ON COMPLETE SUBGRAPHS OF r-CHROMATIC GRAPHS

B. BOLLOBÁS
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge. Cambridge, England

P. ERDÖS and E. SZEMERÉDI

Hungarian Academy of Sciences, Budapest, Hungary

Received 7 November 1974

Let $G_{r}(n)$ be an r-chromatic graph with n vertices in each colour class. Suppose $G=G_{3}(n)$, and $\delta(G)$, the minimal degree in G, is at least $n+t(t \geqslant 1)$. We prove that G contains at least t^{3} iriangles but does not have to contain more than $4 t^{3}$ of them. Furthermore, we give lower bounds for s such that G contains a complete 3 -partite graph with s vertices in each class. Let $f_{r}(n)=\max \left\{\delta(G): G=G_{r}(n), G\right.$ does not contain a complete graph with r vertices\}. We obtain various sesults on $j_{j}(n)$. In particular, we prove that if $c_{r}=\lim _{n \rightarrow \infty} f_{r}(n) / n$, then $\lim _{r \rightarrow \infty}\left(c_{r}-(r-2)\right) \geqslant 1 / 2$ and we conjecture that equality holds. We prove several other results and state a number of unsolved problems.

1. Introduction

Denote by $G(p, q)$ a graph of p vertices and q edges. $K_{r}=G\left(r,\binom{r}{2}\right)$ is the complete graph with r vertices and $K_{r}(t)$ is the complete r-chromatic (i.e. r-partite) graph with t vertices in each colour class. $f(n ; G(p, q))$ is the smallest integer for which every $G(n ; f(n ; G(p, q)))$ contains a $G(p, q)$ as a subgraph. In 1940 Turán [9] determined $f\left(n ; K_{r}\right)$ for every $r \geqslant 3$ and thus started the theory of extremal problems on graphs. Recently many papers have been published in this area [1-6].

In this paper we investigate r-chromatic graphs. We obtain some results that seem interesting to us and get many unsolved problems that we hope are both difficult and interesting.
$G_{r}(n)$ denotes an r-chromatic graph with colour classes $C_{i},\left|C_{i}\right|=n$, $i=1, \ldots, r$. Here and in the sequel $|X|$ denotes the number of elements in a set X. A q-set or q-tuple is a set with q elements. $e(G)$ is the number of edges of a graph G and $\delta(G)$ is the minimal degree of a vertex of G. As usual, $[x]$ is the largest integer not greater than x.

At the Oxford meeting on graph theory in 1972 Erdös [7] conjectured that if $\delta\left(G_{r}(n)\right) \geqslant(r-2) n+1$, then $G_{r}(n)$ contains a K_{r}. Graver found a simple and ingenious proof for $r=3$ but Seymour constructed counterexamples for $r \geqslant 4$. This discouraged further investigations but we hope to convince the reader that interesting and fruitful problems remain.

We prove that if $\delta\left(G_{3}(n)\right) \geqslant n+t$, then G contains at least t^{3} triangles but does not have to contain more than $4 t^{3}$ of them. For $n \geqslant 5 t$ probably $4 t^{3}$ is exact but we prove this only for $t=1$.

It is probably true that if $\delta\left(G_{3}(n)\right)>n+C n^{1 / 2}$ (C is a sufficiently large constant), then G contains a $K_{3}(2)$. (Erdös and Simonovits determined $f\left(n ; K_{3}(2)\right)$, but these two problems are not clearly related.) We can prove only that $\delta\left(G_{3}(n)\right)>n+C^{3 / 4}$ ensures the existence of a $K_{3}(2)$ subgraph of $G_{3}(n)$. More generally we obtain fairly accurate results on the magnitude of the largest $K_{3}(s)$ which every $G_{3}(n)$ with $\delta\left(G_{3}(n)\right) \geqslant n+t$ must contain, but many unsolved problems of a technical nature remain.

