COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

ON PARTITION THEOREMS FOR FINITE GRAPHS

P. ERDÖS - R.L. GRAHAM

1. INTRODUCTION

For a given finite graph G and positive integer k, let $r(G ; k)$ denote the least integer r such that if the edges of K_{r}, the complete graph on r vertices, are arbitrarily partitioned into k classes then some class contains a subgraph isomorphic to G. The existence of $r(G ; k)$ follows at once from the well-known theorem of Ramsey [8] which asserts that $r\left(K_{n} ; k\right)<\infty$ for all n and k. In this paper we investigate the behavior of $r(G ; k)$ for large k as G ranges over various classes of graphs.

We shall usually refer to the k classes as "colors" and the copy of G in a single class as "monochromatic". Also, the notation $G(m, n)$ denotes a graph on m vertices and n edges.

2. TREES

Let T_{n} denote a tree on n edges.
Theorem 1.
(i) $\quad r\left(T_{n} ; k\right)>(n-1) k+1, \quad n \geqslant 1, \quad$ for k large and $\equiv 1(\bmod n)$;
(ii) $r\left(T_{n} ; k\right) \leqslant 2 k n+1, \quad n \geqslant 1, \quad k \geqslant 1$.

Proof. To prove (i), we use the result of Ray-Chaudhuri and Wilson [9] which guarantees the existence of a resolvable balanced incomplete block design $D_{k, n}$ having $(n-1) k+1$ points and $\frac{k(k n-k+1)}{n}$ blocks of size n provided only that k is sufficiently large and $\equiv 1$ $(\bmod n)$. Identify the points $D_{k, n}$ with vertices of $K_{(n-1) k+1}$. Assign the color i to all edges of $K_{(n-1) k+1}$ which correspond to a pair of points occurring in the i-th parallel class of $D_{k, n}$. This is a k-coloring of $K_{(n-1) k+1}$ which contains no monochromatic connected subgraph on $n+1$ vertices and, hence, (i) follows.

To prove (ii), we apply the elementary fact that for all T_{n},

$$
\begin{equation*}
T_{n} \subseteq G(m, m n) \tag{2}
\end{equation*}
$$

In any k-coloring of $K_{2 k n+1}$, at least $\frac{1}{k}\binom{2 k n+1}{2}$ edges must have the same color. Thus, we have a monochromatic $G(2 k n+1, n(2 k n+1))$ which by (2) contains a copy of T_{n}.

If the conjecture

$$
\begin{equation*}
T_{n} \subseteq G\left(m,\left[\frac{1}{2}(n-1) m\right]+1\right) \tag{3}
\end{equation*}
$$

of Erdôs and V.T. Sós [4] were known to hold, (1) could be replaced by

$$
\begin{equation*}
r\left(T_{n} ; k\right)<k n+O(1) \tag{1'}
\end{equation*}
$$

which may be asymptotically correct.

3. FORESTS

Let F_{n} denote a forest (i.e., an acyclic graph) with n edges and no isolated vertices. Let $u\left(F_{n}\right)$ denote the cardinality of a minimum set of vertices whose removal completely disconnects F_{n}.

Lemma 1.

$$
\begin{equation*}
r\left(F_{n} ; k\right)>\left[\frac{k+1}{2}\right](u-1), \quad k \geqslant 1, \quad u \geqslant 1 . \tag{4}
\end{equation*}
$$

Proof. Let t denote $\left[\frac{k+1}{2}\right]$. Consider $K_{t(u-1)}$ as a K_{t} with K_{u-1} 's for "vertices". Label these copies of K_{u-1} by $1,2, \ldots, t$. Assign the color i to all edges between vertices i and j for $1 \leqslant i<j \leqslant t$. Assign the color $t-1+i$ to all edges within the "vertex" K_{u-1} labeled i. This is a $(2 t-1)$-coloring of $K_{t(u-1)}$ which contains no monochromatic copy of F_{n} (by the definition of $u\left(F_{n}\right)$). Since $2 t-1 \leqslant k$ then (4) holds.

