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§0. INTRODUCTION

In this paper we are going to present several new results concerning
chromatic numbers of set-systems . As a starting point for our investigation
we can take the paper [5] where the chromatic number of a set-system is
defined and the following theorem is proved (see [5] p . 72, Theorem 5 .5) .

Theorem A (E r d ő s- H a j n al) . Let K> w be an infinite car-
dinal. Suppose 'S is a graph of chromatic number > K . Then con-
tains a complete bipartite graph K(t, K+ ) for every t < w .

In [5] a false generalization of this theorem was claimed for n-tuple
systems with 3 < n < w . The simplest special instance of the false theo-
rem said that if a triple system has chromatic number > 8 0 then it con-
tains two triples with a common edge (see [5] p . 92, Theorem 12 .1) .

It was discovered in [ 12] that this holds only if the set of vertices has
cardinality - N1 and otherwise there are triple systems of arbitrarily large
chromatic number consisting of edge disjoint triples .

This led us to the following problem in [ 12] . To have a short notation
let us say that Y is an (n, i, A)-system if Y consists of n-tuples such
that every i + 1 set is contained in at most A members of Y . (n, i, I)-
systems will be briefly called (n, i)-systems .

It was proved in [ 12] that for 1 < i < n < w < K there are (n, i)-
systems Y with chromatic number > K and that the cardinality of such
an y must be large (depending on n, i and K) but in [12] we could
not tell how large it must be .
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One of the main aims of this paper is to settle this problem assuming

G.C.H. We are going to prove

Theorem B .

a) Assume mi + 2 < n < 80 . Then every (n, i, 8,)-systems Y of
cardinality N«+m has chromatic number at most 8 . .

b) Assume 2 < n < mi + 2 < 80 and that G .C.H. holds . Then there
is an (n, i}system Y of cardinality 8.+ m and chromatic number > 8a
(see Corollaries 2.1 and 12 .4) .

As to b) we prove a theorem in ZFC which yields it if G .C.H. is as-

sumed . In fact we will show that b) is not a Theorem of ZFC . See Theo-

rem 5 .6 and 5 .7 . E.g. we will prove that MA K - Every (3, 1)-system of

cardinality K has chromatic number < 8 0 . On the other hand in § § 12-
15 we will prove in ZFC a number of (incomparable) results working in

the direction of Theorem B b) and we will summarize the situation in § 16 .

Theorem B answers the question if there is an n-tuple system of size

X and of chromatic number > K not containing the special n-tuple sys-

tems which consist of two n-tuples having > i + 1 elements in common .

The general problem now arises

(1) Given K, A and n > 2, characterize those finite n-tuple sys-

tems which are contained in all n-tuple systems of chromatic number > K

and cardinality X .

Of course we could omit "finite" from (I) but we are not prepared

to do so . In fact we will not in general discuss (I) but we will focus our

attention on the following problems (II), (III), (IV), where (111) is an in-
stance of (1), (11) and (IV) are suggested by (1) .

(11) Characterize those finite n-tuple systems 9 for which K

(K, V,)" holds .

(111) Characterize those finite n-tuples systems which are contained

in all n-tupie systems of cardinality and chromatic number K .

(IV) Characterize those finite n-tuple systems which are contained



in all n-tuple systems of chromatic number > K.

The reason that one dares to ask such general questions at all is that
in case n = 2 all of them can be answered .

Theorem C( E r d ő s- H a j n a I ) . For every K> w and for every
0 < i < w there exists a graph of K vertices and of chromatic num-
ber K which does not contain

C2,+ 1
for 0 < j < i (see [ 5 ] p . 76. The-

orem 7 .4).

Theorem A and C together give that in case n = 2 the answer for
both (III) and (IV) is the class of finite bipartite graphs. On the other hand
the well-known E r d ő s- D u s h n i k- Miller theorem K -> (K, 80 ) 2
for K > 80 gives that in case n = 2 (II) is the class of all finite graphs .

Of course this does not exhaust all problems which can be asked in
case n = 2. One of the most interesting questions which remains open is
due to W . T a y 1 o r and really calls for the characterization of those
classes of finite subgraphs which are the finite subgraphs of a given graph
of chromatic number > 8 0 , However presently we do not go in this di-
rection. The little we know about this is published in [ 13] .

Unfortunately the problems (II), (III), (IV) become very difficult for
n > 3 and strictly speaking we only have partial results even for K = w 1 ,

n=3 .

Our knowledge about (11) and (III) will be summarized at the end of
§ § 10-11 respectively. (IV) will be discussed in § 14 and we will restrict
our attention mainly to triple systems .

The first part of our paper, § § 2-5, contains Theorems going in the
direction of Theorem B a), the rest is mainly devoted to constructions
going in the other direction .

Corresponding to (11), (III) and (IV) we can define functions hn (t, a),
in (t, a), gn (t, a) as follows :

hn (t, a) = min {m : There is an n-tuple system 9 on 8, + 1 without
free 8. + 1 -sets such that all subsystems induced by t points contain at



most m n-tuples of Y} .

it , ( t, a) = min {m : There is an n-tuple system u' on 8.+ i of chromat-
ic number 8,,,+ 1 such that all subsystems induced by t points contain
at most rn n-tuples of

gn (t, a) = min {m : There is an n-tuple system .J' of chromatic number
> 8« such that all subsystems induced by t points contain at most m
n-tuples of J'} .

We will be able to prove that

(II')
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for n>4 .

See Corollaries 10 .7, 11 .14 and Theorems 14 .4, 14.6. Note also that
2

h 2 (t, a) _ ( t J, g2 (t, a) = g 2 (t, a) _
4

because of the remarks made

after Theorem C, and because of the well-known theorem of T u r á n that
( 2

a graph of t vertices not containing a triangle has at most l 4 ] edges .

G.C.H . is used only in the upper estimates in (II') and (III') . These are the
most general theorems we can prove concerning problems (II), (III), (IV) .
There is another Taylor type problem which arises in connection with (IV) .

(V) Determine the smallest cardinal X with the following property :

If a finite triple system 3F occurs in all triple-systems having chromat-
ic number > No and cardinality < a then it occurs in all triple systems
of chromatic number > 8 0 .