Our results on $G_{r}(n)$'s for $r>3$ are much more fragmentary. Denote by $f_{r}(n)$ the smallest integer so that every $G_{r}(n)$ with $\delta\left(G_{r}(n)\right)>f_{r}(n)$ contains a K_{r}. It is easy to see that $\lim _{n \rightarrow \infty} f_{r}(n) / n=c_{r}$ exists. We show that

$$
\begin{aligned}
& c_{4} \geqslant 2+\frac{1}{9}, \\
& c_{r} \geqslant r-2+\frac{1}{2}-\frac{1}{2(r-2)} \quad \text { for } r>4 .
\end{aligned}
$$

We conjecture $\lim _{r \rightarrow \infty}\left(c_{r}-r+2\right)=\frac{1}{2}$. It is surprising that this problem is difficult; perhaps we overlooked a simple approach. We can not even disprove $\lim _{r \rightarrow \infty}\left(c_{r}-r+2\right)=1$.

Analogously to the results of [6], though we can not determine c_{r}, we prove that every $G_{r}(n)$ with $\delta\left(G_{r}(n)\right)>\left(c_{r}+\epsilon\right) n$ contains at least $\eta n^{r} K_{r}$'s. We do not obtain interesting results for $\delta\left(G_{r}(n)\right) \geqslant n+t$, $t=\sigma(n)$ for $r \geqslant 4$, though we believe they exist. As a slight extension of Turán's theorem, we determine the minimal number of edges of a $G_{r}(n)$ that ensures the existence of a $K_{l}, 3 \leqslant l \leqslant r$.

2. Three-chromatic graphs

Recall that $G_{3}(n)$ is a three-chromatic graph with colour classes C_{i}, $\left|C_{i}\right|=n, i \in \mathbf{Z}_{3}$. For $x \in C_{i}$ let $D^{+}(x)$ (resp. $\left.D^{-}(x)\right)$ be the set of vertices
of C_{i+1} (resp. C_{i-1}) that are joined to x. Put $d^{+}(x)=\left|D^{+}(x)\right|, d^{\prime \prime}(x)=$ $\left|D^{-}(x)\right| . d(x)=d^{+}(x)+d^{-}(x)$ is the degree of x in $G_{3}(n)$.

We shall frequently make use of the following trivial observation that we state as a lemma.

Lemma 2.1. Suppose $x \in C_{i}, y \in C_{i-1}$, and $x y$ is an edge. Then there are at least

$$
d^{+}(x)+d^{-}(y)-n
$$

triangles containing the edge xy. There are at least

$$
\sum_{y \in D^{\prime}}\left(d^{+}(x)+d^{-}(y)-n\right)
$$

triangles with vertex x, where $D^{\prime} \subset D^{-}$.

Theorem 2.2. Let $G=G_{3}(n)$ have minimal degree at least $n+1$. Then G contains at least $\min (4, n)$ triangles and this result is best possible.

Proof. Put $d_{i}^{+}=\max \left\{d^{+}(x): x \in C_{i}\right\}, d_{i}^{-}=\max \left\{d^{-}(x): x \in C_{i}\right\}$. We can suppose without loss of generality that $d_{1}^{+} \geqslant d_{2}^{+}$and $d_{1}^{+} \geqslant d_{3}^{+}$. Let $x_{1} \in C_{1}, d^{+}\left(x_{1}\right)=d_{1}^{+}$. Note that $d^{+}(x)+d^{-}(x) \geqslant n+1$ for every vertex x.

Suppose $d_{1}^{+} \leqslant n-1$ and let $z \in D^{-}\left(x_{1}\right)$. If $d^{+}(z)=n-1$, then by Lemma 2.1 there are at least 2 triangles with vertex z. If $d^{+}(z)<n-1$, then again by Lemma 2.1 at least 2 triangles of G contain the edge $x_{1} z$. Thus at least 2 triangles contain each vertex of $D^{-}\left(x_{1}\right)$ so G has at least $2\left|D^{-}\left(x_{1}\right)\right| \geqslant 4$ triangles.

