ON COMPLETE SUBGRAPHS OF r-CHROMATIC GRAPHS

B. BOLLOBÁS

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, England

P. ERDÖS and E. SZEMERÉDI

Hungarian Academy of Sciences, Budapest, Hungary

Received 7 November 1974

Let $G_r(n)$ be an r-chromatic graph with n vertices in each colour class. Suppose $G = G_3(n)$, and $\delta(G)$, the minimal degree in G, is at least n + t ($t \ge 1$). We prove that G contains at least t^3 triangles but does not have to contain more than $4t^3$ of them. Furthermore, we give lower bounds for s such that G contains a complete 3-partite graph with s vertices in each class. Let $f_r(n) = \max \{\delta(G): G = G_r(n), G \text{ does not contain a complete graph with r vertices}\}$. We obtain various results on $f_r(n)$. In particular, we prove that if $c_r = \lim_{n \to \infty} f_r(n)/n$, then $\lim_{r \to \infty} (c_r - (r-2)) \ge 1/2$ and we conjecture that equality holds. We prove several other results and state a number of unsolved problems.

1. Introduction

Denote by G(p,q) a graph of p vertices and q edges. $K_r = G(r, \binom{r}{2})$ is the complete graph with r vertices and $K_r(t)$ is the complete r-chromatic (i.e. r-partite) graph with t vertices in each colour class. f(n; G(p,q))is the smallest integer for which every G(n; f(n; G(p,q))) contains a G(p,q) as a subgraph. In 1940 Turán [9] determined $f(n; K_r)$ for every $r \ge 3$ and thus started the theory of extremal problems on graphs. Recently many papers have been published in this area [1-6].

In this paper we investigate *r*-chromatic graphs. We obtain some results that seem interesting to us and get many unsolved problems that we hope are both difficult and interesting.

 $G_r(n)$ denotes an *r*-chromatic graph with colour classes C_i , $|C_i| = n$, i = 1, ..., r. Here and in the sequel |X| denotes the number of elements in a set X. A q-set or q-tuple is a set with q elements. e(G) is the number of edges of a graph G and $\delta(G)$ is the minimal degree of a vertex of G. As usual, [x] is the largest integer not greater than x.

At the Oxford meeting on graph theory in 1972 Erdös [7] conjectured that if $\delta(G_r(n)) \ge (r-2)n + 1$, then $G_r(n)$ contains a K_r . Graver found a simple and ingenious proof for r = 3 but Seymour constructed counterexamples for $r \ge 4$. This discouraged further investigations but we hope to convince the reader that interesting and fruitful problems remain.

We prove that if $\delta(G_3(n)) \ge n + t$, then G contains at least t^3 triangles but does not have to contain more than $4t^3$ of them. For $n \ge 5t$ probably $4t^3$ is exact but we prove this only for t = 1.

It is probably true that if $\delta(G_3(n)) > n + Cn^{\nu_2}$ (C is a sufficiently large constant), then G contains a $K_3(2)$. (Erdös and Simonovits determined $f(n; K_3(2))$, but these two problems are not clearly related.) We can prove only that $\delta(G_3(n)) > n + Cn^{3/4}$ ensures the existence of a $K_3(2)$ subgraph of $G_3(n)$. More generally we obtain fairly accurate results on the magnitude of the largest $K_3(s)$ which every $G_3(n)$ with $\delta(G_3(n)) \ge n + t$ must contain, but many unsolved problems of a technical nature remain.

Our results on $G_r(n)$'s for r > 3 are much more fragmentary. Denote by $f_r(n)$ the smallest integer so that every $G_r(n)$ with $\delta(G_r(n)) > f_r(n)$ contains a K_r . It is easy to see that $\lim_{n\to\infty} f_r(n)/n = c_r$ exists. We show that

$$c_4 \ge 2 + \frac{1}{9},$$

 $c_r \ge r - 2 + \frac{1}{2} - \frac{1}{2(r-2)}$ for $r > 4.$

We conjecture $\lim_{r\to\infty} (c_r - r + 2) = \frac{1}{2}$. It is surprising that this problem is difficult; perhaps we overlooked a simple approach. We can not even disprove $\lim_{r\to\infty} (c_r - r + 2) = 1$.