It is fairly obvious that such a X exists, and the example of two
triangles with a common edge shows that A > 82' This problem was al-
ready asked in (13] Problem 5 . There we claimed that in this paper we

- 42 9 -



will exhibit a finite triple system which does not occur in a triple system
x +

of cardinality (22 0,

	

and of chromatic number > 80 and for which
we can not improve

l
this estimate . Working through the material of this

paper we killed all these candidates. We may conjecture but we have no
80hape to prove that X < 2 2 . We are going to state more problems of

this type at the end of § 14 .

Our inquiry led us to some other questions which are more or less in-
dependent of the main lines of the paper described above . Results con-
cerning these problems will be included as well, but they will be summa-
rized in the respective chapters only . For the convenience of the reader
we will state in detail most of the results we use from our earlier papers
on this subject and sometimes we even give proofs for them .

§ 1 . NOTATION

In what follows we work in ZFC . Our notation will be standard . In
particular, ordinals are identified with the sets of their predecessors, and
cardinals with their initial numbers . Greek lower case letters denote ordinals .
i, j, n, k, l, m, n, r, s denote non negative integers. We use both 8 . and
w to denote cardinals . K+ is the immediate cardinal successor of K .

We use the well-known partition relations, the "ordinary partition re-
lation", the "polarized partition relation" and the "square-bracket parti-
tion relation". Since they are not our main subject in this paper we do
not give the definitions . We offer [8] as reference where the definitions
can easily be found .

By a set-system we mean a set of sets Y such that I A I > 2 for all
A E ~. The purpose of this convention to make the following definition
possible .

Definition . Let Y be a set-system . The chromatic number of Y
is the smallest cardinal K for which there is a partition of length K of
U _Y, U9= U P~ such that A ¢ PV for all v < K and A E Y .

V< K



The chromatic number of a set-system Y will be denoted by

Chr ( Y) .

Obviously Chr ( y) < I U Y I for all set-systems Y. (See [5] p. 66) .

This is a generalization of the chromatic number of a graph . We say

that a set-system Y is a A-tuplé system if I A I= X holds for all A E S .

A graph ~4 is a 2-tuple system . That means we identify a graph with the

set of its edges . From our point of view it will be usually irrelevant if the

set of vertices is U ~'j or any set containing U ~ . If nothing else is said

and Y is a set-system then U y will be called the set of its vertices .

If Y is a set-system and X a set we say that X is a free set for

Y if no element of Y is a subset of X .

Assume Y is a set-system, X a cardinal . The A-tuple system in-
duced by Y is defined as

{Y : IY1=XA3A(AE J'AYcA)} .

If Y is a set-system, and X a subset of its vertices . The sub-set-system of

Y induced (or spanned) by X is the set-system { Y: Y C Y A Y C X}=
= Y n _,o (X) .

Where X is a set, X a cardinal we put as usual [XJ' _ {Y C X :
I Yl = X}, [X]< 1, _ {YC X: I YI < X} .

If Xi (i < n) are pairwise disjoint sets, Ai (i < n) cardinals then

[X o , . . . ' xn _ 1
]4, . . ., ~'n- 1 =

= {Yc U Xí : ~Xi n Y1=Ai for i<n } .
i<n

A K(X, K)-bipartite graph is a graph of the form [Xo , X, ] 1, 1 where

IXol=A, IX 1 i=K.

A complete K-graph is a graph of the form [X] 2 where X I = K .

C , 3 < j < w denotes a graph which is a circuit of length j .

If we say e .g. that a graph '6' contains a circuit C we mean that
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contains a subgraph isomorphic to a C . We use similar conventions
for other classes of graphs or set-systems whenever there is no danger of
misunderstanding .

Finally we mention two conventions about ordered sets . Let R, -<
be an ordered set. We put R I -< x = fy E R : y -< x } . For A, B C R we
write A -< B iff `d a, b(a E A n b E B- a-< b) .

Though we will try to make the rest of the paper self contained, a
knowledge of the introductory parts of [5] might be helpful .

§2 . A THEOREM RESTRICTING THE CHROMATIC NUMBERS
OF RELATIVELY SMALL n-TUPLE SYSTEMS

In this chapter a generalization of Theorem A is proved for n-tuple
systems which yields the only if part of Theorem B . The method of proof
is the same which was used to establish results of similar character in [6]
§5, [5] §4, and [ 12] . In its simplest form this method is due to E . W .
Miller (see [21]) .

First we state our theorem in its general form .

Theorem 2.1 . Let k, i . E cc, I < j < cc be such that k = Z i .,1

	

j= 1 1
and it = 0 implies im = 0 for j < in . Suppose

	

is a k + 2-tuple
svstem with chromatic number > Na . Then there is a positive integer m
such that

(1) for each t < w there are pairwise disjoint im + 1 sets A s (s < t)
and an 8a+m set B such that Vs < t`db E B 3XE .,'(A S u {b} c X) .
hence in particular, there exists Y' C Y with 1 -~ I = Sa+m and
1ÍÍ YI' im+l'

Note that for a given sequence of ii,s we get the best result if we ar-
range them decreasingly .

Before turning to the proof first we show the only if part of Theo-
rem B follows from this .



Corollary 2.2 . Let n > mi + 2 . If .' is an (n, i, 8« )-system on
8, + m vertices then Chr ( Y) < 8Q .

Proof. Since the chromatic number of the induced mi + 2-tuple sys-
tem is not smaller than Chr (Y) we may assume n = mi + 2 .

Let k = mi, ü = i for 1 < j < m and i,=0 for j > m. Now by
Theorem 2 . 1, either .' is not an (n, i, 8,)-system or the graph induced
by Y contains a point of valency 8a+m + 1 , a contradiction .

For the proof of Theorem 2 .1 we need a sequence of lemmas .

Lemma 2.3 . Suppose f: [a]< I - [ X] -< " where X is an uncountable
cardinal and K < X. Then there is a decomposition

X= U S
V< cf(X)

where the sets S. are disjoint,

f(X) c U Sµ for v < cf (A) .
µ<v

I S, I< X and X E[ U Sµ<1 implies
µ<V

Proof. It is an easy exercise or else it follows from the Löwenheim -
Skolem theorem .

Definition 2.4 . Let Y be a set-system with set of vertices V . The
strong coloring number of Y is the smallest cardinal X such that there
exists a well-ordering -< of V satisfying the following :

For all x E V and for all systems Y' of pairwise disjoint subsets
of Vl -< x with A E Y' - A u {x} E Y, I Y' I < A holds .

