Factorizing the Complete Graph into Factors with Large Star Number

Paul Erdős, Norbert Sauer, and Jonathan Schaer
Department of Mathematics, University of Calgary, Calgary, Alberta, Canada T2N IN4

AND
Joel Spencer

Massachusetts Institute of Technology, Cambridge, MA 02137
Communicated by W. T. Tutte
Received August 22, 1973

Abstract

The graph G has star number n if any n vertices of G belong to a subgraph which is a star. Let $f(n, k)$ be the smallest number m such that the complete graph on m vertices can be factorized into k factors with star number n. In the present paper we prove that $c_{1}{ }^{n} k \leqslant f(n, k)<c_{2}{ }^{n} k$.

Introduction

If G is a graph such that for any set S of n vertices of G there exists a subgraph H of G which is a star and $S \subset V(H)$ then G has star number (st.) n. The set of graphs $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ is a decomposition of G into the factors $F_{1}, F_{2}, \ldots, F_{k}$ if $V\left(F_{i}\right)=V(G)(1 \leqslant i \leqslant k), E\left(F_{i}\right) \cap E\left(F_{j}\right)=\varnothing$ for all $i \neq j$, and $\bigcup_{i=1}^{k} E\left(F_{i}\right)=E(G)$. Let $f(n, k)$ be the smallest number m such that the complete graph on m vertices can be decomposed into k factors of st. n. This problem or various specializations of it have so far been investigated in [1-6]. The best results are

$$
f(2,2)=5, f(2,3)=12 \text { or } 13
$$

$6 k-52 \leqslant f(2, k) \leqslant 6 k$ and various better lower bounds for $f(2, k)$ if $k \leqslant 370[6]$;
because $f(n, k) \geqslant f(2, k)(n \geqslant 2)$ we get $f(n, k) \geqslant 6 k-52 ; f(n, k) \leqslant$ $\binom{n^{2}+1}{n} k$ [5].

In the present paper we prove that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{3}{2}\right)^{n} k \leqslant f(n, k) \leqslant c n^{2} 2^{n} k<c_{1}(2+\epsilon)^{n} k \tag{1}
\end{equation*}
$$

We observe that the upper bound in (1) is better than the upper bound in [5].

The Upper Bound

We will show that if $m>c n^{2} 2^{n} k$ then the complete graph on m vertices can be factorized into k factors with st. n using the following

Lemma. Given n, the edges of a complete bipartite graph with vertex-set $A \cup B, A=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}, \quad B=\left\{b_{1}, b_{2}, \ldots, b_{v}\right\}$ can be colored with two colors α, β in such a way that for any choice of $C \subset A$ and $D \subset B$, $|C|+|D| \leqslant n$ there exists an index t such that a_{t} is joined to all vertices of D by edges of color α, and b_{t} is joined to all vertices of C by edges of color β, provided ν is large enough; in fact $\nu>c n^{2} 2^{n}$ is sufficient.
In [5] this lemma has been proved with $\nu=\binom{n^{2}+1}{n}$ by an elaborate construction. It is remarkable that we can prove a better result with simple probabilistic methods.

Proof. Let us color all the edges of the bipartite graph with color α with probability $\frac{1}{2}$, and with color β otherwise. Such a coloring is $b a d$, if it does not satisfy the conditions of the lemma. The probability p of having a bad coloring satisfies

$$
p<\binom{2 \nu}{n}\left(1-\left(\frac{1}{2}\right)^{n}\right)^{\nu}
$$

since there would exist an n-tuple in $A \cup B$ containing $C \cup D$ that for no index t would be properly joined to a_{t} and b_{t}. So $p<(2 \nu)^{n} e^{-\nu / 2^{n}}$ and

$$
p<1 \quad \text { for } 2^{n} \nu^{n}<e^{\nu / 2^{n}}
$$

This means there exists a good coloring if $\nu / 2^{n}>n(\log \nu+\log 2)$: But for this

$$
\nu>c n^{2} 2^{n}
$$

is sufficient, c being a sufficiently large constant.
In order to establish the proposed upper bound for $f(n, k)$ we partition the $m=k \nu$ vertices of a complete graph into k parts $K_{1}, K_{2}, \ldots, K_{K}$ with ν vertices each, where $v>c n^{2} 2^{n}$. By the choice of ν, we have a complete bipartite graph colored according to the lemma. Denote the vertices of K_{i}
by $v_{i r}(r=1,2, \ldots, \nu)$. Now we color the edges of the complete graph on m vertices with k colors as follows:
(1) All edges between vertices of K_{i} are colored with color i $(i=1,2, \ldots, k)$.
(2) An edge connecting the vertex $v_{i r}$ in K_{i} with the vertex $v_{j s}$ in K_{j} $(i<j)$ is colored with color i (resp. j) iff the edge between a_{r} and b_{s} is colored α (resp. β).