Analogously to the results of [6], though we can not determine c_r , we prove that every $G_r(n)$ with $\delta(G_r(n)) > (c_r + \epsilon)n$ contains at least $\eta n^r K_r$'s. We do not obtain interesting results for $\delta(G_r(n)) \ge n + t$, t = o(n) for $r \ge 4$, though we believe they exist. As a slight extension of Turán's theorem, we determine the minimal number of edges of a $G_r(n)$ that ensures the existence of a K_l , $3 \le l \le r$.

2. Three-chromatic graphs

Recall that $G_3(n)$ is a three-chromatic graph with colour classes C_i , $|C_i| = n, i \in \mathbb{Z}_3$. For $x \in C_i$ let $D^+(x)$ (resp. $D^-(x)$) be the set of vertices of C_{i+1} (resp. C_{i-1}) that are joined to x. Put $d^+(x) = |D^+(x)|$, $d^-(x) = |D^-(x)|$. $d(x) = d^+(x) + d^-(x)$ is the degree of x in $G_3(n)$.

We shall frequently make use of the following trivial observation that we state as a lemma.

Lemma 2.1. Suppose $x \in C_i$, $y \in C_{i-1}$, and xy is an edge. Then there are at least

$$d^+(x) + d^-(y) - n$$

triangles containing the edge xy. There are at least

$$\sum_{y \in D'} (d^+(x) + d^-(y) - n)$$

triangles with vertex x, where $D' \subset D^-$.

Theorem 2.2. Let $G = G_3(n)$ have minimal degree at least n + 1. Then G contains at least min(4,n) triangles and this result is best possible.

Proof. Put $d_i^+ = \max \{d^+(x): x \in C_i\}, d_i^- = \max \{d^-(x): x \in C_i\}$. We can suppose without loss of generality that $d_1^+ \ge d_2^+$ and $d_1^+ \ge d_3^+$. Let $x_1 \in C_1, d^+(x_1) = d_1^+$. Note that $d^+(x) + d^-(x) \ge n + 1$ for every vertex x.

Suppose $d_1^+ \le n-1$ and let $z \in D^-(x_1)$. If $d^+(z) = n-1$, then by Lemma 2.1 there are at least 2 triangles with vertex z. If $d^+(z) < n-1$, then again by Lemma 2.1 at least 2 triangles of G contain the edge x_1z . Thus at least 2 triangles contain each vertex of $D^-(x_1)$ so G has at least $2|D^-(x_1)| \ge 4$ triangles.

Suppose now that $d_1^+ = n$ and the theorem holds for smaller values of n. Let us assume that G does not contain triangles T_1 , T_2 such that $d^+(x_i) = n$ for a vertex of T_i , i = 1, 2. Then Lemma 2.1 implies that $D^-(x_1)$ consists of a single vertex, say $D^-(x_1) = \{z_1\}$, and $d^+(z_1) = n$, $d^-(z_1) = 1$. Let $D^-(z_1) = \{y_1\}$. Then similarly $d^+(y_1) = n$ and $D^-(y_1) = \{x_1\}$, otherwise we have 2 triangles with the forbidden properties. Let $G' = G_3(n-1) = G - \{x_1, y_1, z_1\}$. In G' every vertex has degree at least n, so G' contains at least n-1 triangles and G contains at least n triangles. Thus, in proving the theorem, we can suppose without loss of generality that G contains triangles T_1 , T_2 such that $d^+(x_1) = n$ for a vertex x_i of T_i , i = 1, 2. Analogously, we can assume that G contains triangles T_1 , T_2 such that $d^-(x_1') = n$ for a vertex x_i' of T_i , i = 1, 2.