The strong coloring number of 90 will be denoted by Col*( .91) .
This concept was first introduced in [5] 13 .7 where we called it quasi-col-
oring number .

Lemma 2.5 (see [5] 3 .8) . Assume Y is a set-system of finite sets .
Then Chr (Y) < Col* (Y) .

Proof. Let -< be a well-ordering of the set of vertices V of Y
satisfying the requirement of the above definition with X = Col* ( Y).



One can easily define a mapping f: V -> X by transfinite induction on <
in such a way that f- i ({v}) is a free set of V ' for all v < X .

Lemma 2.6 . Suppose 0 < r < n < w < A . Set V,' be an n-tuple
system with set of vertices X and Chr ( Y) > 8a . Then one of the fol-
lowing conditions holds :

(1) For any t < w and T < X there are pairwise disjoint sets A S E
E [A]', (s < t) such that I {b E A : `d s < t 3X E Y (A s U {b} C X)) I > T .

(2) The (n - r + 1)-tuple system induced by J has a subsystem
of cardinality < X with chromatic number > 8U .

Proof. Let t < w and w < T < A be a pair for which (1) fails and
assume indirectly that (2) is false as well . Define f(X) for X E [XI< ' as
follows. Assume X E [X 1 r ' . Let y E f(X) iff there are sets A s E [X1`,

(s < t), U A s = X such that for all s < t there is a Y E Y with
s<t

A s u {y} C Y. Put f(X) _ in the other cases . By the indirect assump-
tion that (1) fails we know that J f(X) I < T for X E [X1< " . Hence ap-
plying Lemma 2 .3 we get a decomposition

~= U S
v< cf (x) v

satisfying the requirements of Lemma 2 .3 .

Now n -- r + 1 > 2, and we may consider the (n - r + 1)-tuple sys-
tems induced by

	

on the sets S . for v < cf (),) . Since I S , I < A and
(2) fails they all have chromatic number < lea ,
p < wa such that

Sv = U S~ P and
P<wa

no (n --- r + 1)-set of S v P is contained in an element of

	

for v <
< cf (A), p < wa .

Put D V = U S

	

for p < wa . This is a decomposition of X
v< cf(x) v1

into the union of a sets and thus we will be done if we show that V'

is < a chromatic on each set DP , p < W' .

hence there are sets Sv P ,



Let now p be fixed and put briefly D P = D, SVP = Z. for v <
< cf (A) . For X E Y, X C D let v = max {p : Zµ n X 0) . Then, by
the above mentioned properties of SVP , I X n U Zµ I , r .

A<v

Let now

={ Y E [D 1r , I : 3X(=- Y 3v < cf (A)

(YCXAIYnZ I=IAIYn U Z I=r~} .
v

	

µ<v A

Since for all X E Y~, X C D there is Y E _~' , Y C X it is sufficient
to see that Chr ( ~/-) < 8a .

Let now be a well-ordering of D such that Zµ < ZV for p <
< v < cf (A) . By the definition of f, for all x E D there are at most
t- 1 pairwise disjoint sets T C D I -< x such that T u {x } E ; . This
means according to definition 2 .4 that Col* ( Y) < t, hence by Lemma
2.5, Cllr ( w') < t < 8 a .

The following is an easy corollary of Lemma 2 .6 .

Corollary 2 .7 . Assume f is an n-tuple system with chromatic
number > N. and let K be an infinite cardinal. Either the graph induced
b_v / contains a K(t, K + ) for every t < w or else Y has a subsys-
tem on < K vertices with chromtic number > 8

Proof. Assume that for some t < w the induced graph does not
contain a K(t, K + ) subgraph. By minimizing we may assume the existence
of a subsystem such that the set of vertices is A, and all subsystems
spanned by a set of smaller cardinality have chromatic number < N U . If
A > K, then using Lemma 2 .6 with 7 = K, r = 1 we get a contradiction .

Note that Theorem A stated in the introduction follows from Corol-
lary 2.7 if we put K = 8,,, n = 2 .

Now we can give the

Proof of Theorem 2 .1 . Let l = min {i -- 1 : ü = 0}. If (1) is false for
in = I -+- 1, then by Corollary 2 .7 we may assume that the set of vertices



has cardinality < Na +V Now we apply induction on k . For k = 0 we
have l = 0 and by now the statement is trivial . Assume k > 0 and the
statement is true for all k' < k . Then 1 > 0 . Put k' = k - il . Using
Lemma 2 .6 with r = it + 1 we get that either (1) holds with m = I or
the k' + 2-tuple system induced by Y has a subsystem Y' of chromat-
ic number > 8a having at most 8a+I-1 vertices . Let I*i = ü for j < 1,

i' = 0 for j >, l, k' = S 1' . By the induction hypothesis S' satisfies1

	

i= 1 1
(1) of Theorem 2.1 with some m and m < 1 for this m because the
cardinality of Y is small . Hence Y satisfies (1) as well .

§3 . COROLLARIES TO THEOREM 2 .1 . THE LOWER ESTIMATES
FOR h 3 (t, a), g 3 (t> a), g„ (t' a)*

The following is an obvious corollary to Theorem 2 .1 .

Corollary 3 .1 . Let y be a triple system with Chr (Y) > 8 . . Then,
either the induced graph contains a K(t, N«+ 2) for every t < w, or else
for every t < w there are pairwise disjoint 2-sets As (s < t) and an
8,,+ , set B such that As u {b } E Y for all s < t, b E B .

Now we draw the first corollary for g3 (t, a) .

Definition 3.2. Let g 3 (t, a) = min {m : There is a triple system Y
on Nom+ 1 points with Chr ( Y) _ 8«+ 1 such that all subsystems induced
by £ points have at most m triples} .

Corollary 3.3 . If Y is an 8,,,+ 1 -chromatic triple system on 8«+ 1
points, then for all t < w there are disjoint 2-sets A s (s < t) and an
N«+ 1 set B such that As u {b} E

	

for all s < t, b E B . Hence for

all t > w there are t points contining

	

t2
8

	

triples i.e .

	

t2
g3 (t, a) >' 1 8 1 .

Proof. The first statement follows from 3 .1 . The second follows from
this with an easy discussion .

3.3 will be shown to be best possible using G .C.H. (see § 11 . Theorem
11 .13) .



Now first we deduce a stronger result for triple system on 8a+ 1
without free Na+ 1 -sets .

