n}\right)$$

which can easily be reduced to (3.1).

CASE 2. Suppose  $q\gamma > n^{\frac{1}{2}}$  and  $k \leq s$ . Then there exist  $\xi \geq 0$  and  $\eta > 0$  such that

$$\alpha = \frac{h}{k} + \frac{\xi}{n}, \beta = \frac{h}{k} + \frac{\eta}{n}, \eta - \xi = \gamma.$$

By Lemma 4,

(3.2) 
$$\frac{1}{n}N_n(\alpha,\beta) = \frac{1}{n}N_n\left(\frac{h}{k}, \frac{h}{n} + \frac{\eta}{n}\right) - \frac{1}{n}N_n\left(\frac{h}{n}, \frac{h}{k} + \frac{\xi}{n}\right)$$
$$= \frac{3}{\pi^2}(\eta - \xi) + O\left(\frac{1}{k}\right) + O\left(\frac{k\eta\log k\eta}{n}\right).$$

Clearly,

$$k\eta \leq kv = \frac{n}{s} \leq \frac{2n}{q} < 2n^{\frac{1}{2}}\gamma.$$

Thus

$$\frac{k\eta\log k\eta}{\gamma n} < \frac{2\log(2n^{\frac{1}{2}}\gamma)}{n^{\frac{1}{2}}} = O\left(\frac{\log n}{n^{\frac{1}{2}}}\right).$$

It is now easy to deduce (3.1) from (3.2).

CASE 3. Suppose  $q\gamma > n^{\frac{1}{2}}$  and s < k. Then there exist  $\xi > 0$  and  $\eta \ge 0$  such that

$$\alpha = \frac{r}{s} - \frac{\xi}{n}, \ \beta = \frac{r}{s} - \frac{\eta}{n}, \ \xi - \eta = \gamma.$$

Here

$$\frac{1}{n}N_n(\alpha,\beta) = \frac{3}{\pi^2}(\xi-\eta) + O\left(\frac{1}{s}\right) + O\left(\frac{s\xi\log(s\xi)}{n}\right)$$

and (3.1) follows as in Case 2 from

$$s\xi < 2n^{\frac{1}{2}}\gamma.$$

This essentially proves Theorem 2.

One of us, T. K. Sheng, would like to take this opportunity to correct the following misprints in Sheng (1973): on page 244, the last term of (1.4) should read

$$O\left(\frac{vq\log vq}{n}\right) \text{ instead of } O\left(\frac{vp\log vq}{n}\right); \text{ and on page 245, line 10 should read}$$
$$D\left(\frac{p}{q}\right) = \frac{2}{q} \sum_{r=1}^{\lfloor \frac{1}{2}q \rfloor} \left(1 - \frac{2r}{q}\right) \frac{\phi(r)}{r}.$$

[4]

127