Suppose now that $d_{1}^{+}=n$ and the theorem holds for smaller values of n. Let us assume that G does not contain triangles T_{1}, T_{2} such that $d^{+}\left(x_{i}\right)=n$ for a vertex of $T_{i}, i=1,2$. Then Lemma 2.1 implies that $D^{-}\left(x_{1}\right)$ consists of a single vertex, say $D^{-}\left(x_{1}\right)=\left\{z_{1}\right\}$, and $d^{+}\left(z_{1}\right)=n$, $d^{-}\left(z_{1}\right)=1$. Let $D^{-}\left(z_{1}\right)=\left\{y_{1}\right\}$. Then similarly $d^{+}\left(y_{1}\right)=n$ and $D^{-}\left(y_{1}\right)=$ $\left\{x_{1}\right\}$, otherwise we have 2 triangles with the forbidden properties. Let $G^{\prime}=G_{3}(n-1)=G-\left\{x_{1}, y_{1}, z_{1}\right\}$. In G^{\prime} every vertex has degree at least n, so G^{\prime} contains at least $n-1$ triangles and G contains at least n triangles. Thus, in proving the theorem, we can suppose without loss of generality that G contains triangles T_{1}, T_{2} such that $d^{+}\left(x_{1}\right)=n$ for a vertex x_{i} of $T_{i}, i=1,2$. Analogously, we can assume that G contains triangles T_{1}^{\prime}, T_{2} such that $d^{-}\left(x_{1}^{\prime}\right)=n$ for a vertex x_{i}^{\prime} of $T_{i}^{\prime}, i=1,2$.

Let us show now that either these 4 triangles are all distinct or G contains at least n triangles.

Let $x_{1} x_{2} x_{3}$ be a triangle of $G, x_{i} \in C_{i}, d^{+}\left(x_{1}\right)=n$. If $d^{-}\left(x_{1}\right)=n$, then for every edge $y z, y \in C_{2}, z \in C_{3}, x y z$ is a triangle. As there are at least n such edges, G contains n triangles. If $d^{\prime \prime}\left(x_{2}\right)=n$, then G contains at least n triangles with vertex x_{3}. Finally if $d^{-}\left(x_{3}\right)=n, G$ has n triangles containing the edge $x_{1} x_{3}$. This completes the proof of the fact that G has at least $\min (4, n)$ triangles.

Let us prove now that the results are best possible. For $n=1$ the triangle is the only graph satisfying the conditions. Suppose $G_{n-1}=$ $G_{3}(n-1)$ has minimal degree at least $n(\geqslant 2)$ and contains exactly $n-1$ triangles. Let the colour classes of G_{n-1} be $C_{i}^{\prime}, i \in \mathbf{Z}_{3}$. Construct a graph $G_{n}=G_{3}(n)$ as follows. Put $C_{i}=C_{i}^{\prime} \cup\left\{x_{i}\right\}$ and join x_{i} to every vertex of C_{i+1}. Then G_{n} has the required properties and contains exactly n triangles (Fig. 1).

To complete the proof of Theorem 2.2 we show that for every $t \geqslant 1$ and $n \geqslant 5 t$ there exists a tripartite graph $H(n, t)=G_{3}(n)$ with minimal degree $n+t$ that contains exactly $4 t^{3}$ triangles. (For the proof of Theorem 2.2 the existence of the graphs $H(n, 1), n \geqslant 5$, is needed.)

We construct a graph $H(n, t)$ as follows. Let the colour classes be $C_{i},\left|C_{i}\right|=n, i \in \mathbf{Z}_{3}$.

Let $A_{i} \subset C_{i},\left|A_{i}\right|=n-2 k, B_{i}=C_{i}-A_{i}, i \in Z_{3}$, and $B_{1}=\bar{B}_{2} \cup \bar{B}_{3}$, $\left|\bar{B}_{j}\right|=k, j=2,3$.

