MAXIMAL ASYMPTOTIC NONBASES

PAUL ERDÖS AND MELVYN B. NATHANSON

Abstract

Let A be a set of nonnegative integers. If all but a finite number of positive integers can be written as a sum of h elements of A, then A is an asymptotic basis of order h. Otherwise, A is an asymptotic nonbasis of order h. A class of maximal asymptotic nonbases is constructed, and it is proved that any asymptotic nonbasis of order 2 that satisfies a certain finiteness condition is a subset of a maximal asymptotic nonbasis of order 2.

Let A be a set of nonnegative integers containing 0 . The h-fold sum of A, denoted $h A$, is the set of all sums of h not necessarily distinct elements of A. If $h A$ contains all but a finite number of positive integers, then A is an asymptotic basis of order h. The set A is a minimal asymptotic basis of order h if A is an asymptotic basis of order h, but $A \backslash\{a\}$ is not an asymptotic basis of order b for every $a \in A$. Examples of minimal asymptotic bases were constructed in [1], and also an example of an asymptotic basis which contains no subset that is a minimal asymptotic basis.

The set A is an asymptotic nonbasis of order h if A is not an asymptotic basis of order h. If A is an asymptotic nonbasis of order h, but $A \cup\{a\}$. is an asymptotic basis of order h for every nonnegative integer $a \notin A$, then A is a maximal asymptotic nonbasis of order h. Maximal asymptotic nonbases were constructed in [1] by taking finite unions of the nonnegative parts of congruence classes. In this paper we construct a new class of maximal asymptotic nonbases that are not unions of congruence classes, and we prove that every asymptotic nonbasis of order 2 that satisfies a certain finiteness condition is a subset of a maximal asymptotic nonbasis of order 2 . We do not know whether every asymptotic nonbasis is a subset of a maximal asymptotic nonbasis, nor whether there exist maximal asymptotic nonbases with zero density.

Let $[a, b]$ denote the set of integers n such that $a \leq n \leq b$.

[^0]Theorem 1. Let $h \geq 2$, and let $n_{1}<n_{2}<\cdots$ be an increasing sequence of positive integers such that $h^{2} n_{t}+2 b \leq n_{t+1}$. Let

$$
A=\left[0, n_{1}\right] \cdot \cup \bigcup_{t=1}^{\infty}\left[b n_{t}+2, n_{t+1}\right] .
$$

Then there exists a maximal asymptotic nonbasis A^{*} of order h such that $A \subset A^{*}$ and $h A=h A^{*}$.

Proof. We shall construct an increasing sequence $A=A_{0} \subset A_{1} \subset A_{2} \subset \ldots$ of asymptotic nonbases of order h and two increasing sequences of positive integers $m_{1}<m_{2}<\cdots$ and $q_{1}<q_{2}<\ldots$ such that
(i) $m_{1}<m_{2}<\cdots<m_{k}$ are the k smallest integers not in A_{k};
(ii) $A_{k} \cup\left\{m_{k}\right\}$ is an asymptotic basis of order h;
(iii) $h A_{k}=h A$ for all k; and
(iv) $q_{j} \notin(h-1) A_{k}$ for all $j \in[1, k]$.

Let $A^{*}=\bigcup_{k=0}^{\infty} A_{k}$. Clearly, $h A \subset h A^{*}$, since $A=A_{0} \subset A^{*}$. If $n \in h A^{*}$, then $n \in h A_{k}$ for some k, and so $n \in h A$ by (iii). Therefore, $h A^{*}=h A$, and A^{*} is an asymptotic nonbasis of order h. Let $m \notin A^{*}$. Then $m \leq m_{k}$ for some k, and $m \notin A_{k}$. It follows from (i) that $m=m_{j}$ for some $j \in[1, k]$, and from (ii) that $A^{*} \cup\{m\}$ is an asymptotic basis of order h. Therefore, A^{*} is a maximal asymptotic nonbasis of order h such that $h A=h A^{*}$.

We construct the sequences $\left\{A_{k}\right\},\left\{m_{k}\right\}$, and $\left\{q_{k}\right\}$ inductively. Clearly, $h A$ consists of all nonnegative integers except those of the form $h n_{t}+1$. Let m_{1} be the largest positive integer such that $(h-1)\left(A \cup\left[0, m_{1}-1\right]\right)=(h-1) A$. Then $(h-1) A \subsetneq(h-1)\left(A \cup\left[0, m_{1}\right]\right)$. Let $A_{1}^{\prime}=A \cup\left[0, m_{1}-1\right]$, and choose an integer q_{1} in

$$
(b-1)\left(A_{1}^{\prime} \cup\left\{m_{1}\right\}\right) \backslash(b-1) A_{1}^{\prime}=(b-1)\left(A \cup\left[0, m_{1}\right]\right) \backslash(b-1) A .
$$

