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The following problem arises in connection with certain multidimensional
stock cutting problems :
How many nonoverlapping open unit squares may be packed into a large
square of side a?
Of course, if e is a positive integer, it is trivial to see that a 2 unit squares can be

successfully packed . However, if e is not an integer, the problem becomes much
more complicated . Intuitively, one feels that for a = N + (1/100), say (where
Nis an integer), one should pack N 2 unit squares in the obvious way and surrender
the uncovered border area (which is about a/50) as unusable waste . After all,
how could it help to place the unit squares at all sorts of various skew angles?

In this note, we show how it helps . In particular, we prove that we can always
keep the amount of uncovered area down to at most proportional to a7/ h1
which for large a is much less than the linear waste produced by the "natural"
packing above .

If two nonoverlapping squares are inscribed in a unit square, then the
sum of their circumferences is at most 4, the circumference of the unit
square . As far as we know, this was first published by P . Erdős and
appeared as a problem in a mathematical paper for high shool students in
Hungary. Beck and Bleicher [1] proved that if a closed convex curve r has
the property that for every two inscribed nonoverlapping similar curves
WI and W2 , the sum of the circumferences of W I and `6'2 is not greater than
the circumference of W, then V is either a regular polygon or a curve of
constant width .
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It is clear that one can inscribe k 2 squares into a unit square so that the
sum of their circumferences is 4k. Erdös conjectured 40 years ago that if
we inscribe k2 + 1 squares into a unit square, the total circumference
remains at most 4k. For k = 1, this is true as we have just stated .
D . J. Newman [2] proved the conjecture for k = 2 but the general case is
still unsettled .
Denote by f (1) the maximal sum of circumferences of l nonoverlapping

squares packed into a unit square . The conjecture we cannot prove is
justf (k2 + 1) = 4k . In this note we show f (l) > 4k for Z = k2 + o(k) (in
fact, for Z = k 2 -} [ck'1 11 ] using just equal squares) . We do not know as
f (l) increases from 4k to 4k + 4 how large the jumps are and where they
occur.
Instead of maximizing the circumference sum of packings of a unit

square by arbitrary squares, we shall work with the closely related problem
of maximizing the area sum of packings of an arbitrary square by unit
squares .

For each positive real a, define

where _0 ranges over all packings of unit squares into a given square S(a)
of side a and 1 9 1 denotes the number of unit squares in 9 .

THEOREM .

Proof. We sketch a construction which will prove (1) . As usual, the
notation f (x) =`(g(x)) will denote the existence of two positive constants
c and c' such that cg(x) < f(x) < cg(x) for all sufficiently large x .

R

W(a) = a2 - sup I ° I

W(a) = O(a'/11)
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FIGURE 1
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We begin by packing S(a) with N 2 unit squares which form a subsquare
S(N) in the lower left-hand corner of S(a) as shown in Fig. 1, where
N = [a - all/"] and a is large . The remaining uncovered area can be
decomposed into two rectangles, each having width /3 = a - N and
lengths > N.

D

Tr

FIGURE 2

Next, we pack a rectangle R(/3, y) of sides g and y with y = D(a),
R = D(a 8 /11) as follows . Let n = [ g] . Place adjacent parallel rectangles
R(1, n + 1), each formed from n + 1 unit squares, tilted at the appro-
priate angle 9 so that all R(1, n + 1)'s touch both the top and bottom
edges of R((3, y). Furthermore, place these so that D = D(a2 / 11) ( see
Fig. 2) . Note that D' = D(a4 1 11) An easy calculation shows that B =
S2(, -4 /11) and so, each of the small shaded right triangles on the border of
R has area D(a-4111 ) The total area of the triangles is therefore D(a7 / 11)

There are, in addition, two right trapezoids T with base g and vertical
sides D and D' which have not been covered up to this point . We next
describe how to pack T .

Let m = [(,4/11] Starting from the right-hand side of T, partition T into
as many right trapezoids T, , T2 , . . ., T,, as possible, where the base of each
Tk is m (see Fig . 3) . Thus, r = S2(a4 / 11) and X has area 0((Y6/11) . If the
vertical sides of Tk are 'k and 7)k+1 , let h k = [,i k - A2í11] Pack the bottom
subrectangle R(m, hk) of Tk with mhk unit squares in the natural way (as
shown in Fig . 4) and let Tk* denote the remaining uncovered subtrapezoid
of Tk .

FIGURE 3
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Now, for sk = [q k] - hk , pack Tk* with rectangles R(l, sk + 1) as
shown in Fig . 4 . Here, each R(1, sk + 1) touches both the top and bottom
edges of Tk as well as the adjacent R(l, sk + 1)'s . As before, the uncovered
border right triangles on Tk* have total area mQ((x-1 11) - Q(a3111) The
total area of the triangular regions between adjacent R(l, sk -f 1)'s its also
just S2(a3 1 11) since the sum of the angles at the top vertices is D(a-1 11)

Finally, the uncovered triangle X* has area S2(a3 / 11) Since r = S2(a 4~ 11)

then the total uncovered area in T is just rQ(a3111) + S2(as/11) - SZ(a1 1 11)

m

T

FIGURE 4

Hence the total uncovered area of S(a) is just S2(a 7 111) and the theorem
is proved . i
The previously mentioned assertion that f (k 2 -; ck 7 /11) > 4k follows

immediately. It is rather annoying that we do not at present have any
nontrivial lower estimate for W(a) . Indeed we cannot even rule out the
possibility that W(a) = O(1) . Perhaps the correct bound is 0((X 1/2)

In the same spirit the following questions can be asked . Let V be a
closed convex curve of circumference 1 . Inscribe k nonoverlapping curves
in V which are all similar to K Denote by f(W, k) the maximum of the
sum of the circumferences of these curves . If V is a parallelogram or a
triangle then clearly f(r , 12) = l . All that is needed is that `6' can be
covered with 11 copies of V . We do not know for which figures other cases
of exact coverings are possible for other values of k although for every k,
there are W's which have an exact covering into k parts, e.g., a rectangle .
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The following questions can be posed . For which V is the growth of
f (V, k) the slowest? Could this 16' be a circle? Which V permit exact
coverings? Which permit exact coverings with congruent curves similar
to V ? For such V, let 1 < n, C n 2 < . . . be the integers for which such
an exact covering is possible . What can be said about these sequences?
For example, can nk - o(k 2 ) ?
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