Join every vertex of A_{1} to every vertex of $A_{2} \cup A_{3}$, join every vertex of \bar{B}_{j} to every vertex of $C_{j}, j=2,3$, and join every vertex of B_{i} to every vertex of C_{j} for $i=2, j=3$ and $i=3, j=2$. Finally, join every vertex of \bar{B}_{i} to k arbitrary vertices of A_{j} for $i=2, j=3$ and $i=3, j=2$. (In Fig. 2, a continuous line denotes that all the vertices of the corresponding classes are joined, and a dotted line means that every vertex of \bar{B}_{i} is joined to k vertices of the other class.)

Fig. 1.

Fig. 2.
It is easily checked that the only triangles contained in $H(n, k)$ are of the form $x_{i} y_{i} z_{j}, x_{i} \in \bar{B}_{i}, y_{i} \in B_{i}, z_{j} \in A_{j}, i=2, j=3$ and $i=3, j=2$. This shows that $H(n, k)$ contains exactly $4 k^{3}$ triangles. The proof of Theorem 2.2 is complete.

It is very likely that every graph $G_{3}(n), n \geqslant 5 t$, with minimal degree $n+t$ contains at least $4 t^{3}$ triangles, i.e., that the graphs $H(n, t)$ have the minimal number of triangles with a given minimal degree. Though we can not show this, we can prove that t^{3} is the proper order of the minimal number of triangles.

Theorem 2.3. Suppose every vertex of $G=G_{3}(n)$ has degree at least $n+t$, $t \leqslant n$. Then there are at least t^{3} triangles in G.

Proof. We can suppose without loss of generality that for some subset T_{1} of $C_{1},\left|T_{1}\right|=t$, we have

$$
S=\sum_{x \in T_{1}} d^{+}(x) \geqslant \sum_{y \in T} d^{+}(y)
$$

for all $T \subset C_{i},|T|=t, i \in \mathbf{Z}_{3}$.
Note that $d^{-}(x) \geqslant n+t-d^{-}(x)$ for every vertex x. For $x \in C_{1}$ let $T_{x} \subset D^{-}(x),\left|T_{x}\right|=t$. Then by Lemma 2.1 the number of triangles of G containing one vertex of T_{1} is at least

$$
\begin{aligned}
& \sum_{x \in T_{1}} \sum_{y \in T_{x}}\left(d^{+}(x)+d^{-}(y)-n\right) \geqslant \sum_{x \in T_{1}} \sum_{y \in T_{x}}\left(t+d^{+}(x)-d^{+}(y)\right) \\
& \quad \geqslant \sum_{x \in T_{1}}\left(t^{2}+t d^{+}(x)-\sum_{y \in T_{x}} d^{+}(y)\right) \geqslant \sum_{x \in T_{1}}\left(t^{2}+t d^{+}(x)-S\right) \\
& \geqslant t^{3}+t S-t S=t^{3} .
\end{aligned}
$$

Theorem 2.3 will be used to show the existence of large subgraphs $K_{3}(s)$ in a $G_{3}(n)$, provided $\delta\left(G_{3}(n)\right) \geqslant n+t$. First we need a simple lemma.

Lemma 2.4. Let $X=\{1, \ldots, N\}, A_{i} \subset X, i \in Y=\{1, \ldots, p\}, \Sigma_{1}^{p}\left|A_{i}\right| \geqslant p w N$ and $(1-\alpha) w p \geqslant q, 0<\alpha<1$, where N, p and q are natural numbers. Then there are q subsets $A_{i_{1}}, \ldots, A_{i_{q}}$ such that

$$
\left|\bigcap_{t=1}^{q} A_{i_{t}}\right| \geqslant N(\alpha w)^{q} .
$$

Proof. For $i \in X$ let $Y_{i}=\left\{j: i \in A_{j}, j \in Y\right\}, y_{i}=\left|Y_{i}\right|$. We say that a q-set τ of Y belongs to $i \in X$ if $i \in \bigcap_{j \in \tau} A_{j}$. Clearly $\binom{y_{i}}{q} q$-sets belong to $i \in X$. As $\Sigma_{1}^{N} y_{i} \geqslant p w N$,

$$
\sum_{1}^{N}\binom{y_{i}}{q} \geqslant N\binom{w p}{q} \geqslant N\binom{p}{q}\binom{w p}{q} /\binom{p}{q} \geqslant\binom{ p}{q} N(\alpha w)^{q} .
$$

Thus at least one q-set of Y belongs to at least $N(\alpha w)^{q}$ elements of X and this is exactly the assertion of the lemma.