Definition 3 .4 . Let h 3 (t, a) = min {m : There is a triple system Y
on 8a+ 1 without free 8a+ 1 -sets, and such that all subsystems induced
by t points have at most m triples} .

Lemma 3 .5 . Let Y be a triple system on w a+ 1 without a free
a+ 1 -set. Then there is a set A C wa+ 1 , I A I = 8 0 such that

(1)

	

1{YE :Y : XC Y}1= NQ +1 for all XE [A j 2 .

Proof. Let S be the graph on wa+, whose edges are the X E

E [wa+ 1 1 2 satisfying (1) . If W contains a complete 80 graph we are
done. If this is not the case, then by the E r d ő s -- D u s h n i k-
M i 11 e r theorem 8a+ 1 _+ (8a+ 1, 80)2 we obtain an 8a+ 1 -set B such
that (1) is false for all X E [B1 2 . Then, by 3 .3, Y is < 8

0'
chromatic

on B hence there is an 8a+ 1 -subset of B free for Y, a contradic-
tion .

Corollary 3 .6 . If Y is a triple system on wa+ 1
with no free

8a+ 1-set then there are points a t , Rt , i < w such that at < Rt < ce ,

{at , R t , a } E .,P, {at , R t , Ri } E Y for all i < i < w . Hence for all t < w

there are t points containing [(t 4 1)2 1 triples i.e. h 3 (t, a)

[(`	l)24 ]

Proof . To prove the first statement one chooses the points a t , Rt

by induction on i < w using 3 .5 . It then follows that for every t < w

there are 2t points containing t(t - 1) triples . The rest is obvious .

For upper estimates see § 10 Theorem 10 .5 . The next corollary is
included just to show the strength of Theorem 2.1 for those readers who
prefer numerical examples .

Corollary 3 .7 . Suppose Y is a 4tuple system with chromatic num-
ber > No * Then the following two statements hold :

(1) There is .Se, C Y such that either



,Y 1 ,= 8 1 , InY 1 1>3 or else IYII=82, 1(1Y2 1>1 .

(2) There is '~p 2 C .Y such that either

1 •Y21=~1, In"Y' 2 1>2 or else 1° 2 1=83 , 1nY 2 1>1 .

Proof . Both statements follow from Theorem 2 .1 . To see the first
choose k, = 2, k = 0 for j > 1, for the second one put k, = k 2 = 1
and k = 0 for j > 2 .

At this point we have to confess to the reader that Theorem 2 .1 is
still not general enough to get the promised lower estimate of the gn (t, a)
functions . We now describe the proof of the necessary generalization for
n = 3 only .

Theorem 3 .8 . If a triple system .Y' has chromatic number > Na

then one of the following statements holds .

(1) For every t < w there are t disjoint edges and Na + , points
joined to all of them by a triple of Y .

(2) For every t < w there is a set F, I F1 = t 2 , and there are
Na + 1 vertex-disjoint K(t, t) such that each edge in a K(t, t) is joined
by a triple of Y to some point in F.

Proof . Let A be the smallest cardinal such that there is a triple sys-
tem Y with set of vertices A, Chr ( .Y) > 8. for which (1) and (2)
both fall say for t, and t2 . Then, by Corollary 3 .3, X > 8a + 2

We define two functions fl , f2 on [X]<`' as follows. For YE

C [A]
2t,

put y C f,(Y) iff there are t 1 disjoint 2-sets A S (s < t) with

U A s = Y such that A s u {y } C Y for s < t 1 . Put f, (Y) _ o in all
s<t1

	

2
other cases. For each Z C [NJ t2 choose a maximal system

	

(Z) of
2t2 -sets satisfying the following conditions :

(3) The elements of . (Z) are pairwise disjoint, and for A C flZ)

there are A 0 , A I C [A ]t2, A D U A 1 = A such that for all a0 E A 0 ,
a, CA, there is a z C Z with {a0 , a 1, z } C .I" . Put f2 (Z) = U (Z) and



let f2 (Z) _

	

in case t2 < I Z I < w. Let further ,f (Z) = fl (Z) u f2 (Z) .
By the assumption on t, and t2 we know I f(Z) I < 8«+ 1 for Z E

E [X]<
w . By Lemma 2.3 we get a partition A =

	

U SV satisfying the
V< ef(A)

requirements of Lemma 2.3 . By the minimality of A, Y is < K« -chro-

matic on the sets SV . Choose sets SV P, p < w« free for Y with SV =
U S, ' , and put C =

	

U S

	

for p < w

	

Again it suffices
P<w«

	

P

	

P

	

V<cf(X) V,P

	

a

to see that Y is < 8 -chromatic on each C .«

	

P

Let p < w« be fixed and assume X C CP , X E Y. Let v(X)

= max {µ < cf (X) : Sµ p n X 0} . By the choice of SV P ,

1< I X n S,(X), P 15 2. Put . 'i = {X E Y : X C CP A I X n SV(X), P I
for i = l, 2 . We now claim that the graph induced by ,~, on SV P is
< 8-chromatic for all v < cf (A) . By Corollary 2 .7 it is sufficient to see
that it does not contain a K(t 2 l t 2 ) *

Assume ACSVP , IAI=2t2 , IA o 1=IA I I=t2 , A = A 0 u A I
and all the edges {ao , a 1 }, ao E A 0 , a1 E A, belong to the graph induced
by ""2 . For each such pair ao , a, pick z with {a o , a, , z} E Y and
let Z be the set of all z chosen this way . Then ZI t2 and by the
definition of '~2, Z c U Sµ . By the choice of the set SV , then

µ<v
f, (Z) = U "f (Z) C U S and this contradicts the maximality of

	

(Z) .
P<v µ

It now follows that S,,P =
Q
U S VIP, a where the sets SV P Q are freefreefree

sets for the graph induced by I~ 2 . Put DP a =

	

U SV P a Then the
V< cf(x)

sets DP a are free sets for

	

2 as well. It is now enough to see that each
DP a is the union of at most N « subsets free with respect to .1 1 .

However just as in the proof of Lemma 2.6, this follows from the fact

that by the choice of f 1 , J' , has strong coloring number at most t,
on DP

	

This completes the proof.

Corollary 3 .9 . If a triple system has chromatic number > N o , then
for each t < w there is a set of 3t 2 points containing > t 3 triples of

3
t 2it and as a corollary of this 93 (t, a)

	

3

	

t for all a .



