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Let G,J n) be an r-chromatic graph with n vertices in each colour class . Suppose
G = G 3 (n), and t (G) . the minimal degree in G, is at least n + t (t _> 1) . We prove that C
contains at least t 3 triangles but does not have to contain more titan 4t 3 of them .
Furthermore, we give lower bounds for s such that G contains a complete 3-partite
graph with s vertices in each class . Let';..(ii) = max t6(G) : G = G i (n), G does not contain
a complete graph with r vertices ; . We obtain various results on j 1 ht) . In particular, we
prove that if cz, = lim ~ ~ (n )i tr, then Jim,_ (cr -- (r - 2)) > 112 and we conjecture that
equality holds . We prove several other results and state a number of unsolved problems .

1 . Introduction

Denote by G(p,q) a graph of p vertices and q edges . Kt. = G(r, ( 2"-)) is
the complete graph with r vertices and Kr (t) is the complete r-chroma-
tic (i .e . r-partite) graph with t vertices in each colour class . f(ii ; G(p,q))
is thee smallest integer for which every G(n ; f(ii ; G(p, q))) contains a
G(p,q) as a stibgraph. In 1940 Turán [9] determined f(ii : Kr ) for every
r > 3 and thus started the theory of extremal problems on graphs . Re-
cently many papers have been published in this area [ 1-6] .

In this paper we investigate r-chromatic graphs . We obtain some re-
sults that seem interesting to us and get many unsolved problems that
we hope are botli difficult and interesting .

G,(n) denotes an r-chromatic graph with colour classes Ci , ICil = ii,
i = 1, . . ., r. Here and in the sequel IXI denotes the number of elements
in a set X. A q-set or q-tuple is a set with q elements . e(G) is the num-
ber of edges of a graph G and b(G) is the minimal degree of a vertex of
G. As usual, [x] is the largest integer not greater than x .
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At the Oxford meeting on graph theory in 1972 Erdös [71 conjectured
that ií- b(Gr ,(n)) > (r-2)n + 1, then G 7,(n) contains a Kr - Graver found a
simple and ingenious proof for r = 3 but Seymour constructed counter-
examples for r > 4. This discouraged further investigations but we hope
to convince the reader that interesting and fruitful problems remain .

We prove that if b(G3 (n)) > n + t, then G contains at least t 3 triangles
but does not have to contain more than 4t 3 of them . For n > St prob-
ably 4t3 is exact but we prove this only for t = 1 .

It is probably true that if b(G 3(n)) > n + Cn " (C is a sufficiently
large constant), then G contains a K 3 (2) . (Erdös and Simonovits
determined f(n ; K3 (2)), but these two problems are not clearly related .)
We can prove only that b(G3 (n)) > n + C11 314 ensures the existence of a
K3 (2) subgraph of G3 (n) . More generally we obtain fairly accurate re-
sults on the magnitude of the largest K3(s) which every G3(n) with
b(G3 (rl)) > n + t must contain, but many unsolved problems of a tech-
nical nature remain .

Our results on G, 00's for r > 3 are much more fragmentary . Denote
by fr (n) the smallest integer so that every G,.(n) with b(G,(n)) > f,.(n)
contains a K,. . It is easy to see that lim„~ f. (n)/r: = c,, exists . We show
that

C 4 > 2+ 9,

c,>r-2+2

	

2(r 1 2) for r>4-

We conjecture lim,._, _ (cr - r + 2) _ ; . It is surprising that this problem
is difficult ; perhaps we overlooked a simple approach . We can not even
disprove limy _ (c, - r + 2) = 1 .

Analogously to thee results of [6], though we can not determine Cr ,
we prove that every G,.(n) with b(G,,(n)) > (c,. + e)n contains at least
7171' Kr's . We do not obtain interesting results for b(G r(n)) > n + t,
t = a(n) for r > 4, though we believe they exist . As a slight extension
of Turán's theorem, we determine the minimal number of edges of a
G,.(n) that ensures the existence of a Kl , 3 < I ` r .

2. Three-chromatic graphs

Recall that G3 (n) is a three-chromatic graph with colour classes Cl ,

IC,I = n, i E Z3 - For x E CI let D+(x) (resp- D- (x)) be the set of vertices
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of Ci+t (resp . Ci_ I ) that are joined to x . Put d+(x) = ID+ (x)I, d (x) _
JD- 001 . d(x) = d+(x) + d- (-x) is the degree of .x in G3(n) .