Note that if F_{n} has a component with n^{\prime} edges then it is easy to show (similar to (1)) that

$$
\begin{equation*}
r\left(F_{n} ; k\right)>(k-1)\left[\frac{n^{\prime}}{2}\right] . \tag{5}
\end{equation*}
$$

However, any F_{n} either has a component with \sqrt{n} edges or satisfies $u\left(F_{n}\right) \geqslant \sqrt{n}$. Thus, (4) and (5) can be combined to give

Theorem 2.

$$
\begin{equation*}
r\left(F_{n} ; k\right)>\frac{k(\sqrt{n}-1)}{2}, \quad k \geqslant 1, \quad n \geqslant 1 . \tag{6}
\end{equation*}
$$

On the other hand, there exist for all n examples of F_{n} for which $r\left(F_{n} ; k\right)$ is bounded above by $c k \sqrt{n}$. To see this, we first require a lemma.

Let S_{n} denote a tree consisting of one vertex of degree n and n vertices of degree 1. Let $m S_{n}$ denote the disjoint union of $m S_{n}$'s.

Lemma 2.

$$
\begin{equation*}
m S_{n} \subseteq G(t+m-1, e) \tag{7}
\end{equation*}
$$

for $e>\binom{m-1}{2}+\left(\frac{n-1}{2}+m-1\right) t, t \geqslant m(n+1)^{2}, m \geqslant 1, n \geqslant 1$.
Proof. We proceed by induction on m. For $m=1$, the lemma simply asserts that $G(t, e)$ has a vertex of degree $\geqslant n$ if $e>\left(\frac{n-1}{2}\right) t$ and this is certainly true. Assume, for some $m>1$, the lemma holds for $1, \ldots, m-1$.
(i) Suppose $G=G(t+m-1, e)$ has at least m vertices v_{1}, \ldots \ldots, v_{m}, each with degree $\geqslant m(n+1)$. Then for each $k, 1 \leqslant k \leqslant m$, a copy of S_{n} centered at v_{k} may be removed from G and thus, $m S_{n} \subseteq$ $\subseteq G$ in this case.
(ii) Suppose for some $p, 0 \leqslant p<m, G$ has exactly p vertices with degree $\geqslant m(n+1)$, say v_{1}, \ldots, v_{p}. Let G^{\prime} denote the subgraph of G induced by the remaining $t+m-1-p$ vertices. There are two possibilities.
(a) All vertices of G^{\prime} have degree $\leqslant n-1$. Thus G^{\prime} has at most $(t+m-1-p)\left(\frac{n-1}{2}\right)$ edges and so G has at most

$$
\binom{p}{2}+\left(p+\frac{n-1}{2}\right)(t+m-1-p)
$$

edges. But for $p \leqslant m-1$ this quantity does not exceed

$$
\binom{m-1}{2}+\left(m-1+\frac{n-1}{2}\right) t
$$

which contradicts the hypotheses on e.
(b) Some vertex v in G^{\prime} has degree $\geqslant n$ in G^{\prime}. We may delete a copy of S_{n} centered at v from G^{\prime}, causing a net loss of at most $m(n+1)^{2}$ edges in G^{\prime}. Replacing the vertices v_{1}, \ldots, v_{p} we have left a graph $G_{1}=G_{1}\left(t+m-1-n-1, e_{1}\right) \subseteq G$ where

$$
\begin{aligned}
e_{1} & >\binom{m-1}{2}+\left(\frac{n-1}{2}+m-1\right) t-m(n+1)^{2}-p(n+1) \geqslant \\
& \geqslant\binom{ m-2}{2}+\left(\frac{n-1}{2}+m-2\right)(t-n)
\end{aligned}
$$

and

$$
t-n+m-2 \geqslant(m-1)(n+1)^{2}
$$

for $t \geqslant m(n+1)^{2}$. Hence, by the induction hypothesis, $(m-1) S_{n} \subseteq G_{1}$ and so $m S_{n} \subseteq G$. This completes the proof of (7).

Theorem 3.

$$
\begin{equation*}
r\left(n S_{n} ; k\right) \leqslant 3 k n, \quad n \geqslant 1, \quad k \geqslant 3 n^{2} \tag{8}
\end{equation*}
$$

Proof. Let $t=3 k n$. Any k-coloring of K_{t} contains a monochromatic subgraph $G(t, e)$ where $e \geqslant \frac{1}{k}\binom{t}{2}$. By Lemma 2 , $n S_{n} \subseteq G(t, e)$ provided

$$
e>\binom{n-1}{2}+\left(\frac{n-1}{2}+n-1\right)(t-n+1)
$$

and

$$
t-n+1 \geqslant n(n+1)^{2}
$$

But these conditions are certainly satisfied for $t=3 k n, k \geqslant 3 n^{2}, n \geqslant 1$.
Thus, if n is a square and $k \geqslant 3 n$ then

$$
\begin{equation*}
r\left(\sqrt{n} S_{\sqrt{n}} ; k\right) \leqslant 3 k \sqrt{n} \tag{9}
\end{equation*}
$$

