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The graph G has star number n if any n vertices of G belong to a subgraph
which is a star . Let f(n, k) be the smallest number m such that the complete
graph on m vertices can be factorized into k factors with star number n . In the
present paper we prove that c,"k < f(n, k) < c2"k .

INTRODUCTION

If G is a graph such that for any set S of n vertices of G there exists a
subgraph H of G which is a star and S C V(H) then G has star number
(st .) n . The set of graphs {F1 , F2 , . . ., FL } is a decomposition of G into the
factors F7 , 1 2 , . . ., Fl, if V(Fj) = V(G) (1 < i < k), E(Fj) n E(F,) _ 0
for all i 71-- j, and Uk1 E(Fj) = E(G) . Letf (n, k) be the smallest number m
such that the complete graph on m vertices can be decomposed into k
factors of st . n . This problem or various specializations of it have so far
been investigated in [1-6] . The best results are

f (2, 2) = 5, f (2, 3) = 12 or 13 ;

6k - 52 < f (2, k) < 6k and various better lower bounds for f (2, k)
if k < 370 [6] ;

becausef (n, k) , f (2, k) (n > 2) we getf (n, k) , 6k - 52 ;f (n, k) <
(nn1)k [5] .
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FACTORIZING THE COMPLETE GRAPH

In the present paper we prove that

2(2)n k < f (n, k) < cn22nk < cl(2 + E) n k.

We observe that the upper bound in (1) is better than the upper bound
in [5] .

The Upper Bound
We will show that if m > en 22nk then the complete graph on m vertices

can be factorized into k factors with st. n using the following

LEMMA . Given n, the edges of a complete bipartite graph with vertex-set
A U B, A = {a,, a 2 , . . ., a„}, B = {bl , b2 , . . ., bv} can be colored with
two colors a, 0 in such a way that for any choice of C C A and D C B,
I C + I D I < n there exists an index t such that a t is joined to all vertices
of D by edges of color a, and b t is joined to all vertices of C by edges of
color P, provided v is large enough ; in fact v > cn22n is sufficient.

In [5] this lemma has been proved with v = (n2n 1) by an elaborate
construction. It is remarkable that we can prove a better result with simple
probabilistic methods .

Proof. Let us color all the edges of the bipartite graph with color (X

with probability 2, and with color P otherwise. Such a coloring is bad,
if it does not satisfy the conditions of the lemma . The probability p of
having a bad coloring satisfies

p< (nv)\ 1 -
(
2) n ) V

(1)

since there would exist an n-tuple in A U B containing C U D that for
no index t would be properly joined to a t and b t . So p < (2v) n e- P/2 ' and

p < 1

	

for 2nvn < ev12°

This means there exists a good coloring if v/2n > n(log v + log 2) : But
for this

v > cn22n

is sufficient, c being a sufficiently large constant .
In order to establish the proposed upper bound for f (n, k) we partition

the m = kv vertices of a complete graph into k parts K, , K2 , . . ., KK with v
vertices each, where v > cn22n. By the choice of v, we have a complete
bipartite graph colored according to the lemma . Denote the vertices of Ki
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by vi,. (r = 1, 2, . . ., v). Now we color the edges of the complete graph on m
vertices with k colors as follows :

(1) All edges between vertices of Ki are colored with color i
(i = 1, 2, . . ., k) .

(2) An edge connecting the vertex vi,, in Ki with the vertex v; s in K;
(i < j) is colored with color i (resp. j) iff the edge between a,, and bs is
colored a (resp . P) .

As in [5], this coloring defines a factorization of the complete graph on
m = kv > cn 2 2nk vertices into k factors with star number n . Indeed :
Given any color i and any n-tuple S of vertices v;,, let C ={a,. ; v;,, e S, j < i}
and D = {b s ; v ; s e S, j > i} . Noting that I C I - I D I < n we apply the
lemma to obtain an index t such that, according to our coloring, v it is joined
to all vertices of both, {v;,. ; v;,. E S, j < i } and {v;, ; v; s e S, j > i } by edges
of color i. That v at is joined to vi,. (vi ,, c S) by an edge of color i is immediate.

The Lower Bound
We want to prove that

12(32),1 k - f (n, k) .

	

(2)

Suppose that the edges of the complete graph on m vertices are colored
with k colors such that st . n holds for all colors . For a proof of (2) we
distinguish 2 cases .

(I) There exist k12 = t among the k colors, say the colors 1, 2, 3, . . ., t,
such that none of the vertices is adjacent with more than 3m edges having
one of the colors 1 or 2 or 3 or . . . or t . If x is a vertex then we denote by

vai•i 2	8(x) the number of edges adjacent to x and having one of the colors
it , 122 , . . ., is . Case I therefore means that v(x) := v1,2,-, .,t(x) < 3m. Using
st . n for the colors 1, 2, . . ., t we evidently have

2 n 1 -< zY, `L(n2)1 < m l 3n t l < m \31 n 1 ǹ ) .

Hence t < m(3)n, i.e . : m > 2(2)n k .

(II) Let vt+Lt+2 JX) = W(X)-

Case II means, then, that there exists a point x l such that v(x l ) > 3m
and a point x2 such that w(x2) > 3m. Denote the set of points which are
connected to xl with edges of one of the colors l, 2, . . ., t by A and the set of
points which are connected to x2 with edges of one of the colors



1 8 3

	

FACTORIZING THE COMPLETE GRAPH

t + 1, t + 2, . . ., k by B . (I A > 3m - 2, 1 B > 3m - 2 and therefore
DAUB-AnBI <3(m-2)).LetS=(AUB-AnB)v{x l}v{x2} .

We will prove that the coloring of the edges in S is such that each factor
has st .(n - 1). Let Yl e Y2 , . . ., y,,-i be any (n - 1)-tupel of points in S
and i some color . Assume without restriction of generality that 1 < i < t .
Consider the n-tupel y l , Y2 , . . ., Yn-i , x2, . There exists some point z which
is connected to all of them with edges of color i . z cannot be a point in
A n B because no point in B is connected to x2 by an edge with color i for
i < t. Hence z c S and connected to all the points y i , y, , . . ., y,,-i with
edges having color i. Which means that the graph of color i with vertex
set S has st .(n - 1) .
Therefore

and

f (n, k) > 2f(n - 1, k) - 1 .

Since f (2, k) > 2k + 1 > 2(2)2 k, we have by induction m > 2(2)n k in
this case also .
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