We shall frequently make use of the following trivial observation
that we state as a lemma .

Lemma 2 .1 . Suppose x E Ci, y E Ci and xy is an edge. Then there are
at least

d+ (x) + d-(y) - n

triangles containing the edge xy . There are at least

(d+(x) + d- úv) - ti)
y E D'

triangles with vertex x, where D' C D- .

Theorem 2.2. Let G = G 3(n) have minimal degree at least n + 1 . Then G
contains at least min(4,n) triangles and this result is best possible.

Proof. Put d l+ = max {d +(x) : x E Q, d, = max {d-(x): x E C,} . We can
suppose without loss of generality that di > d2 and d 1' > d3 . Let
x i E C i , d +(x,) = d ] . Notee that d+(x) + d -- (x) > n + I for every vertex x .

Suppose di < n -1 and let z E D - (x i ) . If d + (z) = n-1 . then by
Lemma 2 .1 there are at least 2 triangles with vertex z . If d+(z) < n-1,
then again by Lemma 2 .1 at least 2 triangles of G contain the edge x 1 z .
Thus at least 2 triangles contain each vertex of D- (x, ) so G has at least
21D -(x l)I > 4 triangles .

Suppose now that dl = n and the theorem holds for smaller values of
it . Let us assume that G does not contain triangles T l , T, such that
d+(x i ) = n for a vertex of Ti , i = 1, 2 . Then Lemma 2 .1 implies that
D-(x l ) consists of a single vertex, say D-(.x i ) _ { z j }, and d'(.-,) = n,
d- (z 1) = l . Let D--(z t ) _ {y 1 } . Then similarly d+o,1) = it and D-(v 1 ) _
{x l }, otherwise we have 2 triangles with the forbidden properties . Let
G' = G 3(n-1) = G --- {x t , y l , z l } . In G' every vertex has degree at least
n, so G' contains at least n-1 triangles and G contains at least n triangles .
Thus, in proving the theorem, we can suppose without loss of generality
that G contains triangles T l , T2 such that d+(x l ) = n for a vertex x i of
Ti , i = 1, 2. Analogously, we can assume that G contains triangles Ti,
T2 such that d-(.xí) = n for a vertex xÍ of T'., i = 1, 2 .

Let us show now that either these 4 triangles are all distinct or G con-
tains at least n triangles .
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Let xlx2x3 be a triangle of G, x i E Ci , d+(x l ) = n . If d- ()c l ) = n, then
for every edge yz, p E C2 , z E C3 , xyz is a triangle . As there are at least
n such edges, G contains n triangles . If d - (x 2 ) = n, then G contains at
least n triangles with vertex .x 3 . Finally if d-(-x3) = n, G has n triangles
containing the edge x l x 3 . This completes the proof of the fact that G
has at least min(4,n) triangles .

Let us prove now that the results are best possible . For n = 1 the
triangle is the only graph satisfying the conditions . Suppose Gn_1 =
G3(n-1) has minimal degree at least n (> 2) and contains exactly
n-I triangles . Let the colour classes of G JZ 1 be Cí, i E Z 3 . Construct a
graph G„ = G3 (n) as follows. Put Ci = C, U {x i) and join x i to every ver-
tex of Ci+1 • Then G„ has the required properties and contains exactly
n triangles (Fig . 1) .

To complete the proof of Theorem 2 .2 we show that for every t > 1
and n > 5t there exists a tripartite graph H(n, t) = G 3 (n) with minimal
degree n + t that contains exactly 4t3 triangles . (For the proof of
Theorem 2 .2 the existence of the graphs H07, 1), n > 5, is needed .)

We construct a graph H(n,t) as follows . Let the colour classes be

Ci, lCi l = 11, i E Z 3 .
Let A i c Ci , IA i l = n - 2k, Bi = Ci - Ai , ' 6 Z3 , and B, = B2 U B3 ,

IBil=k,j=2,3 .
Join every vertex ofA1 to every vertex of A, U A3 , join every vertex

of Bi to every vertex of C1 , j = 2,3, and join every vertex of B i to every
vertex of CJ for i = 2, j = 3 and i = 3, j = 2 . Finally, join every vertex of
B ; to k arbitrary vertices of AJ for i = 2, j = 3 and i = 3, j = 2 . (In Fig . 2,
a continuous line denotes that all the vertices of the corresponding
classes are joined, and a dotted line means that every vertex of Bi is
joined to k vertices of the other class .)

x

Fig . 1 .
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It is easily checked that the only triangles contained in H(n,k) are of
the form x iy izj, .x i E Bi , y i E Bi , zJ E A ., i = 2, j = 3 and i = 3, j = 2. This
shows that H(n,k) contains exactly 4ká triangles . The proof of Theorem
2.2 is complete .