The following example shows that the bound on e in Lemma 2 is best possible when n is odd. Let H be a regular graph on t vertices of degree $n-1$. Form the graph $G=G\left(t+m-1,\binom{m-1}{2}+\left(\frac{n-1}{2}+\right.\right.$ $+m-1) t$) by adjoining a copy of K_{m-1} and joining each vertex of K_{m-1} to each vertex of H. Clearly $m S_{n} \nsubseteq G$.

For k relatively small compared to n, the situation is somewhat different.

Theorem 4.

$$
\begin{equation*}
r\left(F_{n} ; k\right)>c_{1} \sqrt{k} n, \quad 1 \leqslant k \leqslant n^{2} \tag{10}
\end{equation*}
$$

for some positive constant c_{1} (independent of k and n).
Proof. From a finite projective plane $P P(r)$ of order r, we construct a covering of $K_{r^{2}+r+1}$ by $r^{2}+r+1$ copies of K_{r+1} as follows. The vertices of $K_{r^{2}+r+1}$ are the points of $\operatorname{PP}(r)$. The vertices of the K_{r+1} 's are just the sets of $r+1$ points which lie on each of the $r^{2}+r+1$ lines of $P P(r)$. The edges of the K_{r+1} 's cover the edges of $K_{r^{2}+r+1}$ by the properties of $P P(r)$. Now, replace each point of $P P(r)$ by a copy of K_{t} where $t=[n / \sqrt{k}]$, keeping in mind the restriction $k \leqslant n^{2}$. This gives a covering of $K_{\left(r^{2}+r+1\right) t}$ by $r^{2}+r+1$ copies of $K_{(r+1) t}$. By choosing $r+1$ to be the greatest prime power $<\sqrt{\bar{k}}-1$ (which guarantees the existence of $P P(r)$) and using the fact that $p_{m+1} / p_{m} \rightarrow 1$ for the primes p_{m}, we see that for a suitable constant $c_{1}>0$, we have covered $K_{c_{1} \sqrt{k} n}$ by $\leqslant k$ copies of K_{n}. Hence, assigning different colors to the edges of the different K_{n} 's, no monochromatic copy of F_{n} has been formed and (10) follows.

On the other hand, it follows from (7) that for a suitable universal constant c_{2},

$$
\begin{equation*}
r\left(\sqrt{n} S_{\sqrt{n}}\right)<c_{2} \sqrt{k n}, \quad 1 \leqslant k \leqslant n, \tag{11}
\end{equation*}
$$

when n is a square. Thus, for both (6) and (10), the upper bound on $r\left(\sqrt{n} S_{\sqrt{n}} ; k\right)$ comes to within a constant factor of the general lower bound.

4. EVEN CYCLES

As might be expected, the more highly structured a graph G is, the more difficult it is to obtain accurate bounds on $r(G ; k)$. Still, even the rough bounds we derive for cycles C_{m} on m vertices point out the striking difference in the behavior of $r\left(C_{m} ; k\right)$ for even and odd m. We first consider the case m even.

Theorem 5.

$$
\begin{equation*}
r\left(C_{2 n} ; k\right)>c_{3} k^{1+\frac{1}{2 n}}, \quad k \geqslant 1, \quad n \geqslant 1, \tag{12}
\end{equation*}
$$

where $c_{3}=c_{3}(n)$.
Proof. Set $\epsilon=\frac{1}{2 n+1}$. For a large $h, h^{1-\epsilon}$-color the edges of K_{h} uniformly at random. Since there are $\left(h^{1-\epsilon}\right)^{\binom{h}{2}}$ ways to color K_{h} and there are $<h^{2 n} C_{2 n}$'s in K_{h} then the total number of monochromatic $C_{2 n}$'s in all colorings is $\leqslant h^{2 n} h^{1-\epsilon}\left(h^{1-\epsilon}\right)\binom{h}{2}-2 n$. Thus, the expected number of monochromatic $C_{2 n}$'s is no more than

$$
\frac{h^{2 n}\left(h^{1-\epsilon}\right)^{\binom{h}{2}-2 n+1}}{\left(h^{1-\epsilon}\right)^{\binom{h}{2}}}=h^{1+\epsilon(2 n-1)}
$$

