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INTRODUCTION

A well known theorem of G. A. Miller [4] (see also [2]) shows that a p-group
of order p" where n > v(v - 1)/2 contains an Abelian subgroup of order p° .
It is clear that this theorem together with Sylow's Theorem implies that any
finite group of large order contains an Abelian p-group of large order .
In this note we use simple number theoretic considerations to make this
implication more precise . In Section 1 we show that a group of finite order n
contains an Abelian p-group whose order is greater than log n - o(log n).
We also give arguments to indicate that the correct answer is probably
considerably larger .

In the opposite direction it is now known as a result of the work of Adjan
and Novikov [1] that Burnside groups with more than one generator whose
degree is, say, a sufficiently large prime contain no noncyclic finite or Abelian
subgroups . Thus no analogous results about large Abelian subgroups hold
for infinite groups .
About the upper bounds on the orders of Abelian subgroups of finite

groups, it was shown by J . L. Alperin that there exist p-groups of order
p3n+2 without Abelian subgroups of order greater than pn +2 . The symmetric
group S3, contains no Abelian subgroup of order greater than 3" < N`l log log N

where N = (3n)! = IS3 .1 . Thus for any a > 0 there are finite groups G whose
largest Abelian subgroup has order o(IGIE)

In Section 2 we obtain lower bounds for the number of (ordered) k-tuples
of elements of a group G which have pairwise commuting elements . For
k = 2 this question was answered by Erdös and Turan [3] . And the general
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question was raised by Linnik at a conference in Balaton-Füred 1969 . As in
that paper, the answer is intimately related to the number c(G) of conjugacy
classes of G. The growth rate of

c(n) = min c(G)
n-<IGI <co

is very imperfectly understood . The best general result is still ithe one of
Landau [3]

c(n) > log, log, n .

The correct growth rate of c(n) is probably much larger. Perhaps c(n!) = p(n),
the number of partitions of n, which is the value attained for the symmetric
group Sn. Any improvement on the estimate of c(n) would give corresponding
improvements of the estimates in Section 2 .

1 . LOWER BOUNDS FOR THE ORDER OF ABELIAN p-GROUPS
IN A GROUP OF ORDER n

Assume that G is a group of order n and every Abelian p-group A < G has
order I A I < f(n) then by Miller's theorem it follows that for every primary
divisor p° of n we have p < f(n) and, ifp < Vf(n), then

p-,/2v-~ <
f(n), or v < I(loggof (n)

+ 2)z <
(log

f(n))
2

.
gP

	

gp

Thus for

n = F1 p
Pi-<f(11)

we have

log n =

	

vi log pi <

	

log pi + log z f (n)	 1 	<
Pi-<P11)

	

Pj-<f(n)

	

P+< Jf(n)
1Og pi

f (n) + off(n))
we have thus proved
THEOREM 1 .1 . A group G of order n contains an Abelian p-group, A, with

JAI > log n-o(log n) .

	

(1 .2)

The lower bound in Theorem 1 .1 could only be approximated under very
unlikely circumstances. Say we assume that I A I < (1 + 6) log n for all
Abelian subgroups A < G where IGI = n . Then we have seen that n must be
nearly the product of all primes < log n with the omission of a small number
of primes and the inclusion of some primes p, log n < p < (1 + 6) log n
and higher powers of some primes < ~/(1 + b) log n . For each prime p
p >, (1 + 6)/2 log n which divides n. The Sylow p-group, SP , must be self-
centralizing for otherwise there would be a cyclic subgroup of order pq > 2p

(1 + 6) log n .
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Thus the normalizes N(SP) must have order pd, where dp I (p - 1) and the
number of conjugate Sylow p-groups is

n
pd p

	

p).
P

In other words, for each p > (1 + 6)/2 log n which divides n we have

np d
p(mod p) (1.3)

where dp is a divisor ofp - 1 . Similar results could be obtained for primes
p >, (1 + 8)/3 log n etc. Since the number of conjugacy classes of elements
of order p is (p - 1)ld, most of the values dp in (1 .3) must be "large" divisors
(> cp/log p) of p - 1 . In any case the existence of large n which satisfy a
large system of simultaneous congruences (1 .3) appears improbable .

2 . ON THE NUMBER OF COMMUTING k-TUPLES IN A
GROUP OF ORDER n

In this section we wish to obtain inequalities for the numbers A,(n) of
ordered k-tuples (a l , a 2i . . ., ak) of elements ai in a group G of order n so
that a i aj = aja i for all 1 < i, j < k. For k = 2 Erdös and Turan [3]
proved the following .
THEOREM 2.1 The number of commuting pairs (al, a2 ) of elements of a group
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G is

A2(G) = IGl c(G)

	

(2.2)

where c(G) is the number of conjugacy classes ofG . Since c(G) goes to infinity
with JGJ it follows from (2 .2) that, for example

A2(n) > n log e log e n .

	

(2.3)

For the sake of completeness we include the simple proof .
Each a e G commutes with the elements of its centralizer Z(a) . So the

number of commuting ordered pairs (a, b) is JZ(a)J . This number clearly
remains unchanged if a is replaced by a conjugate element. Thus the number
of commuting ordered pairs (a', b') with a' - a is JC(a)I 1Z(a)I = JGJ, where
C(a) is the conjugacy class of a . Summing over the c(G) conjugacy classes
gives us JGJc(G) commuting ordered pairs .