Proof . If either of the conditions (1) or (2) holds we can choose t
"edge-disjoint" K(t, t)'s and a set F of at most t 2 elements disjoint to

the union of this K(t, t)'s so that every edge of a K(t, t) is joined from

a point of F by a triple of Y.

We now state a similar corollary for n-tuple system .

Corollary 3.10 . Let Y be an n-triple system of chromatic number
> 80 , Then for each t < co there is a set of n • to -1 points containing
to n-tuples of Y,

n

	

n_
>gn(t,CY)

	

/j~ ` n 1
; O(tn

1 `

We have proved this for n = 2 and n = 3 .

The general result is to be proved by a common generalization of

Theorems 2.1 and 3.8 . The proof does not require new ideas . We omit the
details .

In § 14 we will state an upper estimate for gn (t, a) (see Theorem

14.6) for arbitrary a . However in what follows we will focus our atten-
tion on the numerous problems and difficulties arising for triple systems .

Our results will determine 93 (t, a) for small values of t (see Theorem

14 .4) .

§4 . A GENERAL THEOREM FOR SET-SYSTEMS

In § 2 we have seen the use of the strong coloring number . There is

a theorem for graphs both trivial and well-known saying that if the valency

of each vertex of a graph is < 8 a , then the graph has chromatic number

at most 8 .a

Let us make the following

Definition 4 .1 . Let Y be a set-system. We say that a vertex p
has strong valency > 8

0,

if there is an J'' C -1.1, 1 91' 1 > 8. such that

X n Y= (p} for all X Y E Y'.

To the best of our knowledge the following generalization of the

-- 440-



graph theorem mentioned above is not stated in the literature .

Theorem 4.2 . Let Y be a set-system of chromatic number > Na
and consisting of sets of cardinality < 8 a Then there is a point of strong
valency > 8 4 .

Proof. Assume no point has strong valency > 1`i. . For each vertex

p let . (p) be a maximal subfamily of Y such that p c X for X C-

G (p) and X Y E ° (p) implies X n Y = {p } . Then 1 (p) I < 8 ,,,
and I f(p) I < 8 (,, for f(p) = U f (p) . Let X be the set of vertices . Let

us say that A C X is closed if f(x) C A for all x E A . Obviously each

E X is contained in a closed subset A
t

of cardinality < 8U .

Let Bt = A t - U A,n for t < X. Considering that I B t I < 8«
T] < t

there are sets Cp , (p < wa ) such that each Cp meets each B t in at

most one point and X = U C . We claim that each Cp is a free set for
p < w a p

Y . Assume indirectly X E Y, X C Cp . Put t =min {ri : X n B n

	

} .
Let {~} = Cp n X n B t . Then ~ C A t , f(~) C A t , f(~) c U B~,

n < t
X n U B = {~} . It follows that then

	

(~) u {X} still has the property
n<t

that the intersection of any two elements of it is {~} and this contradicts
the maximality of

	

This proves the claim .

Remark. The assumption that the elements of Y have cardinality

< Na seems fairly natural . However, we can not prove it to be necessary .

Problem l . Let Y C [wl ] X 1 be such that each vertex has strong

valency < S o . Is it true that then Chr (Y) < 8 o ?

A . M á t é pointed out to us that the answer is negative provided there

is a non-trivial 8 1 -complete ideal I on 81 that the Boolean factor alge-

bra P(8 1 ) I I has a dense subset of cardinality 8 1 . However, considering

the simplicity of the question it would be nice to have more information .

In this chapter we only draw one corollary of Theorem 4 .2 . In what

follows we will introduce notation for a number of special triple systems .

We will usually give a diagram with the definition, and at the end of the

paper we will give a list with reference to the place of its definition .



Let j- , be the triple system with six vertices and three triples having

pairwise one element in common (see Diagram 1) .

A0,0d110h1.

Diagram 1

Let T 2 be the triple system with seven vertices and four triangles .

Three of them have one point in common and the fourth meets each of

these three in a point different from this point (see Diagram 2) .

Diagram 2

Proof . Let Y be a triple system on wa + 1 with no free set of

cardinality N . + 1 . Then Chr ( Y) _ N. + 1 . By 4 . 1, there is a point with

strong valency > 8 a . That means there is a vertex p and 8 «+ 1 disjoint

Corollary 4.2 .

(1) 8a+1
"

(8 a+1 ,
j

1 )3,

(2) 8,, 1 ( a+1' ./ 2 )3 .



2-sets each joined to p by a triangle of .1' . Since there is no free N .+ 1 -
set, Y must contain a triangle meeting three different 2-sets . Hence

contains a

	

2 . This proves (2) and (1) is a corollary .

The point is that T 2 is the simplest triple system - for which

8a+ 1 -+ ( N
a+ 1 j-)3 holds and is not of the type obtained in Corollary

3 .6 .

§5 . SOME CONSEQUENCES OF MARTIN'S AXIOM

Our first aim in this section is to prove Theorem 5 .6. This is a result

pointing in the main direction of this paper . Assuming MA and 2 x o is

large, it gives a strengthening of a special case of Corollary 2 .2, and shows

that it can not be best possible in ZFC alone . However, we will generalize

a theorem of B a u m g a r t n e r and H a j n a l as well . For Martin's axiom

see [24], p . 232 .

Definition 5 .1 . Let Y be a set system with set of vertices K . A

partial function from K into w is said to be a good coloring if it is not
constant on any X C D(f), X E -I.P .

Lemma 5 .2 . Assume MAK . Let Y be a system of finite sets on
K, with Chr ( .v') > 8 o . Then there is a sequence fa (a < w, ) of good
colorings such that fa u fR is not a good coloring for a

	

< w 1 and
I fa,1<8 o for a<w i .

Proof. Let P be the set of good colorings f, Ifl < 1'to with the

partial order f g iff f D g . The sets Dt = (fE P: t E D(f) I are ob-

viously dense in P for t < K. If the requirement of the lemma does not

hold then P satisfies the countable chain condition . By MA K then there

is a set G generic over the family of Dt 's . Then P'= U G is a good col-

oring of K, hence Chr ( Y) < 80 , a contradiction .

As a corollary we get

Lemma 5 .3 . Assume MAK . If S is a graph on K vertices with
Chr (10) > too , then there are 81 "vertex-disjoint" finite subgraphs such
that any two of them are joined by an edge.