This implies there exists an $h^{1-\epsilon}$-coloring of K_{h} in which there are $\leqslant h^{1+\epsilon(2 n-1)}$ monochromatic $C_{2 n}$'s formed. Form a graph $G=G(h, e)$ with $e \leqslant h^{1+e(2 n-1)}$ by removing one edge from each of these monochromatic $C_{2 n}$'s. By a theorem of Nash-Williams [7], G may be decomposed into no more than $\sqrt{e / 2}+1 / 2$ acyclic subgraphs. If we assign a new color to each of these subgraphs then we have shown the existence of an $\left(h^{1-\epsilon}+c h^{\frac{1}{2}(1+\epsilon(2 n-1))}\right)$-coloring of K_{h} which contains no monochromatic $C_{2 n}$. Replacing ϵ by $\frac{1}{2 n+1}$ and letting $k=$ $=(1+c) h^{\frac{2 n}{2 n+1}}$ we see that for a suitable * $c_{3}=c_{3}(n)$,

$$
r\left(C_{2 n} ; k\right)>c_{3} k^{1+\frac{1}{2 n}}, \quad k \geqslant 1, \quad n \geqslant 1,
$$

and (12) is proved.
In the other direction we have the following result.

[^0]Theorem 6. For all $\epsilon>0, n \geqslant 2$, there exists $c_{4}=c_{4}(\epsilon, n)$ such that

$$
\begin{equation*}
r\left(C_{2 n} ; k\right)<c_{4} k^{1+\frac{1+\epsilon}{n-1}}, \quad k \geqslant 1 . \tag{13}
\end{equation*}
$$

Proof. Choose $c>0$ and for a large k (to be determined later) let $K_{c k}{ }^{1+\epsilon}$ be arbitrarily k-colored. Hence, $K_{c k}{ }^{1+\epsilon}$ must contain a monochromatic subgraph $G=G\left(c k^{1+\epsilon}, e\right)$ where $e \geqslant \frac{1}{3} c^{2} k^{1+2 \epsilon}$.

By a recent result of Bondy and Simonovits [2], G contains a copy of $C_{2 n}$ provided the following two inequalities hold:

$$
\begin{equation*}
n \leqslant \frac{e}{100 c k^{1+\epsilon}}, \tag{i}
\end{equation*}
$$

(ii)

$$
n\left(c k^{1+\epsilon}\right)^{1 / n} \leqslant \frac{e}{10 c k^{1+\epsilon}} .
$$

However, it is easily checked that for any $\delta>0$, if ϵ is taken to be $\frac{1+\delta}{n-1}$ then for sufficiently large c and k, (i) and (ii) both hold. Thus, for suitable $c_{4}=c_{4}(\delta, n)$,

$$
r\left(C_{2 n} ; k\right)<c_{4} k^{1+\frac{1+\delta}{n-1}}, \quad k \geqslant 1
$$

and (13) is proved.
Of course, since $C_{2 n}$ contains a subtree on $2 n-1$ edges then by (5)

$$
\begin{equation*}
r\left(C_{2 n} ; k\right)>(k-1)(n-1), \quad k \geqslant 1, \quad n \geqslant 1 . \tag{14}
\end{equation*}
$$

It is interesting to note that initially for $k, r\left(C_{2 n} ; k\right)$ is bounded above by ckn.

In particular, the argument of Theorem 6 can be suitably modified to establish

$$
\begin{equation*}
r\left(C_{2 n} ; k\right) \leqslant 201 k n, \quad 1 \leqslant k \leqslant \frac{10^{n}}{201 n}, \quad n>1 . \tag{15}
\end{equation*}
$$

It has recently been shown [3] for C_{4} that

$$
\begin{aligned}
& r\left(C_{4} ; k\right) \leqslant k^{2}+k+1 \text { for all } k \\
& r\left(C_{4} ; k\right)>k^{2}-k+1 \text { for } k=\text { prime power. }
\end{aligned}
$$

Hajnal and Szemerédi had previously shown (unpublished) that

$$
r\left(C_{4} ; k\right)>c k^{2} \quad \text { for some } \quad c>0 .
$$

5. ODD CYCLES

Theorem 7.

$$
\begin{equation*}
2^{k} n<r\left(C_{2 n+1} ; k\right)<2(k+2)!n, \quad k \geqslant 1, \quad n \geqslant 1 . \tag{16}
\end{equation*}
$$

Proof. The lower bound follows easily by induction on k. For $k=1, C_{2 n+1} \notin K_{2 n}$. If there exists a k-coloring of $K_{2^{k} n}$ with no monochromatic $C_{2 n+1}$ then by joining two such copies of $K_{2^{k} n}$ by edges of color $k+1$ we have a $(k+1)$-coloring of $K_{2^{k+1}}{ }_{n}$ with no monochromatic $C_{2 n+1}$.