Let us show now that either these 4 triangles are all distinct or G contains at least n triangles.

Let $x_1x_2x_3$ be a triangle of G, $x_i \in C_i$, $d^+(x_1) = n$. If $d^-(x_1) = n$, then for every edge yz, $y \in C_2$, $z \in C_3$, xyz is a triangle. As there are at least n such edges, G contains n triangles. If $d^-(x_2) = n$, then G contains at least n triangles with vertex x_3 . Finally if $d^-(x_3) = n$, G has n triangles containing the edge x_1x_3 . This completes the proof of the fact that Ghas at least min(4, n) triangles.

Let us prove now that the results are best possible. For n = 1 the triangle is the only graph satisfying the conditions. Suppose $G_{n-1} = G_3(n-1)$ has minimal degree at least $n \ge 2$ and contains exactly n-1 triangles. Let the colour classes of G_{n-1} be C'_{i} , $i \in \mathbb{Z}_3$. Construct a graph $G_n = G_3(n)$ as follows. Put $C_i = C'_i \cup \{x_i\}$ and join x_i to every vertex of C_{i+1} . Then G_n has the required properties and contains exactly n triangles (Fig. 1).

To complete the proof of Theorem 2.2 we show that for every $t \ge 1$ and $n \ge 5t$ there exists a tripartite graph $H(n, t) = G_3(n)$ with minimal degree n + t that contains exactly $4t^3$ triangles. (For the proof of Theorem 2.2 the existence of the graphs H(n, 1), $n \ge 5$, is needed.)

We construct a graph H(n,t) as follows. Let the colour classes be C_i , $|C_i| = n$, $i \in \mathbb{Z}_3$.

Let $A_i \subset C_i$, $|A_i| = n - 2k$, $B_i = C_i - A_i$, $i \in \mathbb{Z}_3$, and $B_1 = \overline{B}_2 \cup \overline{B}_3$, $|\overline{B}_i| = k, j = 2, 3$.

Join every vertex of A_1 to every vertex of $A_2 \cup A_3$, join every vertex of \overline{B}_j to every vertex of C_j , j = 2,3, and join every vertex of B_i to every vertex of C_j for i = 2, j = 3 and i = 3, j = 2. Finally, join every vertex of \overline{B}_i to k arbitrary vertices of A_j for i = 2, j = 3 and i = 3, j = 2. (In Fig. 2, a continuous line denotes that all the vertices of the corresponding classes are joined, and a dotted line means that every vertex of \overline{B}_i is joined to k vertices of the other class.)

Fig. 1.

100

It is easily checked that the only triangles contained in H(n,k) are of the form $x_i y_i z_j$, $x_i \in \overline{B}_i$, $y_i \in B_i$, $z_j \in A_j$, i = 2, j = 3 and i = 3, j = 2. This shows that H(n,k) contains exactly $4k^3$ triangles. The proof of Theorem 2.2 is complete.

It is very likely that every graph $G_3(n)$, $n \ge 5t$, with minimal degree n + t contains at least $4t^3$ triangles, i.e., that the graphs H(n,t) have the minimal number of triangles with a given minimal degree. Though we can not show this, we can prove that t^3 is the proper order of the minimal number of triangles.

Theorem 2.3. Suppose every vertex of $G = G_3(n)$ has degree at least n + t, $t \le n$. Then there are at least t^3 triangles in G.

Proof. We can suppose without loss of generality that for some subset T_1 of C_1 , $|T_1| = t$, we have

$$S = \sum_{x \in T_1} d^+(x) \ge \sum_{y \in T} d^+(y)$$

for all $T \subset C_i$, |T| = t, $i \in \mathbb{Z}_3$.