It is very likely that every graph G 3 (n), n >- 5t, with minimal degree
n + t contains at least 4t 3 triangles, i .e ., that the graphs H(n,t) have the
minimal number of triangles with a given minimal degree . Though we
can not show this, we can prove that t 3 is the proper order of the mini-
mal number of triangles .

Theorem 2 .3. Suppose every vertex of G = G 3(n) has degree at least n+t,
t 5 r: . Then there are at least t 3 triangles in G.

Proof. We can suppose without loss of generality that for some subset
T, of C,,IT,I=t,wehave

S =

	

d +(x) , E d+ (j, )
xETI

	

yET

for all T C Ci , ITI = t, i E Z3 .

Note that d-(x) > n + t - d- ( .x) for every vertex x . For x E C l let
Tx C D-(x), I Tx I = t . Then by Lemma 2 .1 the number of triangles of G
containing one vertex of T t is at least

ri r (d+(x) + d- (y) -- n) > ri Z (t+d + (x) d+(y))
XETI Y(=- TX

	

xET I yETX

r ~t2 + td+(x) - r d+(,, ) j >

	

(t 2 +td+(x)-S)
xETI

	

yETX

	

x EE T I

t 3 + tS-tS = t3 .
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Theorem 2 .3 will be used to show the existence of large subgraphs
K3 (s) in a G3(n), provided b(G3 (n)) > n + t . First we need a simple
lemma .

Lemma 2.4 . Let X = i 1, . . ., N}, A i C X, i E Y = { 1, . . ., p), EP, IAi - PwN
and (1-a)wp >- q, 0 < a < 1, where N, p and q are natural numbers .
Then there are q subsets Ai,, . . ., A iq such that

q

I n At , Nr(aw)qt = 1

	

r

Proof. For i E X let Yi = { : i E Ap j E r, yi = I Yi I . We say that a q-set r
of Y belongs to i c X if i E n,ET Ap Clearly (') q-sets belong to i E X.
As ENyi > pwN,

N

(qi) % N(`Q) % AV) (yq)I(q) > (Q)N(aw)q .
1

Thus at least one q-set of Y belongs to at least ?V(aav)q elements of X
and Ods is exactly the assertion of the lemma .

The following immediate corollary is essentially a theorem of
K6vAri et al . [81 .

Corollary 2.5 . Let n l-l1s > s. Then every graph G with n vertices and at
least n2-11' edges contains a K2 (s) .

Proof, Let X be the set of vertices of G, let A i be the set of vertices
joined to the ith vertex . Put w = 2n -11S , a = 2 , q = s, and apply the
lemma .

Theorem 2.6 . Suppose b(G3(n)) >- n + t, and s is an integer and

log 2n	l v2
s

	

[(log n-log t + (log 2)/31 ]'

Then G3(n) contains a K3 (s) .

Proof . Let Y = Cl = { 1, . . ., n.} and letX be the set of n 2 pairs (x,y),
x E C2, Y E C3 . Let Ai be the set of pairs (x,y) E X for which (i,x,y) is

a triangle of G 3(n) . As by Theorem 2 .3 the graph contains at least t 3

triangles, Lemma 2 .4 implies that there exist s vertices of C l , say



1, 2, . . ., s, such that
s

IEI = fl Ai > n2(t 3 /(211 3 )) , > (217) 2--1 I s .

Thus, by Corollary 2.5, the graph with vertex set C, U C3 and edge set
E contains a K2 (s) . This K2(s) and the vertices l, 2, . . ., s of Cl form a
K3 (s) of G 3 (n), as claimed .

Corollary 2.7 . Let n > 2 8 and suppose S(G 3(n)) > n + 2-112 17 314 . Then
GAO contains a K 3(2) .