We now prove the upper bound. Let $t_{0}=2(k+2)!n$ and suppose $K_{t_{0}}$ is arbitrarily k-colored. Then for some color, say color c_{1}, some vertex v_{1} has at least $t_{1} \geqslant \frac{t_{0}-1}{k}$ edges of color c_{1} leaving it. Let G_{1} be the complete subgraph spanned by the t_{1} vertices connected to v_{1} by these edges of color c_{1}. If G_{1} contained a subset of m vertices which spanned a subgraph G_{1}^{\prime} containing $\geqslant m n$ edges of color c_{1}, then by a theorem of Erdós and Gallai [5] G_{1}^{\prime} would contain a path $\mathrm{P}_{2 n-1}$ of $2 n-1$ edges of color c_{1}. This, together with the two edges of color c_{1} to v_{1}, would form a monochromatic $C_{2 n+1}$. Hence we may assume all subsets of m vertices of G_{1} span $<m n$ edges of color c_{1}. Thus, some vertex ν_{2} in G_{1} has $\leqslant 2 n-1$ edges in G_{1} of color c_{1}. Therefore, for some new color $c_{2} \neq c_{1}, v_{2}$ has a least

$$
t_{2} \geqslant \frac{t_{1}-1-(2 n-1)}{k-1}
$$

edges of color c_{2}, etc.
Continuing this argument recursively, we find that some monochromatic $C_{2 n+1}$ must occur provided $t_{k} \geqslant 1+2 k n$. A brief calculation shows that for $t_{0} \geqslant 2(k+2)!n$, this is indeed the case and so (16) is established.

Another upper bound on $r\left(C_{2 n+1} ; k\right)$ which is probably better than that in (16) is given by the following result.

Theorem 8. For a suitable constant c,

$$
r\left(C_{2 n+1} ; k\right)<c k^{3} n r^{2}\left(C_{3} ; k\right), \quad n \geqslant 1
$$

Proof. Let m_{3} denote $r\left(C_{3} ; k\right)$ and let s denote $3 \mathrm{~km}_{3}$. From the definition of m_{3} it follows that for some $c_{1}>0$, any k-colored K_{s} contains at least $c_{1} k m_{3}$ monochromatic C_{3} 's. Hence for t large, if K_{t} is k-colored then each choice of s vertices of K_{t} spans at least $c_{1} k m_{3}$ monochromatic C_{3} 's. If we sum this over all $\binom{t}{s}$ choices of s vertices in K_{t}, we see that each monochromatic C_{3} has been counted at most $\binom{t-3}{s-3}$ times. Hence, there are at least

$$
\frac{c_{1} k m_{3}\binom{t}{s}}{\binom{t-3}{s-3}}
$$

monochromatic C_{3} 's in K_{t} and so at least

$$
\frac{c_{1} m_{3}\binom{t}{s}}{\binom{t-3}{s-3}}>\frac{c_{2} m_{3} t^{3}}{s^{3}}
$$

monochromatic C_{3} 's all having the same color, say, color c^{\prime}. For $t=$ $=c k^{3} n m_{3}^{2}$ this number is at least $c_{3} n t^{2}$. Thus, some vertex v in K_{t} has at least $c_{4} n t$ of the edges of these triangles incident to it. The corresponding vertices of these edges span a graph G which contains all the third edges of the triangles, i.e., at least $\frac{1}{2} c_{4} n t$ edges of color c^{\prime}. By
the previously mentioned theorem of Erdös and Gallai, if $\frac{1}{2} c_{4} \geqslant 1$ then G must contain a path $P_{2 n-1}$ consisting of $2 n-1$ edges of color c^{\prime}. This, together with v now forms a monochromatic $C_{2 n+1}$. By choosing c sufficiently large, we can force $c_{4} \geqslant 2$ and the argument is complete.