Note that $d^{-}(x) \ge n + t - d^{-}(x)$ for every vertex x. For $x \in C_1$ let $T_x \subset D^{-}(x), |T_x| = t$. Then by Lemma 2.1 the number of triangles of G containing one vertex of T_1 is at least

$$\begin{split} &\sum_{x \in T_1} \sum_{y \in T_x} (d^+(x) + d^-(y) - n) \ge \sum_{x \in T_1} \sum_{y \in T_x} (t + d^+(x) - d^+(y)) \\ &\ge \sum_{x \in T_1} \left(t^2 + t d^+(x) - \sum_{y \in T_x} d^+(y) \right) \ge \sum_{x \in T_1} (t^2 + t d^+(x) - S) \\ &\ge t^3 + t S - t S = t^3. \end{split}$$

Theorem 2.3 will be used to show the existence of large subgraphs $K_3(s)$ in a $G_3(n)$, provided $\delta(G_3(n)) \ge n + t$. First we need a simple lemma.

Lemma 2.4. Let $X = \{1, ..., N\}$, $A_i \subset X$, $i \in Y = \{1, ..., p\}$, $\Sigma_1^p |A_i| \ge p_{WN}$ and $(1-\alpha)wp \ge q$, $0 < \alpha < 1$, where N, p and q are natural numbers. Then there are q subsets $A_{i_1}, ..., A_{i_n}$ such that

$$\left|\bigcap_{t=1}^{q} A_{i_t}\right| \ge N(\alpha w)^q.$$

Proof. For $i \in X$ let $Y_i = \{j : i \in A_j, j \in Y\}$, $y_i = |Y_i|$. We say that a q-set τ of Y belongs to $i \in X$ if $i \in \mathbf{n}_{j \in \tau} A_j$. Clearly $\binom{y_i}{q}$ q-sets belong to $i \in X$. As $\sum_{i=1}^{N} y_i \ge pwN$,

$$\sum_{1}^{N} \binom{y_i}{q} \ge N\binom{wp}{q} \ge N\binom{p}{q} \binom{wp}{q} / \binom{p}{q} \ge \binom{p}{q} N(\alpha w)^q.$$

Thus at least one q-set of Y belongs to at least $N(\alpha w)^q$ elements of X and this is exactly the assertion of the lemma.

The following immediate corollary is essentially a theorem of Kövári et al. [8].

Corollary 2.5. Let $n^{1-1/s} \ge s$. Then every graph G with n vertices and at least $n^{2-1/s}$ edges contains a $K_2(s)$.

Proof. Let X be the set of vertices of G, let A_i be the set of vertices joined to the *i*th vertex. Put $w = 2n^{-1/s}$, $\alpha = \frac{1}{2}$, q = s, and apply the lemma.

Theorem 2.6. Suppose $\delta(G_3(n)) \ge n + t$, and s is an integer and

$$s \leq \left[\left(\frac{\log 2n}{\log n - \log t + (\log 2)/3} \right)^{1/2} \right].$$

Then $G_3(n)$ contains a $K_3(s)$.

Proof. Let $Y = C_1 = \{1, ..., n\}$ and let X be the set of n^2 pairs (x,y), $x \in C_2$, $y \in C_3$. Let A_i be the set of pairs $(x,y) \in X$ for which (i,x,y) is a triangle of $G_3(n)$. As by Theorem 2.3 the graph contains at least t^3 triangles, Lemma 2.4 implies that there exist s vertices of C_1 , say

102

1, 2, ..., s, such that

$$|E| = \left| \begin{array}{c} s \\ \mathbf{n} \\ \mathbf{n$$

Thus, by Corollary 2.5, the graph with vertex set $C_2 \cup C_3$ and edge set E contains a $K_2(s)$. This $K_2(s)$ and the vertices 1, 2, ..., s of C_1 form a $K_3(s)$ of $G_3(n)$, as claimed.

Corollary 2.7. Let $n \ge 2^8$ and suppose $\delta(G_3(n)) \ge n + 2^{-1/2} n^{3/4}$. Then $G_3(n)$ contains a $K_3(2)$.