As in [5], this coloring defines a factorization of the complete graph on $m=k \nu>c n^{2} 2^{n} k$ vertices into k factors with star number n. Indeed: Given any color i and any n-tuple S of vertices $v_{j r}$, let $C=\left\{a_{r} ; v_{j r} \in S, j<i\right\}$ and $D=\left\{b_{s} ; v_{j s} \in S, j>i\right\}$. Noting that $|C|+|D| \leqslant n$ we apply the lemma to obtain an index t such that, according to our coloring, $v_{i t}$ is joined to all vertices of both, $\left\{v_{j r} ; v_{j r} \in S, j<i\right\}$ and $\left\{v_{j s} ; v_{j s} \in S, j>i\right\}$ by edges of color i. That $v_{i t}$ is joined to $v_{i r}\left(v_{i r} \in S\right)$ by an edge of color i is immediate.

The Lower Bound

We want to prove that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{3}{2}\right)^{n} k \leqslant f(n, k) . \tag{2}
\end{equation*}
$$

Suppose that the edges of the complete graph on m vertices are colored with k colors such that st. n holds for all colors. For a proof of (2) we distinguish 2 cases.
(I) There exist $k / 2=t$ among the k colors, say the colors $1,2,3, \ldots, t$, such that none of the vertices is adjacent with more than $\frac{2}{3} m$ edges having one of the colors 1 or 2 or 3 or... or t. If x is a vertex then we denote by $v_{i_{1}, i_{2}, \ldots, i_{s}}(x)$ the number of edges adjacent to x and having one of the colors $i_{1}, i_{2}, \ldots, i_{s}$. Case I therefore means that $v(x):=v_{1,2, \ldots, t}(x)<\frac{2}{3} m$. Using st. n for the colors $1,2, \ldots, t$ we evidently have

$$
\frac{k}{2}\binom{m}{n} \leqslant \sum_{i=1}^{m}\binom{v\left(x_{i}\right)}{n}<m\binom{\frac{2}{3} m}{n}<m\left(\frac{2}{3}\right)^{n}\binom{m}{n} .
$$

Hence $t<m\left(\frac{2}{3}\right)^{n}$, i.e.: $m>\frac{1}{2}\left(\frac{3}{2}\right)^{n} k$.
(II) Let $v_{t+1, t+2, \ldots, k_{k}}(x)=w(x)$.

Case II means, then, that there exists a point x_{1} such that $v\left(x_{1}\right) \geqslant \frac{2}{3} m$ and a point x_{2} such that $w\left(x_{2}\right) \geqslant \frac{2}{3} m$. Denote the set of points which are connected to x_{1} with edges of one of the colors $1,2, \ldots, t$ by A and the set of points which are connected to x_{2} with edges of one of the colors
$t+1, t+2, \ldots, k$ by $B .\left(|A| \geqslant \frac{2}{3} m-2,|B| \geqslant \frac{2}{3} m-2\right.$ and therefore $\left.|A \cup B-A \cap B| \leqslant \frac{2}{3}(m-2)\right)$. Let $S=(A \cup B-A \cap B) \cup\left\{x_{1}\right\} \cup\left\{x_{2}\right\}$.

We will prove that the coloring of the edges in S is such that each factor has st. $(n-1)$. Let $y_{1}, y_{2}, \ldots, y_{n-1}$ be any $(n-1)$-tupel of points in S and i some color. Assume without restriction of generality that $1 \leqslant i \leqslant t$. Consider the n-tupel $y_{1}, y_{2}, \ldots, y_{n-1}, x_{2}$. There exists some point z which is connected to all of them with edges of color $i . z$ cannot be a point in $A \cap B$ because no point in B is connected to x_{2} by an edge with color i for $i \leqslant t$. Hence $z \in S$ and connected to all the points $y_{1}, y_{2}, \ldots, y_{n-1}$ with edges having color i. Which means that the graph of color i with vertex set S has st. $(n-1)$.

Therefore

$$
f(n-1, k) \leqslant|S| \leqslant \frac{2}{3}(m-2)+2
$$

and

$$
f(n, k) \geqslant \frac{3}{2} f(n-1, k)-1 .
$$

Since $f(2, k) \geqslant 2 k+1>\frac{1}{2}\left(\frac{3}{2}\right)^{2} k$, we have by induction $m \geqslant \frac{1}{2}\left(\frac{3}{2}\right)^{n} k$ in this case also.

References

1. J. Bosák, P. Erdös, and A. Rosa, Decompositions of complete graphs into factors with diameter two, Mat. Casopis Sloven. Akad. Vied. 21 (1971), 14-28.
2. J. Bosák, A. Rosa, and Š. Znám, On decompositions of complete graphs into factors with given diameters, in "Theory of Graphs," Proc. Colloq., Tihany, Hungary, 1966, Akadémiai Kiadó, Budapest, 1968, pp. 37-56.
3. P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17-61.
4. N. Sauer, On the factorization of the complete graph into factors with diameter 2, J. Combinatorial Theory 9 (1970), 423-426.
5. N. Sauer and J. Schaer, On the factorization of the complete graph, J. Combinatorial Theory 14 (1973), 1-6.
6. Juraj Bosík, Disjoint factors of diameter 2 in complete graphs, to be published.