We now first consider the number of A3(G) of commuting triples in G and
wish to show that for large IG) that number is large compared to A2(G) .
For this purpose we observe that the number of conjugacy classes whose
elements have centralizers of order < Ic(G) is certainly itself less than
Zc(G) since each such class contains more than 21GI/c(G) elements .
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Restricting attention to those a e G with IZ(a)I >, Zc(G) we see that each
such a belongs to IZ(a)I c(Z(a)) ordered commuting triples (a, b, c) since
(b, c) can be any of the IZ(a)I c(Z(a)) commuting pairs in Z(a) .

Thus the number of ordered commuting triples (a', b, c) with a' - a is

I C(a)l I Z(a)I c(Z(a)) = IGI c(Z(a)) .
Summing over the conjugacy classes with centralizers of order >,I c(G) we
get at least

z I GIc(G)c(Z(a)) > C2A2(G) log log c(G)
ordered commuting triples .
THEOREM 2.4 Let c(n) denote the minimal number of conjugacy classes in a
group of order > n. Then the number of commuting ordered triples of elements
of G is

AAG) > iI GIc(G)c(2c(G)) .
We can now iterate this process to obtain lower bounds for ordered

commuting k-tuples of elements of a group G .
THEOREM 2.5 Let cl(n) be defined by c l(n) = c(n) and C1+1(n) = c(Zcl(n)) .
Then the number of commuting ordered k-tuples in a group G satisfies

Ak(G) >
2'1 2IGic(G)C2(IGI) . . . Ck_,(IGI)

	

(2.6)

for all sufficiently large IGI. In particular if Ak(n) is the minimal number of
commuting ordered k-tuples in any group of order >n we have

Ak(n) > 2kl2nc l (n)C 2 (n) . . . ck _ 1 (n) .

	

(2.7)

Further we have

Ak(G)lAk-1(G) -+ oo as IGI --> oo .

	

(2.8)
Proof By induction on k . We already know (2.6) for k = 2. Now assume

that (2.6) holds for k and that IGI is so large that it holds for all groups of
order > I2

	

2c(G) . Then each a with centralizer Z(a) of order IZ(a)I > Ic(G) is
the first element of Ak(Z(a)) commuting ordered (k+1)-tuples . The same
holds for all the conjugates of a and hence the number of commuting ordered
(k+1)-tuples whose first element is conjugate to a is

IC(a)I Ak(Z(a)) % IC(a)1 2k12 IZ(a)Ic(Z(a)) . . . ck-,(IZ(a)D

	

(2.9)

2k12IGIC2(IGI) . . . Ck(IGI) .

Summing (2.9) over those conjugacy classes whose elements have centra-
lizers of order > Ic(G) we get
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Ak+1(G) > 2k-1 JGjc(G)c2(jGI) . . . ck (IGI).

	

(2.10)

To prove (2.8) we again proceed by induction on k . From Theorem 2 .4
we know that A3(G)IA2(G) oo as IGI -* oo . Now assume that for each
M > 0 there is an N(M) so that for all IGI > Nwe have Ak+,(G)lAk(G) > M.
Now pick IGI so large that c(G) > N(2M)k and write

Ak+2(G) _	IC(a)IAk+i(Z(a))

	

(211)
Ak+1(G)

	

E IC(a)IAk(Z(a))
where the summation extends over the conjugacy classes of G . There are at
most c(G)1/k conjugacy classes C(a) for which IZ(a)I < N(2M) . Thus we get

Ak+2(G) >

	

Y_

	

I C(a)I Ak+1(Z(a))
I Z(a) I > N(2M)

> 2M

	

Y

	

I C(a)1 Ak(Z(a))
j Z(a) j>_N(2M)

= 2M(Ak+1(G) -

	

IC(a)IAk(Z(a)I Z(a) I < C(G)1 /k

•

	

2M(Ak+1(G) - I I C(a)lc(G))I Z(a) j < c(G)1 /k

•

	

2M(Ak+1(G) - A2(G))

•

	

MAk+1(G) •

3 . COMMENTS AND PROBLEMS

A companion question to the one discussed in Section 2 would be the
consideration of a maximal set {a l , . . ., ak} of elements in a group G so that
no two elements commute . The dihedral group Da of order 2n gives an
example for the existence of groups where k is more than half the order of the
group .

QUESTION 3.1 * Is it true that in a group G oforder n there are at most [n/2] + 1
elements no two of which commute?

A companion question to 3.1 would be that of covering a group by sub-
groups. Clearly the answer to Question 3 .1 deals with a lower bound .
QUESTION 3.2 Can a group G or order n be expressed as the union of no more
than [n/2] + 1 Abelian subgroups?
M. Isaacs has shown that there exist relations between the maximal

number, M, of elements in a group G no two of which commute and the
minimal covering, m, of a group by Abelian subgroups . He found inequalities
of the form m < (M!)2 and exhibited finite groups for which m > 2Mi2 .

* Added in proof: This question was answered in the affirmative by David R . Mason.



31 2

	

P . ERDŐS AND E. G. STRAUS

References
[1] S . Adjan and P . S . Novikov, Infinite periodic groups 1, 11, III, Izv. Akad. Nauk SSR Ser.

Mat. 32 (1968), 212-244, 251-524, 709-731 .
[2] W. Burnside, On some properties of groups whose orders are powers of primes, Proc.

London Math . Soc . 11 (1913), 225-245.
[3] P . Erdős and P. Turan, On some problems of a statistical group-theory IV, Acta Math .

Hungaricae, 19 (1968), 413-435 .
[4] G . A. Miller, H . F . Blichfeldt and L. E . Dickson, Theory and Applications of Finite

Groups, Dover (1961), p. 120.


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