The following immediate corollary is essentially a theorem of Kövári et al. [8].

Corollary 2.5. Let $n^{1-1 / s} \geqslant s$. Then every graph G with n vertices and at least $n^{2-1 / s}$ edges contains a $K_{2}(s)$.

Proof. Let X be the set of vertices of G, let A_{i} be the set of vertices joined to the i th vertex. Put $w=2 n^{-1 / s}, \alpha=\frac{1}{2}, q=s$, and apply the lemma.

Theorem 2.6. Suppose $\delta\left(G_{3}(n)\right) \geqslant n+t$, and s is an integer and

$$
s \leqslant\left[\left(\frac{\log 2 n}{\log n-\log t+(\log 2) / 3}\right)^{1 / 2}\right]
$$

Then $G_{3}(n)$ contains a $K_{3}(s)$.
Proof. Let $Y=C_{1}=\{1, \ldots, n\}$ and let X be the set of n^{2} pairs (x, y), $x \in C_{2}, y \in C_{3}$. Let A_{i} be the set of pairs $(x, y) \in X$ for which (i, x, y) is a triangle of $G_{3}(n)$. As by Theorem 2.3 the graph contains at least t^{3} triangles, Lemma 2.4 implies that there exist s vertices of C_{1}, say
$1,2, \ldots, s$, such that

$$
|E|=\left|\bigcap_{1}^{s} A_{i}\right| \geqslant n^{2}\left(t^{3} /\left(2 n^{3}\right)\right)^{s} \geqslant(2 n)^{2-1 / s} .
$$

Thus, by Corollary 2.5, the graph with vertex set $C_{2} \cup C_{3}$ and edge set E contains a $K_{2}(s)$. This $K_{2}(s)$ and the vertices $1,2, \ldots, s$ of C_{1} form a $K_{3}(s)$ of $G_{3}(n)$, as claimed.

Corollary 2.7. Let $n \geqslant 2^{8}$ and suppose $\delta\left(G_{3}(n)\right) \geqslant n+2^{-1 / 2} n^{3 / 4}$. Then $G_{3}(n)$ contains a $K_{3}(2)$.

As we remarked in the introduction, it seems likely that already $\delta\left(G_{3}(n)\right) \geqslant n+c n^{1 / 2}$ ensures that $G_{3}(n)$ contains a $K_{3}(2)$.

Theorem 2.8. Suppose $\delta\left(G_{3}(n)\right) \geqslant n+t$. Let

$$
\begin{aligned}
& S=\left[\frac{\log 2 n}{3(\log 2 n-\log t)}\right], \\
& s \leqslant \min \left\{\frac{t^{3}}{4 n^{2}} 2^{-2 S}, \frac{t^{3}}{4 n^{3}} S\right\} .
\end{aligned}
$$

Then $G_{3}(n)$ contains a $K_{3}(s)$.
Proof. The graph $G_{3}(n)$ contains at least t^{3} triangles. Thus there are at least $t^{3} / 2 n$ edges $x y, x \in C_{2}, y \in C_{3}$, such that each of them is on at least $t^{3} / 2 n^{2}$ triangles. Let H be the subgraph spanned by the set E of the edges. Then, by Corollary $2.5, H$ contains a $K=K_{2}(S)$, say with colour classes $C_{2}^{*} \subset C_{2}$ and $C_{3}^{*} \subset C_{3}$, since $(2 n)^{2-1 / S} \leqslant t^{3} / 2 n$.