As we remarked in the introduction, it seems likely that already $\delta(G_3(n)) \ge n + cn^{1/2}$ ensures that $G_3(n)$ contains a $K_3(2)$.

Theorem 2.8. Suppose $\delta(G_3(n)) \ge n + t$. Let

$$S = \left[\frac{\log 2n}{3(\log 2n - \log t)}\right],$$
$$s \le \min\left\{\frac{t^3}{4n^2} 2^{-2S}, \frac{t^3}{4n^3}S\right\}.$$

Then $G_3(n)$ contains a $K_3(s)$.

Proof. The graph $G_3(n)$ contains at least t^3 triangles. Thus there are at least $t^3/2n$ edges $xy, x \in C_2, y \in C_3$, such that each of them is on at least $t^3/2n^2$ triangles. Let H be the subgraph spanned by the set E of the edges. Then, by Corollary 2.5, H contains a $K = K_2(S)$, say with colour classes $C_2^* \subset C_2$ and $C_3^* \subset C_3$, since $(2n)^{2-1/S} \leq t^3/2n$.

Let us say that a vertex $x \in C_1$ and an edge e of K correspond to each other if a triangle of $G_3(n)$ contains both of them. As by the construction, at least $t^3/2n^2$ vertices correspond to an edge of K, there is a set $C_1^* \subset C_1$, $|C_1^*| \ge (t^3/4n^3)S^2$ edges of K.

Look at a vertex $x \in C_1^*$ and at the endvertices of the edges to which it corresponds. The set of endvertices can be chosen in at most 2^{2S} ways so there is a set $B_1 \subset C_1^*$ of at least

$$\frac{t^3}{4n^2} \ 2^{-2S} > s$$

vertices which correspond to the same endvertex set $B_2 \cup B_3$, $B_2 \subset C_2^*$, $B_3 \subset C_3^*$. Clearly,

$$\min(|B_2|, |B_3|) \ge \frac{t^3}{4n^3} S^2 / S = \frac{t^3 S}{4n^3} \ge s,$$

and $G_3(n)$ contains the complete tripartite graph with vertex classes B_1 , B_2 , B_3 .

Corollary 2.9. Let $\delta(G_3(n)) \ge n + cn/(\log n)^{\alpha}$, where c > 0 and $\alpha \ge 0$ are constants. Then there is a constant $C = C(c, \alpha)$ for which $G_3(n)$ contains a $K_3(s)$ with $s \ge C(\log n)^{1-3\alpha}/\log \log n$.

3. r-chromatic graphs

Let now $G_r(n)$ be an r-chromatic graph with colour classes C_i , $|C_i| = n$, i = 1, ..., r. One could hope (see [7]) that if every vertex of a $G_r(n)$ is of degree at least (r-2)n+1, then the graph contains a K_r . However, this is not true for $r \ge 4$ and sufficiently large values of n.

Let n = gk, $k \ge 1$, and construct a graph $F_4(n) = G_4(n)$ as follows. Let $C_1 = X_1 \cup X_2 \cup X_3$, $|X_1| = k$, $|X_2| = |X_3| = 4k$, $C_i = A_i \cup B_i$, $|A_i| = 8k$, $|B_i| = k$, i = 2, 3, and $C_4 = A_4 \cup B_4$, $|A_4| = 2k$, $|B_4| = 7k$. Join every vertex of X_1 to every vertex of $A_2 \cup A_3 \cup C_4$; join every vertex of A_4 to every vertex of $A_2 \cup A_3$, $i \ne j$; join every vertex of A_4 to every vertex of $A_2 \cup A_3$; join every vertex of A_4 to every vertex of $A_2 \cup A_3$; join every vertex of B_4 to every vertex of $C_2 \cup C_3$; and finally, join every vertex of A_i to every vertex of B_j , $i, j = 2, 3, i \ne j$. The obtained graph is $F_4(n)$ (see Fig. 3).

