MAXIMAL ASYMPTOTIC NONBASES

PAUL ERDÖS AND MELVYN B. NATHANSON

ABSTRACT. Let A be a set of nonnegative integers. If all but a finite number of positive integers can be written as a sum of h elements of A, then A is an asymptotic basis of order h. Otherwise, A is an asymptotic nonbasis of order h. A class of maximal asymptotic nonbases is constructed, and it is proved that any asymptotic nonbasis of order 2 that satisfies a certain finiteness condition is a subset of a maximal asymptotic nonbasis of order 2.

Let A be a set of nonnegative integers containing 0. The h-fold sum of A, denoted hA, is the set of all sums of h not necessarily distinct elements of A. If hA contains all but a finite number of positive integers, then A is an asymptotic basis of order h. The set A is a minimal asymptotic basis of order h if A is an asymptotic basis of order h, but $A \setminus \{a\}$ is not an asymptotic basis of order h for every $a \in A$. Examples of minimal asymptotic bases were constructed in [1], and also an example of an asymptotic basis which contains no subset that is a minimal asymptotic basis.

The set A is an asymptotic nonbasis of order h if A is not an asymptotic basis of order h. If A is an asymptotic nonbasis of order h, but $A \cup \{a\}$ is an asymptotic basis of order h for every nonnegative integer $a \notin A$, then A is a maximal asymptotic nonbasis of order h. Maximal asymptotic nonbases were constructed in [1] by taking finite unions of the nonnegative parts of congruence classes. In this paper we construct a new class of maximal asymptotic nonbasis of order 2 that satisfies a certain finiteness condition is a subset of a maximal asymptotic nonbasis of order 2. We do not know whether every asymptotic nonbasis is a subset of a maximal asymptotic nonbasis, nor whether there exist maximal asymptotic nonbases with zero density.

Let [a, b] denote the set of integers n such that $a \le n \le b$.

Key words and phrases. Addition of sequences, sum sets, asymptotic bases, asymptotic nonbases, maximal nonbases.

Copyright @1975. American Mathematical Society

Received by the editors February 4, 1974.

AMS (MOS) subject classifications (1970). Primary 10L05, 10L10, 10J99.

Theorem 1. Let $h \ge 2$, and let $n_1 < n_2 < \cdots$ be an increasing sequence of positive integers such that $h^2n_1 + 2h \le n_{n+1}$. Let

$$A = [0, n_1] \cup \bigcup_{t=1}^{\infty} [bn_t + 2, n_{t+1}].$$

Then there exists a maximal asymptotic nonbasis A^* of order h such that $A \subset A^*$ and $hA = hA^*$.

Proof. We shall construct an increasing sequence $A = A_0 \subset A_1 \subset A_2 \subset \cdots$ of asymptotic nonbases of order h and two increasing sequences of positive integers $m_1 < m_2 < \cdots$ and $q_1 < q_2 < \cdots$ such that

(i) $m_1 < m_2 < \cdots < m_k$ are the k smallest integers not in A_k ;

- (ii) $A_k \cup \{m_k\}$ is an asymptotic basis of order h;
- (iii) $hA_k = hA$ for all k; and
- (iv) $q_i \notin (h-1)A_k$ for all $j \in [1, k]$.

Let $A^* = \bigcup_{k=0}^{\infty} A_k$. Clearly, $hA \subset hA^*$, since $A = A_0 \subset A^*$. If $n \in hA^*$, then $n \in hA_k$ for some k, and so $n \in hA$ by (iii). Therefore, $hA^* = hA$, and A^* is an asymptotic nonbasis of order h. Let $m \notin A^*$. Then $m \leq m_k$ for some k, and $m \notin A_k$. It follows from (i) that $m = m_j$ for some $j \in [1, k]$, and from (ii) that $A^* \cup \{m\}$ is an asymptotic basis of order h. Therefore, A^* is a maximal asymptotic nonbasis of order h such that $hA = hA^*$.