As we remarked in the introduction, it seems likely that already
5(G3 (n)) > n +cn112 ensures that G3(n) contains a K3 (2) .

Theorem 2 .8 . Suppose 5(G 3 (n)) > n + t. Let

_ r

	

log 217S _3(log 217 - log t)]'
' t 3

	

t 3
S < min - 2- 2S

	

S' .
417 2

	

417 3

Then G 3 (n) contains a K3 (s) .

Proof. The graph G 3 (n) contains at least t 3 triangles . Thus there are at
least t3 l2n edges xy, x E C2, Y E C3 , such that each of them is on at
least t3 /2n2 triangles . Let H be the subgraph spanned by the set E of
the edges. Then, by Corollary 2 .5, H contains a K = K 2 (S), say with
colour classes Cz C CZ and C3 C C3 , since (217) 2-115 t 3lZn .

Let us say that a vertex x E Cl and an edge e of K correspond to
each other if a triangle of G 3 (n) contains both of them . As by the con-
struction, at least t 3/2n2 vertices correspond to an edge of K, there is a
set Ci C C1 , IC11 > (t 3 /41a 3)S2 edges of K.

Look at a vertex x E Ci and at the endvertices of the edges to which
it corresponds. The set of endvertices can be chosen in at most 2 2 S ways
so there is a set B, C Ci of at least

3t 2-25 > s
417 2

vertices which correspond to the same endvertex set B2 u B 3 , B 2 C Cz,
B3 C C3 . Clearly,

3

	

3
min(IB 2 I, IB 3 1) >t S2/S = ts > s,

417 3

	

4173

B. BolloMs el al. / Conaplele subgraphs of r-cl:rora:atic graphs

	

1 03



1 04

	

B. Bollobás et al . / Complete subgraphs oJ'r-chromatic graphs

and G3 (n) contains the complete tripartite graph with vertex classes
B r , B2, B3 .

Corollary 2 .9. Let 6(G3(')) ~> n + cnl(log n) 4 , where c > 0 and a > 0
are constants. Then there is a constant C= C(c, a) for which G 3 (n) con-
tains a K 3(s) with s > C(log n) 1-3a/log log n. .

3 . r-chromatic graphs

Let now G,(n) be an r-chromatic graph with colour classes Ct ; ICI I = n,
i = 1 ; . . ., r . One could hope (see [7 ]) that if every vertex of a Gr(n) is of
degree at least (r-2)n + 1, then the graph contains a K, . . However, this is
not true for r _> 4 and sufficiently large values of n .

Let n = gk, k > l, and construct a graph F4 (n) = G4 (n) as follows . Let
CI = X I U X2 U X3 , IX I I = k, IX 2 1 = IX 3 1 = 4k, Ci = A I U B I , IA I J = 8k,

IBII = k, i = 2, 3, and C4 =A4 U B4, IA4 1 = 2k . IB4 1 = 7k . Join every ver-
tex of X, to every vertex of A 2 U A3 U C4 , join every vertex of Xl to

every vertex of CI U AJ U A 4 , i, j = 2, 3, i # j ; join every vertex of A4 to
every vertex of A Z U A3 ;join every vertex of B 4 to every vertex of C2 U C 3 ,
and finally, join every vertex of AI to every vertex ofB i , i, j = 2, 3, i j .
The obtained graph is F4 (n) (see Fig . 3) .

Clearly every vertex of F4(n) has degree at least 19k = (2 + 9)n . Fur-
thermore, the triangles in F4(n) - C4 are of the form xyz, where x E X2,

3k

Fig . 3 .
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y E B2 , Z E A 3 or x E X3, Y E A 3 , z E B 2 . As no vertex of C4 is joined to
all 3 vertices of such a triangle, F4 (n) does not contain a K4 . This ex-
ample shows that if the minimal degree in a G4(n) is at least (2 +'-y )n,
then G4 (n) does not necessarily contain a K4 .