Let

$$
B_{1}=\left\{b n_{t}+1-q_{1} \mid b n_{t}+1-q_{1}>\max \left(n_{t^{\prime}} m_{1}, q_{1}\right)\right\}
$$

and let $A_{1}=A_{1}^{\prime} \cup B_{1}$. Since $\left[0, m_{1}-1\right] \subset A_{1}^{\prime} \subset A_{1}$ and $m_{1} \notin B_{1}$, it follows that m_{1} is the smallest positive integer not in A_{1}. If $h n_{t}+1 \in h A_{1}$, then $b n_{t}+1$ is the sum of h elements of A_{1}, and at least one of these summands must be in the interval $\left[n_{t}+1, h n_{t}+1\right]$. But there is at most one element of A_{1} in this interval, namely, $h n_{t}+1-q_{1}$, hence $h n_{t}+1-q_{1}$ must be one of the b summands of $h n_{t}+1$. Then the sum of the $h-1$ remaining summands must be q_{1}. Since all elements of B_{1} are greater than q_{1}, these summands are all elements of A_{1}^{\prime}. But $q_{1} \notin(h-1) A_{1}^{\prime}$. Therefore, $h n_{t}+1 \notin h A_{1}$, and so $h A=h A_{1}$. But

$$
q_{1} \in(b-1)\left(A_{1}^{\prime} \cup\left\{m_{1}\right\}\right) \subset(b-1)\left(A_{1} \cup\left\{m_{1}\right\}\right)
$$

and so $A_{1} \cup\left\{m_{1}\right\}$ is an asymptotic basis of order b. Therefore, the integers m_{1} and q_{1} and the asymptotic nonbasis A_{1} satisfy conditions (i)-(iv).

Now suppose that integers $m_{1}<\cdots<m_{k-1}$ and $q_{1}<\cdots<q_{k-1}$ and asymptotic nonbases $A=A_{0} \subset A_{1} \subset \cdots \subset A_{k-1}$ satisfy conditions (i)-(iv). If $(h-1)\left(A_{k-1} \cup\left\{m_{k-1}+1\right\}\right) \neq(h-1) A_{k-1}$, let $m_{k}=m_{k-1}+1$. Otherwise, let m_{k} be the largest integer such that $m_{k}>m_{k-1}$ and

$$
(b-1)\left(A_{k-1} \cup\left[m_{k-1}+1, m_{k}-1\right]\right)=(b-1) A_{k-1} .
$$

Let $A_{k}^{\prime}=A_{k-1} \cup\left[m_{k-1}+1, m_{k}-1\right]$. Then $(h-1) A_{k-1}=(h-1) A_{k}^{\prime} \varsubsetneqq$ $(h-1)\left(A_{k}^{\prime} \cup\left\{m_{k}\right\}\right)$. Choose an integer q_{k} in $(h-1)\left(A_{k}^{\prime} \cup\left\{m_{k}\right\}\right) \backslash(h-1) A_{k}^{\prime}$, and let

$$
B_{k}=\left\{b n_{t}+1-q_{k} \mid b n_{t}-q_{k}>\max \left(n_{t^{\prime}} m_{k^{\prime}}, q_{1}, \cdots, q_{k}\right)\right\} .
$$

Now let $A_{k}=A_{k}^{\prime} \cup B_{k}$. Since $A_{k} \backslash A_{k-1}$ consists of integers all greater than m_{k-1}, and since $\left[m_{k-1}+1, m_{k}-1\right] \subset A_{k}^{\prime} \subset A_{k}$, it follows that $m_{1}<\cdots$ $<m_{k-1}<m_{k}$ are the k smallest integers not in A_{k}. If $h n_{t}+1 \in h A_{k}$, then $h n_{t}+1$ is the sum of h elements of A_{k}, at least one of which must be in the interval $\left[n_{t}+1, h n_{t}+1\right]$. But the only such elements of A_{k} are of the form $h n_{t}+1-q_{j}$ for $j \in[1, k]$. Since the elements of B_{k} are all larger than every q_{j}, it follows that $q_{j} \in(b-1) A_{k}^{\prime}$ for some $j \in[1, k]$. But $q_{k} \notin(b-1) A_{k}^{\prime}$, and, since $(h-1) A_{k}^{\prime}=(h-1) A_{k-1}$, also $q_{j} \notin(h-1) A_{k}^{\prime}$ for $j \in[1, k-1]$. Therefore, $h n_{t}+1 \notin h A_{k}$, and so $h A_{k}=h A$. But $q_{k} \in(h-1)\left(A_{k}^{\prime} \cup\left\{m_{k}\right\}\right) \subset$ $(h-1)\left(A_{k} \cup\left\{m_{k}\right\}\right)$, and so $A_{k} \cup\left\{m_{k}\right\}$ is an asymptotic basis of order h. Thus, the integers m_{k} and q_{k} and the set A_{k} satisfy conditions (i)-(iv). This completes the induction.