It is probably true that

$$
\lim _{k \rightarrow \infty} \frac{r\left(C_{2 n+1} ; k\right)}{r\left(C_{3} ; k\right)}=0 \quad \text { for } \quad n \geqslant 2,
$$

but this is not known at present.
We note here that for the complete bipartite graph $K_{n, n}$, the inclusion

$$
\begin{equation*}
K_{n, n} \subseteq G\left(m, c_{1} m^{2-1 i n}\right) \tag{17}
\end{equation*}
$$

due to Kövári, Sós and Turán [6] implies that $r\left(K_{n, n} ; k\right)<\left(c_{2} k\right)^{n}$ for suitable constants $c_{i}>0$. The determination of $r\left(K_{n} ; k\right)$ is a wellknown classical problem. It is known [1] that

$$
e^{c_{1} k n}<r\left(K_{n} ; k\right)<k^{c_{2} k n}
$$

for suitable constants $c_{i}>0$.

6. CONCLUDING REMARKS

A number of questions remain open, several of which we mention here.
(i) Is it true for trees T_{n} that

$$
r\left(T_{n} ; k\right)=k n+O(1) ?
$$

As mentioned before, this would follow from the conjecture

$$
T_{n} \subseteq G\left(m,\left[\frac{1}{2}(n-1) m\right]+1\right) . \quad m \geqslant n+1 .
$$

(ii) It follows from Lemma 1 that if T is a maximum component
of a forest F and $u(F)$, as before, denotes the cardinality of a minimum set of vertices whose removal completely disconnects F, then

$$
r(F ; k)>\max \left\{\left[\frac{k+1}{2}\right](u-1), r(T ; k)\right\} .
$$

Is this essentially the correct behavior of $r(F ; k)$?
(iii) It is known that $K_{2^{n}}$ can be decomposed into n bipartite graphs while $K_{2^{n}+1}$ can not be so decomposed. What is the least odd circuit which must occur in any decomposition of $K_{2^{n}+1}$ into n subgraphs?
(iv) It follows from what we have proved that for any graph G_{n} with n edges

$$
r\left(G_{n} ; k\right)>c k \sqrt{n}
$$

for a suitable constant c. Among all such graphs, which have the fastest growing values of $r\left(G_{n} ; k\right)$? For example, is it true that

$$
r\left(K_{n} ; k\right) \geqslant r\left(G_{\binom{n}{2}} ; k\right), \quad k \geqslant 1, \quad n \geqslant 1
$$

for any graph $G_{\binom{n}{2}}$ with $\binom{n}{2}$ edges?
(v) Is it true that

$$
\lim _{k \rightarrow \infty} \frac{r\left(C_{2 n+1} ; k\right)}{r\left(C_{3} ; k\right)} \rightarrow 0 \text { for } n \geqslant 2 .
$$

It is not even known at present that

$$
\frac{\log r\left(C_{2 n+1} ; k\right)}{k}=O(1), \quad n \geqslant 2 .
$$

Trivially,

$$
r\left(K_{n} ; k\right)<k^{k n}
$$

but perhaps

$$
r\left(K_{n} ; k\right)<c_{n}^{k} .
$$

It would be of interest to investigate $r(G ; k)$ when both $|G|$ and k tend to infinity, but we do not do this here.

REFERENCES

[1] H.L. Abbott, A note on Ramsey's Theorem, Canad. Math. Bull., 15 (1972), 9-10.
[2] J.A. Bondy - M. Simonovits, Cycles of even length in graphs, Res. Rep CORR 73-2, Dept. of Comb. and Opt., Univ. of Waterloo, Feb. (1973).
[3] Fan Chung - R.L. Graham, On multicolor Ramsey numbers for complete bipartite graphs, (to appear).
[4] P. Erdös, Extremal problems in graph theory, Theory of graphs and its applications, Proc. Sympos. Smolenice, Publ. Czechoslovak Acad., Prague, (1964), 29-36.
[5] P. Erdös - T. Gallai, On maximal paths and circuits in graphs, Acta Math. Hung. Acad. Sci., 10 (1959), 337-356.
[6] T. Kővári - V.T. Sós - P. Turán, On a problem of Zarankiewicz, Colloq. Math., 3 (1959), 50-57.
[7] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc., 39 (1964), 12.
[8] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., (2) 30 (1930), 264-286.
[9] D.K. Ray-Chaudhuri-R.M. Wilson, The existence of resolvable block designs, A Survey of Comb. Theory, (J. N. Srivastava, et al., ed.) (1973), 361-376.

[^0]: * Since we must have $h \geqslant h(n)$ for the preceding arguments to be valid.