Let us say that a vertex $x \in C_{1}$ and an edge e of K correspond to each other if a triangle of $G_{3}(n)$ contains both of them. As by the construction, at least $t^{3} / 2 n^{2}$ vertices correspond to an edge of K, there is a set $C_{1}^{*} \subset C_{1},\left|C_{1}^{*}\right| \geqslant\left(t^{3} / 4 n^{3}\right) S^{2}$ edges of K.

Look at a vertex $x \in C_{1}^{*}$ and at the endvertices of the edges to which it corresponds. The set of endvertices can be chosen in at most $2^{2 S}$ ways so there is a set $B_{1} \subset C_{1}^{*}$ of at least

$$
\frac{t^{3}}{4 n^{2}} 2^{-2 S}>s
$$

vertices which correspond to the same endvertex set $B_{2} \cup B_{3}, B_{2} \subset C_{2}^{*}$, $B_{3} \subset C_{3}$. Clearly,

$$
\min \left(\left|B_{2}\right|,\left|B_{3}\right|\right) \geqslant \frac{t^{3}}{4 n^{3}} S^{2} / S=\frac{t^{3} S}{4 n^{3}} \geqslant s,
$$

and $G_{3}(n)$ contains the complete tripartite graph with vertex classes B_{1}, B_{2}, B_{3}.

Corollary 2.9. Let $\delta\left(G_{3}(n)\right) \geqslant n+c n /(\log n)^{\alpha}$, where $c>0$ and $\alpha \geqslant 0$ are constants. Then there is a constant $C=C(c, \alpha)$ for which $G_{3}(n)$ contains a $K_{3}(s)$ with $s \geqslant C(\log n)^{1-3 \alpha} / \log \log n$.

3. r-chromatic graphs

Let now $G_{r}(n)$ be an r-chromatic graph with colour classes $C_{i},\left|C_{i}\right|=n$, $i=1, \ldots, r$. One could hope (see [7]) that if every vertex of a $G_{r}(n)$ is of degree at least $(r-2) n+1$, then the graph contains a K_{r}. However, this is not true for $r \geqslant 4$ and sufficiently large values of n.

Let $n=g k, k \geqslant 1$, and construct a graph $F_{4}(n)=G_{4}(n)$ as follows. Let $C_{1}=X_{1} \cup X_{2} \cup X_{3},\left|X_{1}\right|=k,\left|X_{2}\right|=\left|X_{3}\right|=4 k, C_{i}=A_{i} \cup B_{i},\left|A_{i}\right|=8 k$, $\left|B_{i}\right|=k, i=2,3$, and $C_{4}=A_{4} \cup B_{4},\left|A_{4}\right|=2 k,\left|B_{4}\right|=7 k$. Join every vertex of X_{1} to every vertex of $A_{2} \cup A_{3} \cup C_{4}$; join every vertex of X_{i} to every vertex of $C_{i} \cup A_{j} \cup A_{4}, i, j=2,3, i \neq j$; join every vertex of A_{4} to every vertex of $A_{2} \cup A_{3}$; join every vertex of B_{4} to every vertex of $C_{2} \cup C_{3}$; and finally, join every vertex of A_{i} to every vertex of $B_{j}, i, j=2,3, i \neq j$. The obtained graph is $F_{4}(n)$ (see Fig. 3).

Clearly every vertex of $F_{4}(n)$ has degree at least $19 k=\left(2+\frac{1}{9}\right) n$. Furthermore, the triangles in $F_{4}(n)-C_{4}$ are of the form $x y z$, where $x \in X_{2}$,

Fig. 3.
$y \in B_{2}, z \in A_{3}$ or $x \in X_{3}, y \in A_{3}, z \in B_{2}$. As no vertex of C_{4} is joined to all 3 vertices of such a triangle, $F_{4}(n)$ does not contain a K_{4}. This example shows that if the minimal degree in a $G_{4}(n)$ is at least $\left(2+\frac{1}{9}\right) n$, then $G_{4}(n)$ does not necessarily contain a K_{4}.