Proof. By 5 .2 there is a sequence fa ((x < w I ) of good colorings

such that I fa I < 80 and fa u fR is not a good coloring for a ~3. Let

Aa = D(fa ) for a < col. By the E r d ő s - R a d o theorem (see

[15]) we may assume that the A a from a "A-system" i .e. there is a
set D such that A a n A Q = D for all a iL a and that fa I D = f~ I D
for all a, a < col. If a (3 then there must be an edge joining A a -- D
and A Q - D otherwise fa u fR is a good coloring .

Theorem 5 .4 . Assume MA C . If S is a graph on an ordinal a <
a

< wa+ i with Chr (f) > No then S contains a K(y, w i ) for every
y< w l .

w
Note that as a corollary of this MA,, I implies co -> w l

, y~ J
for all y < w l . This result was stated in [2] without proof. A proof of

this is given in L a v e r' s paper [20] in this volume even in case the first

two w i are replaced by a K with cf (K) > w . The present result is

much stronger, but the proofs are almost the same . They are based on one

of the main lemmas of [2] . First we state the following immediate

Corollary 5 .5 . Assume MA x and r < w < cf (w,,). Then w'a ->
a

i ' wa' (y1 "z
and "stationary subset of w a

	

stationary subset of wa ,

[^t)J1
2
" hold for y < w l .

Proof of Theorem 5 .4 . By 5 .3, there are disjoint sets A U (v < w l ) c
c 0 such that for v -* p there is an edge of S joining A v and A µ .
We may assume that y is an indecomposable ordinal (i .e . of the form wa

for some 1 < a < w l ), and that I A„ I = m for v < w l .

Let a,, , , denote i-th member of A, for v < col. We may assume

a,Í < aµÍ for v < µ < w l , i < tn . We are going to consider the complete

bipartite graph K(y, w i -- y) and a partition of length 1112 of this graph .

For y < y, v < w i - y put {p, v } E P(i, i) iff {aµÍ , a v i } E ~s . By a

result of [2] (see p . 202, Corollary 2), a > 0 and MA,, implies that
a

there is a K(-y, w l - y) homogeneous for this partition . That means there



are sets B c y, C c w, -y, tp B = y, tp C = w, and ( i, j) E Z m such
that {µ, v } E P(i, j) for all y E B, v E C. But then the complete bipartite
graph spanned by the sets {a µ i s µ E B}, {a v i s v E C} is a subgraph of
S, and tp{aµi s pEB}=y, tp {avt : vEC}=w l .

We now prove

Theorem 5 .6 . Assume MA,, . Suppose I < n < w, Y C [ K]2n+1

Chr (,V') > 80 . Then there is X E [K ]n+1 such that 1 { Y E Y : X C Y) I

> 8o*

Proof. Let Y be a set-system satisfying the conditions of the theo-
rem . By 5 .2, there are good colorings I fq 1 < No (a < w l ) such that
f~ u fR is not a good coloring for a ~3 < w l . Just as in the proof of
5 .3, we may assume that D(f« ) = A,, A « n A R = D for a (J, ja I D =
= fQ ID . Let B« = A a --D for a < w l . If a (J and f« u fQ is not a
good coloring then D U B,, U BQ must contain a Y E Y which is not con-
tained either in A a or in A R . Note that in this case Y must meet both
B4 and BQ , and one of the intersections Y n A ., Y n A 0 has at least
n + 1 elements .

We now assume that the conclusion of the theorem is false and define
a set mapping f : w 1 -> [w l ]<" as follows .

For a < w, let

f(a) ={0<w l : (34- Oz n3XE[A~jn+ 1 3YCY

(XC YAYnB0 0)} .

By the indirect assumption we have I f(a) I < 80 for a < w l . It now fol-
lows that there is an independent pair a, 0 < w l , a 0, for this mapping
and this is a contradiction .

To clarify the situation let us point out some conclusions. Consider
the case n = 1 . Then the above theorem implies that if MA K holds then
every system of edge disjoint triples of chromatic number > 80 has more
than K vertices, and thus MA implies that the number of vertices must be



> 28 0 no matter how large 2N O is. Corollary 2 .2 which was our result

proved in ZFC says only that the number of vertices is > 8 2 .

If we look at the next simplest case where n = 2 we see that if Y

is a 5-tuple system such that any two 5-tuples have at most 2 points in
common the above theorem says again that assuming MA the set of vertices

must have cardinality > 2 80 . However, this result is not directly com-

parable with the corresponding result of Corollary 2 .2, which says that a

5-tuple system of chromatic number > S0 must have at least 82 ver-

tices even if the intersection of any two 5-tuples has cardinality at most 3 .

The situation is complicated further by two more facts . One of them

is that we do not know the answer to

Problem 2. Does Theorem 5 .6 remain true if we replace the require-

ment by I { Y E Y : X C Y} I > 8 1 ? To put the question in a simpler

form :

Is it consistent with ZFC + 2~ 0 > 8 2 that every (3, 1, 8 i ) system

has cardinality > 2
NO,

.

The second fact is that the presence of MA changes the estimates
obtained for the number of vertices of large chromatic set-systems even

beyond 2 s0 as it is shown by the following

Theorem 5 .7 . Assume MA. Let 2N0 = a . If* < i < w, m < cc
and n > (m + 3)i + 1, Y C [ co,, + , 1 In and Chr (,,i' ) > 8 0 , then there is
an X E [w« + m ]'+ i such that I { Y E

	

X C Y } I > 8 0 ,

(Here we do not know again if 80 can be replaced by 8 1 .)

Proof. We may assume n = (in + 3)i + 1 . Our proof goes by induc-

tion on in . We now assume that if m > 0 we know the result for m - 1 .
Assume the conclusion is false and define an ,f: [wa { m 1 `

w - [
w«+m

I < W

as follows. For X E [Wa+ ~~~ ]`+ i , f(X) = U f Y E

	

X C Y} I and put

f(X) _ 0 in the other cases . Note that w,,+ .1 > co even for m = 0 . By
Lemma 2 .3, we get that



wa+m v< cf(U

	

S ,
a + rn )

where the Sv satisfy the requirements of Lemma 2 .3. For X E Y let
v(X) = v = max {µ : X n Sµ

	

} . By the construction of Sr,, I X n Sr,(X) I
(in - I + 3)i + 1 . Now using our standard argument, to obtain a contra-

diction, it is sufficient to see that the ((in + 2)i + I )-tuple systems induced
by '/' are < N.-chromatic on each S r,, (v < cf (Wa+m )) . Let us remark
that, by the construction I S„ I < Wa+m

Considering the indirect assumption, the claim follows from Theorem 5 .6
in case in = 0 and from the induction hypothesis in case m > 0 respec-
tively .