Let now r > 5, k > I and n = 2(r- 2)k . Construct a graph Fr(n) = G,(n)
as follows . Let C; = A, U B i , IA,I = IB ;I = (r-2)k = ; n, let

r-2
C . 1 = U AI ,

	

IAII = 21c,
1

r-2
C.= U BI,

	

IB1 1 =2k,

	

i, j=1, . . . . r-2 .
1

Join two vertices of U 'l C, that are in different classes unless one vertex
is in Al and the other in B1+1 U A', or one vertex is in B ; and the other
in Ai+1 U B 1 , i = 1, . . ., r, where A,+1 -- A1, B,.+1 = B 1 . In the obtained graph
F (n), clearly every vertex has degree at least ' - 1/(r--2) . Furthermore,
if K = K,- _2 c F. (n) - C,._ 1 U C, ., then either each A (i = 1, . . ., r-2) or
each Bj (i = 1, . . ., r-2) contains a vertex of K. As no vertex of Cr _ 1 is
joined to a vertex in each A i (i = 1, . . ., r-2) and no vertex of C r is joined
to a vertex in each B i (i = 1, . . ., r-2), the graph F,(n) does not contain a
Kr .

Denote by tk(n) the maximum number of edges of a k-chromatic graph .
Turán's theorem [9] states that f(n, Kp ) = t t,_ 1 (n) + 1 . This result has the
following immediate extension to r-chromatic graphs .

Theorem 3 .1 . max{e(G,(n)) : Gr (n) ~ Kp } = tp 1 (r)n 2 .

Proof. Suppose G = G r(n) does not contain a Kp . Let H be a subgraph of
G spanned by r vertices of different classes . Then H contains at most
tp_ 1 (r) edges . Furthermore, there are nr such subgraphs H and every
edge of G is contained in n`'-2 of them. Thus G has at most tp _ 1 (r)n
edges .

The graph Gr (n) obtained from a maximal (p-1)-chromatic graph by
replacing each vertex by a set of n vertices has exactly tp_ 1 (r)n 2 edges
and does not contain a Kp .

Corollary 3 .2. Suppose 5(G,(n)) > S. If tp_ 1 (r)n < ' rS, then G,(n) con-
tains a Kp . In particular, fr (n) < (r-2 + (r-2)/r)n so

c r = lim fr (n)/n < r-2 + r
r
2 .
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Theorem 3.3 . Let e > 0 and S(G,.(n)) > (cr + e)n. Then there is a con-
stant S e > 0, depending only oil e, such that G r (n) contains at least
SE f7 r Kr's.

Proof . Let m > m o (e) be an integer . We shall prove that for all but
11(171 )" (rl > 0 is independent of m) choices of m-tuples from the sets Ci
the subgraph G,.(m) of G,.(n) spanned by the r ln-tuples contains a Kr .
(The total number of choices of the 7n-tuples is ( ')'- .) This assertion
naturally implies that our graph contains at least

n-1 r _
(*)

	

{1-77) (111)1/(7n-1

	

- (1 + 6(1)) (1 -?j)n r /rl2 r

Kr 's since at least (1-n)(,n)' K, .'s are obtained and each of them occurs
times. The relation (*) of course proves Theorem 3 .3 .

m-1
Let .x E Ci . Suppose x is joined to c~l n vertices of Ci , j i . As

cr > r-2, c~a> > c > 0 for absolute constant c . Call an in-tuple in Cl
bad with respect to x if fewer than (ca r) - e/2r)m of the vertices of our
m-tuple are joined to x . A simple and well known argument using in-
equalities of binomial coefficients gives that the number of bad m-tuples
with respect to x is less than ( i -77) 171 (" ), where ri = ri(e, c) > 0 is inde-
pendent of m .

We call a vertex x and a bad m-tuple with respect to x a bad pair. Ob-
serve that if U' l A; (A i C Ci , IAJ = m) does not contain a bad pair, then
the subgraph spanned by Ui A i contains a K,, since each of its vertices
has degree greater than (cr + z e)m > fr (m) if m > m o (e) . We now esti-
mate by an averaging process the number of {A i } i without a bad pair .

If (x,A i ), x E C11 , is a bad pair, there are clearly ( 11 ) ( 772 ) r-2 sets
{A/ } i which contain the bad pair . Thus if there are y(m) families {A~ } i ,
lAtl = m, Aj C CJ , 1 < j < r, which contain a bad pair, then the number
of bad pairs is at least

7(Ín) 1 (m 11 ) (
M
n )r-2 _

y 791 (m ) '
On the other hand, to a given vertex x there are fewer than r(1-7j)' (ln)
bad sets, thus the number of bad pairs is less than

nr2 (I -71)'n ( in ) •
Thus

y < r2m(1 -rt)m,

which proves our theorem .
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