Let now $r \geqslant 5, k \geqslant 1$ and $n=2(r-2) k$. Construct a graph $F_{r}(n)=G_{r}(n)$ as follows. Let $C_{i}=A_{i} \cup B_{i},\left|A_{i}\right|=\left|B_{i}\right|=(r-2) k=\frac{1}{2} n$, let

$$
\begin{array}{ll}
C_{r-1}=\bigcup_{1}^{r-2} A^{j}, & \left|A^{j}\right|=2 k, \\
C_{r}=\bigcup_{1}^{r-2} B^{j}, & \left|B^{j}\right|=2 k, \quad i, j=1, \ldots, r-2 .
\end{array}
$$

Join two vertices of $\mathbf{U}_{1}^{r} C_{i}$ that are in different classes unless one vertex is in A_{i} and the other in $B_{i+1} \cup A^{i}$, or one vertex is in B_{i} and the other in $A_{i+1} \cup B^{i}, i=1, \ldots, r$, where $A_{r+1} \equiv A_{1}, B_{r+1} \equiv B_{1}$. In the obtained graph $F_{r}(n)$, clearly every vertex has degree at least $\frac{1}{2}-1 /(r-2)$. Furthermore, if $K=K_{r-2} \subset F_{r}(n)-C_{r-1} \cup C_{r}$, then either each $A_{i}(i=1, \ldots, r-2)$ or each $B_{i}(i=1, \ldots, r-2)$ contains a vertex of K. As no vertex of C_{r-1} is joined to a vertex in each $A_{i}(i=1, \ldots, r-2)$ and no vertex of C_{r} is joined to a vertex in each $B_{i}(i=1, \ldots, r-2)$, the graph $F_{r}(n)$ does not contain a K_{r}.

Denote by $t_{k}(n)$ the maximum number of edges of a k-chromatic graph. Turán's theorem [9] states that $f\left(n, K_{p}\right)=t_{p-1}(n)+1$. This result has the following immediate extension to r-chromatic graphs.

Theorem 3.1. $\max \left\{e\left(G_{r}(n)\right): G_{r}(n) \not \supset K_{p}\right\}=t_{p-1}(r) n^{2}$.
Proof. Suppose $G=G_{r}(n)$ does not contain a K_{p}. Let H be a subgraph of G spanned by r vertices of different classes. Then H contains at most $t_{p-1}(r)$ edges. Furthermore, there are n^{r} such subgraphs H and every edge of G is contained in n^{r-2} of them. Thus G has at most $t_{p-1}(r) n^{2}$ edges.

The graph $G_{r}(n)$ obtained from a maximal ($p-1$)-chromatic graph by replacing each vertex by a set of n vertices has exactly $t_{p-1}(r) n^{2}$ edges and does not contain a K_{p}.

Corollary 3.2. Suppose $\delta\left(G_{r}(n)\right) \geqslant \delta$. If $t_{p-1}(r) n<\frac{1}{2} r \delta$, then $G_{r}(n)$ contains a K_{p}. In particular, $f_{r}(n) \leqslant(r-2+(r-2) / r) n$ so

$$
c_{r}=\lim _{n \rightarrow \infty} f_{r}(n) / n \leqslant r-2+\frac{r-2}{r} .
$$

Theorem 3.3. Let $\epsilon>0$ and $\delta\left(G_{r}(n)\right)>\left(c_{r}+\epsilon\right) n$. Then there is a constant $\delta_{\epsilon}>0$, depending only on ϵ, such that $G_{r}(n)$ contains at least $\delta_{\epsilon} n^{r} K_{r}$'s.