Again we point our one instance. Theorem 5 .7 implies that if MA
holds and 1 is a > 80 chromatic 4-tuple system and two 4-tuples have
only one point in common then 1' has at least 2 80 vertices . Corollary
2.2 proved in ZFC gives that Y has >, 83 vertices .

We now leave the reader alone to ponder about the mess we are in
until we give the "upper estimates" in § § 12-15 . These will clarify things if
we assume G .C .H. and make the matter worse without this assumption . See
the problems stated in § 16 .

§6 . THE CONCEPT OF SIMULTANEOUS CHROMATIC NUMBER .
A PROBLEM. A RESULT IN L .

In the rest of the paper we are going to construct 3-tuple systems and
n-tuple systems having some specific properties and chromatic number
> K . In quite a few cases the constructions will be inductive using n'-
tuple systems 2 < n' < n with large chromatic numbers already constructed .
These proofs lead us to the following generalization of the chromatic num-
ber. The idea is that the stronger property supports inductions better .

Definition . 6 . l . Let r, (v < X) be a sequence of set-systems having
the same set of vertices V . The system is said to have simultaneous chro-
matic number K if K is the smallest cardinal such that there is a partition
of length K of the vertices



such that for each t < K there is v < K such that Pt is a free set for
Y v

V = U Pt
t<K

Obviously the simultaneous chromatic number of the system is less
than or equal to all Chr ( .Yd, hence it is a very strong assumption to
have a system with large simultaneous chromatic number .

The concept defined above will be most frequently used in the follow-
ing form .

Definition 6.2. Let .Y be a set-system with set of vertices V .
P( .Y, X, K) is said to hold if there is a partition of ,Y into the union of
X disjoint set-systems .Y,,, (v < X) in such a way that this system has
simultaneous chromatic number > K .

For the convenience of the reader we give a direct definition :
P( .Y, X, K) holds iff

3f. .Y-*A`dK'<K'`dg : V - + K'3t<K'bw<X3XE .Y'

(XCg-1 ({ })Af(X)=v) .

We will often use a stronger property which can not be put in terms
of the simultaneous chromatic number .

Definition 6 .3. Let .Y be a set-system with set of vertices V, and
let X, K, r be cardinals . P* ( .Y, a K, r) is said to hold iff

3f: .Y - XVK' <KVg: V->K' 3t<K' 3AE[V,rVV<X3XE~

(ACXAXCg-1 ({t})Af(X)=v) .

Obviously P*( .Y, X, K, 0) « P( Y, X, K) and P*( 9 0 , X, K, r) - P( Y, X, K) :: >

Chr ( .Y) > K for A > 1 .

In case

	

is a graph and r = 1 we write P*( !§, X, K) for
P*(W, A, K, 1) .

Again it is obvious that P(,V, 1, K)* Chr ( .Y) > K, and seemingly



P(Y, 2, K), . . . , P( Y, I J 1, K) are much stronger assumptions . In fact to
prove the existence of a graph ;,) with 8 1 -vertices satisfying P(,0, 81' 81 )
we need C .H .

In spite of this we do not know the answer to the following

Problem 3 . If 1§ is a graph with Chr (IN) = K > 80 , does then
P(Kb , K, K) hold?

If 26' is an 81 -chromatic graph on w, , does P( b , 2, 8 1 ) hold?

Surprisingly enough, our partial results point to a yes answer . We can
prove that most "known graphs" of chromatic number 81 "split" . Those
results will be given in the next chapters and will be used later to construct
strange 3-tuple systems. However, we have hopes to prove a positive answer
only if the 8 1 -chromatic graph has some essential "large parts" to split .
We will show in this section that this is not necessarily the case .

Definition 6 .4 . A Shelah-graph is a graph S on set of vertices V,
where I V j= 8, and there is X E[ V]

H o such that I {x E X
{x, a} E S11> N o for all a E V - X.

Answering Problem 32 of [8] S h e I a h proved the following results .

Theorem 6 .5 (See : S . S h e l a h [22] . Theorems 2 .1, 2 .4) .

(A) Assume C.H . I f Sa (a < w 1 ) is a system of Shelah graphs then
w

1

	

~ V 1

	

a K 1

As a corollary of this we know that there is an
w, containing none of the :,,'a .

(B) Assume V = L then w, ( ~) 2 holds iff

Col ( .̀%') < w .

Note that all Shelah graphs have coloring number > w .

The coloring number of a graph .~~ (see [5] p . 66. Definition 2.9) is
the same as the strong coloring number of ., as defined in 2 .4 .

8 1 -chromatic graph on



Now we ask

Problem 4. Can it be proved in ZFC or does C .H . imply that there

is an 8 1 -chromatic graph on w l containing no Shelah graphs?

We are going to prove

Theorem 6 .6 . If V = L, then
Shelah graph) 2 .

w l - (stationary subset of w l ,

This result is also stated and proved in [ 19] and as a corollary of this

the answer to Problem 4 is affirmative provided V = L . This is the result

which makes Problem 3 awkward to answer .

Proof of Theorem 6 .6 . By V = L, 0,1 holds. That means there ex-

ists a sequence S« C :í'(a), IS « J < No for a < w l such that {a < w l

X n a E S« } contains a closed unbounded subset for all uncountable

XC w l .

We may also assume that for all limit a, Y E S« implies that Y is

cofinal in a. Now for every limit number a < w l we can choose a set

R« C a, tp R« = w, R« cofinal in a and such that Y n R« 4- 0 for

YES .

We define a graph .,; by

_ {{x, a} : x E R« A a a limit number < w l } .

Obviously s does not contain a Shelah graph . To conclude we show

there is no stationary subset X free for .! . Assume X is stationary .

Then there is a limit a < w l such that X n a E S« and a EX. It fol-

lows that there is x c X n a n R« , hence {x, a} C X, {x, a} E .Ii .

§7 . SIMPLE PROPERTIES OF R Y, A, K), P*( Y, X, K, r) .

PRELIMINARY LEMMAS

Theorem 7.1 .