Clearly every vertex of $F_4(n)$ has degree at least $19k = (2 + \frac{1}{9})n$. Furthermore, the triangles in $F_4(n) - C_4$ are of the form xyz, where $x \in X_2$,

Fig. 3.

 $y \in B_2$, $z \in A_3$ or $x \in X_3$, $y \in A_3$, $z \in B_2$. As no vertex of C_4 is joined to all 3 vertices of such a triangle, $F_4(n)$ does not contain a K_4 . This example shows that if the minimal degree in a $G_4(n)$ is at least $(2 + \frac{1}{9})n$, then $G_4(n)$ does not necessarily contain a K_4 .

Let now $r \ge 5$, $k \ge 1$ and n = 2(r-2)k. Construct a graph $F_r(n) = G_r(n)$ as follows. Let $C_i = A_i \cup B_i$, $|A_i| = |B_i| = (r-2)k = \frac{1}{2}n$, let

$$\begin{split} C_{r-1} &= \bigcup_{1}^{r-2} A^{j}, \qquad |A^{j}| = 2k, \\ C_{r} &= \bigcup_{1}^{r-2} B^{j}, \qquad |B^{j}| = 2k, \qquad i, j = 1, ..., r-2 \end{split}$$

Join two vertices of $\mathbf{U}_1^r C_i$ that are in different classes unless one vertex is in A_i and the other in $B_{i+1} \cup A^i$, or one vertex is in B_i and the other in $A_{i+1} \cup B^i$, i = 1, ..., r, where $A_{r+1} \equiv A_1$, $B_{r+1} \equiv B_1$. In the obtained graph $F_r(n)$, clearly every vertex has degree at least $\frac{1}{2} - 1/(r-2)$. Furthermore, if $K = K_{r-2} \subset F_r(n) - C_{r-1} \cup C_r$, then either each A_i (i = 1, ..., r-2) or each B_i (i = 1, ..., r-2) contains a vertex of K. As no vertex of C_{r-1} is joined to a vertex in each A_i (i = 1, ..., r-2) and no vertex of C_r is joined to a vertex in each B_i (i = 1, ..., r-2), the graph $F_r(n)$ does not contain a K_r .

Denote by $t_k(n)$ the maximum number of edges of a k-chromatic graph. Turán's theorem [9] states that $f(n, K_p) = t_{p-1}(n) + 1$. This result has the following immediate extension to r-chromatic graphs.

Theorem 3.1. $\max\{e(G_r(n)): G_r(n) \not \supset K_p\} = t_{p-1}(r)n^2$.

Proof. Suppose $G = G_r(n)$ does not contain a K_p . Let *H* be a subgraph of *G* spanned by *r* vertices of different classes. Then *H* contains at most $t_{p-1}(r)$ edges. Furthermore, there are n^r such subgraphs *H* and every edge of *G* is contained in n^{r-2} of them. Thus *G* has at most $t_{p-1}(r)n^2$ edges.

The graph $G_r(n)$ obtained from a maximal (p-1)-chromatic graph by replacing each vertex by a set of *n* vertices has exactly $t_{p-1}(r)n^2$ edges and does not contain a K_p .

Corollary 3.2. Suppose $\delta(G_r(n)) \ge \delta$. If $t_{p-1}(r)n < \frac{1}{2}r\delta$, then $G_r(n)$ contains a K_p . In particular, $f_r(n) \le (r-2 + (r-2)/r)n$ so

$$c_r = \lim_{n \to \infty} f_r(n)/n \le r - 2 + \frac{r - 2}{r}$$

Theorem 3.3. Let $\epsilon > 0$ and $\delta(G_r(n)) > (c_r + \epsilon)n$. Then there is a constant $\delta_{\epsilon} > 0$, depending only on ϵ , such that $G_r(n)$ contains at least $\delta_{\epsilon}n^r K_r$'s.