Remark. Since A contains arbitrarily long sequences of consecutive integers, and $A \subset A^{*}$, the maximal asymptotic nonbasis A^{*} is not a finite union of the nonnegative parts of congruence classes.

Theorem 2. Let A be an asymptotic nonbasis of order b such that $A \cup F$ is an asymptotic nonbasis of order h for any finite set F of nonnegative integers. Then $A \subset A^{*}$, where A^{*} is an asymptotic nonbasis of order h such that, for every integer $x \notin(h-1) A^{*}$, the set $A^{*} \cup\{x\}$ is an asymptotic basis of order h.

Proof. We shall construct a sequence $A=A_{0} \subset A_{1} \subset A_{2} \subset \cdots$ of asymptotic nonbases of order h, and an increasing sequence of positive integers $n_{1}<n_{2}<\cdots$ such that
(i) $A_{k} \backslash A_{k-1}$ is a finite set of positive integers all larger than n_{k-1};
(ii) $n_{1}<n_{2}<\cdots<n_{k}$ are the k smallest integers not in $b A_{k}$; and
(iii) if $0<x<n_{k} / 2$ and $x \notin(b-1) A_{k}$, then $n_{k}-x \in A_{k}$.

Let $A^{*}=\bigcup_{k=0}^{\infty} A_{k}$. By (i) and (ii), the set $h A^{*}$ does not contain the numbers n_{1}, n_{2}, \cdots, and so A^{*} is an asymptotic nonbasis of order b. If $x \notin(b-1) A^{*}$, then $x \notin(h-1) A_{k}$ for all k. Choose $n_{k}>2 x$. Then $n_{k}-x \in A_{k} \subset A^{*}$ by (iii), and so $n_{k} \in 2\left(A^{*} \cup\{x\}\right) \subset h\left(A^{*} \cup\{x\}\right)$, since $0 \in A \subset A^{*}$. Therefore, $A^{*} \cup\{x\}$ is an asymptotic basis of order h for every positive integer $x \notin$ $(h-1) A^{*}$.

We construct the sequences $\left\{A_{k}\right\}$ and $\left\{n_{k}\right\}$ inductively. Suppose that integers $n_{1}<\cdots<n_{k-1}$ and asymptotic nonbases $A=A_{0} \subset A_{1} \subset \cdots \subset A_{k-1}$ satisfy conditions (i)-(iii). Let $A_{k}^{\prime}=A_{k-1} \cup\left[n_{k-1}+1,2 n_{k-1}\right]$. By (i), $A_{k}^{\prime} \backslash A$ is finite, and so the set A_{k}^{\prime} is an asymptotic nonbasis of order b. Let n_{k} be the smallest integer such that $n_{k}>n_{k-1}$ and $n_{k} \notin h A_{k}^{\prime}$. Then $n_{k}>$ $2 n_{k-1}$. Let F_{k} be a maximal subset of the interval $\left[n_{k} / 2, n_{k}\right]$ such that $n_{k} \notin h\left(A_{k}^{\prime} \cup F_{k}\right)$. Let $A_{k}=A_{k}^{\prime} \cup F_{k}$. Clearly, the set A_{k} satisfies conditions (i) and (ii). If $0<x<n_{k} / 2$ and $x \notin(h-1) A_{k}$, then $n_{k}-x \in\left[n_{k} / 2, n_{k}\right]$, and so $F_{k} \cup\left\{n_{k}-x\right\} \subset\left[n_{k} / 2, n_{k}\right]$ and $n_{k} \notin h\left(A_{k}^{\prime} \cup F_{k} \cup\left\{n_{k}-x\right\}\right)$. It follows from the maximality of F_{k} that $n_{k}-x \in F_{k} \subset A_{k}$. Therefore, A_{k} satisfies condition (iii), and the induction is complete.

Corollary. Let A be an asymptotic nonbasis of order 2 such that $A \cup F$ is an asymptotic nonbasis of order 2 for every finite set F of nonnegative integers. Then A is a subset of a maximal asymptotic nonbasis of order 2.

Remark. The Corollary suggests the following problem. If A is an asymptotic basis of order 2 such that $A \backslash F$ is also an asymptotic basis of order 2 for every finite subset F of A, then does A contain a subset that is a minimal asymptotic basis of order 2 ?

REFERENCE

1. Melvyn B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY (Current address of Paul Erdös)

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address (M. B. Nathanson): School of Marhematics, Institute for Advanced Study, Princeton, New Jersey 08540

[^0]: Received by the editors February 4, 1974.
 AMS (MOS) subject classifications (1970). Primary 10L05, 10L 10, 10 J 99. Key words and phrases. Addition of sequences, sum sets, asymptotic bases, asymptotic nonbases, maximal nonbases.