We construct the sequences $\{A_k\}$, $\{m_k\}$, and $\{q_k\}$ inductively. Clearly, *hA* consists of all nonnegative integers except those of the form $hn_t + 1$. Let m_1 be the largest positive integer such that $(h - 1)(A \cup [0, m_1 - 1]) = (h - 1)A$. Then $(h - 1)A \subsetneq (h - 1)(A \cup [0, m_1])$. Let $A'_1 = A \cup [0, m_1 - 1]$, and choose an integer q_1 in

$$(b-1)(A'_1 \cup \{m_1\}) \setminus (b-1)A'_1 = (b-1)(A \cup [0, m_1]) \setminus (b-1)A.$$

Let

$$B_1 = \{bn_t + 1 - q_1 | bn_t + 1 - q_1 > \max(n_t, m_1, q_1)\}$$

and let $A_1 = A'_1 \cup B_1$. Since $[0, m_1 - 1] \subset A'_1 \subset A_1$ and $m_1 \notin B_1$, it follows that m_1 is the smallest positive integer not in A_1 . If $hn_1 + 1 \in hA_1$, then $hn_t + 1$ is the sum of h elements of A_1 , and at least one of these summands must be in the interval $[n_t + 1, hn_t + 1]$. But there is at most one element of A_1 in this interval, namely, $hn_t + 1 - q_1$, hence $hn_t + 1 - q_1$ must be one of the h summands of $hn_t + 1$. Then the sum of the h - 1 remaining summands must be q_1 . Since all elements of B_1 are greater than q_1 , these summands are all elements of A'_1 . But $q_1 \notin (h - 1)A'_1$. Therefore, $hn_t + 1 \notin hA_1$, and so $hA = hA_1$. But

$$q_1 \in (b-1)(A'_1 \cup \{m_1\}) \subset (b-1)(A_1 \cup \{m_1\}),$$

and so $A_1 \cup \{m_1\}$ is an asymptotic basis of order *h*. Therefore, the integers m_1 and q_1 and the asymptotic nonbasis A_1 satisfy conditions (i)-(iv).

Now suppose that integers $m_1 < \cdots < m_{k-1}$ and $q_1 < \cdots < q_{k-1}$ and asymptotic nonbases $A = A_0 \subset A_1 \subset \cdots \subset A_{k-1}$ satisfy conditions (i)-(iv). If $(h-1)(A_{k-1} \cup \{m_{k-1}+1\}) \neq (h-1)A_{k-1}$, let $m_k = m_{k-1} + 1$. Otherwise, let m_k be the largest integer such that $m_k > m_{k-1}$ and

$$(b-1)(A_{k-1} \cup [m_{k-1}+1, m_k-1]) = (b-1)A_{k-1}$$

Let $A'_{k} = A_{k-1} \cup [m_{k-1} + 1, m_{k} - 1]$. Then $(h-1)A_{k-1} = (h-1)A'_{k} \subseteq (h-1)(A'_{k} \cup \{m_{k}\})$. Choose an integer q_{k} in $(h-1)(A'_{k} \cup \{m_{k}\}) \setminus (h-1)A'_{k}$, and let

$$B_{k} = \{bn_{t} + 1 - q_{k} | bn_{t} - q_{k} > \max(n_{t}, m_{k}, q_{1}, \cdots, q_{k})\}.$$

Now let $A_k = A'_k \cup B_k$. Since $A_k \setminus A_{k-1}$ consists of integers all greater than m_{k-1} , and since $[m_{k-1} + 1, m_k - 1] \subset A'_k \subset A_k$, it follows that $m_1 < \cdots < m_{k-1} < m_k$ are the k smallest integers not in A_k . If $hn_t + 1 \in hA_k$, then $hn_t + 1$ is the sum of h elements of A_k , at least one of which must be in the interval $[n_t + 1, hn_t + 1]$. But the only such elements of A_k are of the form $hn_t + 1 - q_j$ for $j \in [1, k]$. Since the elements of B_k are all larger than every q_j , it follows that $q_j \in (h - 1)A'_k$ for some $j \in [1, k]$. But $q_k \notin (h - 1)A'_k$, and, since $(h - 1)A'_k = (h - 1)A_{k-1}$, also $q_j \notin (h - 1)A'_k$ for $j \in [1, k - 1]$. Therefore, $hn_t + 1 \notin hA_k$, and so $hA_k = hA$. But $q_k \in (h - 1)(A'_k \cup \{m_k\}) \subset (h - 1)(A_k \cup \{m_k\})$, and so $A_k \cup \{m_k\}$ is an asymptotic basis of order h. Thus, the integers m_k and q_k and the set A_k satisfy conditions (i)-(iv). This completes the induction.