Proof. Let $m > m_0(\epsilon)$ be an integer. We shall prove that for all but $\eta\binom{n}{m}^r$ $(\eta > 0$ is *independent of m*) choices of *m*-tuples from the sets C_i the subgraph $G_r(m)$ of $G_r(n)$ spanned by the *r m*-tuples contains a K_r . (The total number of choices of the *m*-tuples is $\binom{n}{m}^r$.) This assertion naturally implies that our graph contains at least

(*)
$$(1-\eta) {\binom{n}{m}}^r / {\binom{n-1}{m-1}}^r = (1+\sigma(1)) (1-\eta)n^r / m^r$$

 K_r 's since at least $(1-\eta)\binom{n}{m}r$, K_r 's are obtained and each of them occurs $\binom{n-1}{m-1}$ times. The relation (*) of course proves Theorem 3.3.

Let $x \in C_i$. Suppose x is joined to $c_j^{(k)}n$ vertices of C_j , $j \neq i$. As $c_r > r-2$, $c_j^{(x)} > c > 0$ for absolute constant c. Call an m-tuple in C_j bad with respect to x if fewer than $(c_j^{(x)} - \epsilon/2r)m$ of the vertices of our m-tuple are joined to x. A simple and well known argument using inequalities of binomial coefficients gives that the number of bad m-tuples with respect to x is less than $(1-\eta)^m \binom{n}{m}$, where $\eta = \eta(\epsilon, c) > 0$ is independent of m.

We call a vertex x and a bad m-tuple with respect to x a bad pair. Observe that if $\mathbf{U}_1^r A_i$ $(A_i \subset C_i, |A_i| = m)$ does not contain a bad pair, then the subgraph spanned by $\mathbf{U}_1^r A_i$ contains a K_r since each of its vertices has degree greater than $(c_r + \frac{1}{2}\epsilon)m > f_r(m)$ if $m > m_0(\epsilon)$. We now estimate by an averaging process the number of $\{A_i\}_1^r$ without a bad pair.

If $(x, A_i), x \in C_h$, is a bad pair, there are clearly $\binom{n-1}{m-1} \binom{n}{m}^{r-2}$ sets $\{A_j\}_1^r$ which contain the bad pair. Thus if there are $\gamma\binom{n}{m}$ families $\{A_j\}_1^r$, $|A_j| = m, A_j \subset C_j, 1 \le j \le r$, which contain a bad pair, then the number of bad pairs is at least

$$\gamma\binom{n}{m}^r \binom{n-1}{m-1} \binom{n}{m}^{r-2} = \gamma \frac{n}{m} \binom{n}{m}.$$

On the other hand, to a given vertex x there are fewer than $r(1-\eta)^m \binom{n}{m}$ bad sets, thus the number of bad pairs is less than

 $nr^2(1-\eta)^m \binom{n}{m}$.

Thus

$$\gamma < r^2 m (1-\eta)^m,$$

which proves our theorem.

106

References

- B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21-24.
- [2] B. Bollobás, On complete subgraphs of different orders, Proc. Cambridge Philos. Soc., to appear.
- [3] B. Bollobás and P. Erdös, On the structure of edge graphs, Bull. London Math. Soc. 5 (1973) 317-321.
- [4] B. Bollobás, P. Erdös and M. Simonovits, On the structure of edge graphs II, J. London Math. Soc., to appear.
- [5] P. Erdös, On some extremal problems in graph theory, Israel J. Math. 3 (1965) 113-116.
- [6] P. Erdös, On some extremal problems on r-graphs, Discrete Math. 1 (1971) 1-6.
- [7] P. Erdös, Problem 2, in: Combinatorics, D.J.A. Welsh and D.R. Woodall, eds. (The Institute of Mathematics and its Applications, 1972) 353-354.
- [8] T. Kövári, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Collect. Math. 3 (1954) 50-57.
- [9] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (in Hungarian).