Proof. Let $m>m_{0}(\epsilon)$ be an integer. We shall prove that for all but $\eta\left({ }_{m}^{n}\right)^{r}\left(\eta>0\right.$ is independent of m) choices of m-tuples from the sets C_{i} the subgraph $G_{r}(m)$ of $G_{r}(n)$ spanned by the $r m$-tuples contains a K_{r}. (The total number of choices of the m-tuples is $\binom{n}{m}^{r}$.) This assertion naturally implies that our graph contains at least

$$
\begin{equation*}
(1-\eta)\binom{n}{m}^{r} /\left(\frac{n-1}{m-1}\right)^{r}=(1+\sigma(1))(1-\eta) n^{r} / m^{r} \tag{*}
\end{equation*}
$$

K_{r} 's since at least $(1-\eta)\left({ }_{m}^{n}\right)^{r} K_{r}$'s are obtained and each of them occurs $\binom{n-1}{m-1}$ times. The relation (*) of course proves Theorem 3.3.

Let $x \in C_{i}$. Suppose x is joined to $c_{j}^{(x)} n$ vertices of $C_{j}, j \neq i$. As $c_{r}>r-2, c_{j}^{(x)}>c>0$ for absolute constant c. Call an m-tuple in C_{j} bad with respect to x if fewer than $\left(c_{j}^{(x)}-\epsilon / 2 r\right) m$ of the vertices of our m-tuple are joined to x. A simple and well known argument using inequalities of binomial coefficients gives that the number of bad m-tuples with respect to x is less than $(1-\eta)^{m}\binom{n}{m}$, where $\eta=\eta(\epsilon, c)>0$ is independent of m.

We call a vertex x and a bad m-tuple with respect to x a bad pair. Observe that if $\mathbf{U}_{1}^{r} A_{i}\left(A_{i} \subset C_{i},\left|A_{i}\right|=m\right)$ does not contain a bad pair, then the subgraph spanned by $\mathrm{U}_{1}^{r} A_{i}$ contains a K_{r} since each of its vertices has degree greater than $\left(c_{r}+\frac{1}{2} \epsilon\right) m>f_{r}(m)$ if $m>m_{0}(\epsilon)$. We now estimate by an averaging process the number of $\left\{A_{i}\right\}_{1}^{r}$ without a bad pair.

If $\left(x, A_{i}\right), x \in C_{h}$, is a bad pair, there are clearly $\binom{n-1}{m-1}\binom{n}{m}^{r-2}$ sets $\left\{A_{j}\right\}_{1}^{r}$ which contain the bad pair. Thus if there are $\gamma\binom{n}{m}$ families $\left\{A_{j}\right\}_{1}^{r}$, $\left|A_{j}\right|=m, A_{j} \subset C_{j}, 1 \leqslant j \leqslant r$, which contain a bad pair, then the number of bad pairs is at least

$$
\gamma\binom{n}{m}^{r}\binom{n-1}{m-1}\binom{n}{m}^{r-2}=\gamma \frac{n}{m}\binom{n}{m} .
$$

On the other hand, to a given vertex x there are fewer than $r(1-\eta)^{m}\binom{n}{m}$ bad sets, thus the number of bad pairs is less than

$$
n r^{2}(1-\eta)^{m}\binom{n}{m}
$$

Thus

$$
\gamma<r^{2} m(1-\eta)^{m},
$$

which proves our theorem.

References

[1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21-24.
[2] B. Bollobás, On complete subgraphs of different orders, Proc. Cambridge Philos. Soc., to appear.
[3] B. Bollobás and P. Erdös, On the structure of edge graphs, Bull. London Math. Soc. 5 (1973) 317-321.
[4] B. Bollobás, P. Erdös and M. Simonovits, On the structure of edge graphs II, J. London Math. Soc., to appear.
[5] P. Erdős, On some extremal problems in graph theory, lsrael J. Math. 3 (1965) 113-116.
[6] P. Erdös, On some extremal problems on r-graphs, Discrete Math. 1 (1971) 1-6.
[7] P. Erdös, Problem 2, in: Combinatorics, D.J.A. Welsh and D.R. Woodall, eds. (The Institute of Mathematics and its Applications, 1972) 353-354.
[8] T. Kövări, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Collect. Math. 3 (1954) 50-57.
[9] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (in Hungarian).