Remark. Since A contains arbitrarily long sequences of consecutive integers, and $A \subset A^*$, the maximal asymptotic nonbasis A^* is not a finite union of the nonnegative parts of congruence classes.

Theorem 2. Let A be an asymptotic nonbasis of order h such that $A \cup F$ is an asymptotic nonbasis of order h for any finite set F of nonnegative integers. Then $A \subset A^*$, where A^* is an asymptotic nonbasis of order h such that, for every integer $x \notin (h-1)A^*$, the set $A^* \cup \{x\}$ is an asymptotic basis of order h.

Proof. We shall construct a sequence $A = A_0 \subset A_1 \subset A_2 \subset \cdots$ of asymptotic nonbases of order h, and an increasing sequence of positive integers $n_1 < n_2 < \cdots$ such that

(i) $A_k \setminus A_{k-1}$ is a finite set of positive integers all larger than n_{k-1} ;

(ii) $n_1 < n_2 < \cdots < n_k$ are the k smallest integers not in hA_k ; and

(iii) if $0 < x < n_k/2$ and $x \notin (h-1)A_k$, then $n_k - x \in A_k$.

Let $A^* = \bigcup_{k=0}^{\infty} A_k$. By (i) and (ii), the set hA^* does not contain the numbers n_1, n_2, \cdots , and so A^* is an asymptotic nonbasis of order h. If $x \notin (h-1)A^*$, then $x \notin (h-1)A_k$ for all k. Choose $n_k > 2x$. Then $n_k - x \in A_k \subset A^*$ by (iii), and so $n_k \in 2(A^* \cup \{x\}) \subset h(A^* \cup \{x\})$, since $0 \in A \subset A^*$. Therefore, $A^* \cup \{x\}$ is an asymptotic basis of order h for every positive integer $x \notin (h-1)A^*$.

We construct the sequences $\{A_k\}$ and $\{n_k\}$ inductively. Suppose that integers $n_1 < \cdots < n_{k-1}$ and asymptotic nonbases $A = A_0 \subset A_1 \subset \cdots \subset A_{k-1}$ satisfy conditions (i)-(iii). Let $A'_k = A_{k-1} \cup [n_{k-1} + 1, 2n_{k-1}]$. By (i), $A'_k \setminus A$ is finite, and so the set A'_k is an asymptotic nonbasis of order h. Let n_k be the smallest integer such that $n_k > n_{k-1}$ and $n_k \notin hA'_k$. Then $n_k > 2n_{k-1}$. Let F_k be a maximal subset of the interval $[n_k/2, n_k]$ such that $n_k \notin h(A'_k \cup F_k)$. Let $A_k = A'_k \cup F_k$. Clearly, the set A_k satisfies conditions (i) and (ii). If $0 < x < n_k/2$ and $x \notin (h-1)A_k$, then $n_k - x \in [n_k/2, n_k]$, and so $F_k \cup \{n_k - x\} \subset [n_k/2, n_k]$ and $n_k \notin h(A'_k \cup F_k \cup \{n_k - x\})$. It follows from the maximality of F_k that $n_k - x \in F_k \subset A_k$. Therefore, A_k satisfies condition (iii), and the induction is complete.

Corollary. Let A be an asymptotic nonbasis of order 2 such that $A \cup F$ is an asymptotic nonbasis of order 2 for every finite set F of nonnegative integers. Then A is a subset of a maximal asymptotic nonbasis of order 2.

Remark. The Corollary suggests the following problem. If A is an asymptotic basis of order 2 such that $A \setminus F$ is also an asymptotic basis of order 2 for every finite subset F of A, then does A contain a subset that is a minimal asymptotic basis of order 2?

REFERENCE

1. Melvyn B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY (Current address of Paul Erdös)

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address (M. B. Nathanson): School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540