(1) If K > W, K >'X then P( Y, X, K) - P*( , h, K, 1) .



(2) If in, n < w, then P(Y, in, mn + 1) - P*(Y, m, n + 1, 1) .

Proof. Let V be the set of vertices of the set-system Y . Let us
now assume that either K > w and K > X or K = 11111 + 1, A = n + 1
and P*(,Y', X, K, 1) fails. Choose an f: y' - A establishing P( Y, A, K) .

Then there are K' < K and a partition V = U T such that for all
t < K'

	

t
~ < K', p E Tt , there is a v(p)<X such that p C X c Tt n f(X) = v(p)

holds for no X E Y' . Define Tt l = f p C Tt : v(p) = v) . Then we get a
contradiction since V= U U T

	

is a partition of length K ' X < K
t < V , V<X

	

t,v
or < nm such that for all ~, v in question no X C ' with f(X) = v
is a subset of Tt V* This proves both statements .

Theorem 7 .2 . Let l' be a set-system with set of' vertices V. If
A > w then P( J , A, a+ ) holds if and only if

3f': << --> X `dg : V --> A 3X E V' Vx C X(g(x) = f(X)) .

Proof. The "only if" is trivial, we prove the "if". Suppose we have an
f such that Vg : V -> A 3X C J' Vx C X(g(x) = f(X)) . Let X = U Nv

where each .N', I _ X and the N . are pairwise disjoint . Let Y , v _
_ {X E .<< : f(X) C Nv } . Then the sequence Y,, (v < X) has simultane-
ous chromatic number > X. Assume the contrary, then there is a partition
V = U Tt and a function v : A - A such that for each ~ < A, T t is a

t<~
free set for J v(t) . Choose a one-to-one function h : A - A with h x) C
c N ,(t) . Define g: V- X so that g(x) = hO for x C Tt . By hypothe-
sis,there exists X C Y such that g(x)=f(X) for x C X. It follows that
X e T t for some ~, and f(X) = hO C N ,,(t) so X C Y'(0, But this
contradicts the assumption that T t is a free set for Y'vQ)*

Theorem 7 .3 . Let X > w . assume Y' is a set-system which con-
sists of finite sets . Then P( J , X, A+ ) - P(,i XX+ + ) v P(y X+ X+ )

Proof. Let .1 be a set-system with set of vertices V, y c [ V]< W .
Assume P( .v , A. A+ ) . Let f : v - A be a mapping which establishes
this fact. Assume now that P( Y, A, X ++ ) fails. Then, as a corollary of
this, there exists a disjoint partition V = U

	

T of the set of vertices
t< ~+ t



such that for all ~ < A+ there is a vO < A satisfying f(e) v(t) for

all eE [Tt ] < W n Y .

We now define f: Y -> X+ and show that f establishes P( J, X+ X+ )

To define f first we choose gt ( < A+ ) mapping A onto ~ + 1, and

we fix a well-ordering -< of V satisfying Tt -< Tn for t < rt < X+ . Let

e E Y, y = max e . Put f(e) =g (f(e)) for the ri satisfying y E Tn .

Let now V = U R be a disjoint partition of V. Assume this partition
µ<N µ

is bad for f . We will obtain a contradiction by exhibiting a partition of

length X which is bad for f too .

Let now p < A . Put Rµ = R . There is a a such that f(e) a
for all e c [R ]< W . Let T~ = Tt n R for ~ X' . Then

R = t U~ + T .

Let P =

	

U T' . Then R = U T' U P and since all T' omit
a<t<X t

	

t<Q t

	

t
the color vO for ~ < a, we only have to define a bad partition of P .

Let PU = {x c P: x E T' n gt(v) (v)=or}. Then P= U Pv . Let
V< X

v < X, e c P , , e E S . We claim that f(e) v . Otherwise there is a unique

with *nax e = y E T~, gt (v) = a and f(e) = a, a contradiction .
-<

Definition 7 .4 . Let Y be a set-system, K a cardinal. With some

abuse of notation we denote by Y • K a set-system which consists of K

"vertex-disjoint copies" of Y . If we claim a statement for • K we

mean that the statement holds for all set-systems which can be written in

this form .

Lemma 7 .5 . Assume P(Y , 8,, , S) and S < 8 « + i . Then
P(J - 8 +nI 8,+n, 5) holds for n < w .

Proof. We prove that P( .~l ' , K, S) implies P(Y' • K+ , K + , S) for
K > w, b < K + .

The lemma follows from this by induction on n . Assume
P(,/', K, S) holds. Let V be the set of vertices of V . Put Wt = V X { },



W= VX (K +

	

K),

/ t ={XC it , t : D(X) C .`/},

Then

	

/ is

	

/ • K+ with set of' vertices It' . Let J':

	

/ -> K be a color-
ing of the elements of / which establishes h .'/ , K, 8) .

Let g t be a one-to-one mapping of K onto ~ for K < t < K' .

For X C -/ t put

J(X) = g (MAX))) .

Assume now It' - U T is a disjoint partition of_ It', for some
<o

cardinal a < S < K' such that for all v < o there is r)(\)) < K + Satisfy-
ing J(X)

	

r?(v) for X C T, , X C .-/ . Then there is a ~ < K -} with
sup {r)(v) : v < a } < ~ . We now obtain a contradiction by showing that the
partition

	

U T induces a partition of the ~-th copy of / which is
v< v

bad for J . Namely W -= U It' n T , I' - U 1)( It , n T ), J(X)

-fg t ({77(v)J) for a"C 1)0Vn 7 '~), XC :/ , v < cl .

We now state two lemmas without proofs .

Lemma 7 .6 ( A . M á t é ) . LCt K, X be carclinul .t K > X ~-- w, 'N

regular. LCt A =

	

U . t µ , I : f µ I > K (11141 let f he a set-mahl7ilIg or7 A
µ < h

Such that x C A A µ< K- I JiX) A A 11 1< X. Then there is u free set X C A

such that I X n A µ I =- K Jor all µ < K .

The proof of' Lemma 7 .6 is given in 1 191 7 .3 Lemma .

Lemma 7 .7 ( 1 1 . E r (16 s G . F o d o r ) . LCt K bC 4117 i11JirlitC

cardinal and let a hC all orclilrul ICSS than K . LCt f be u set-mapping

un K such thus .s C K - tp f(X) < a .

Suppose A µ C IK1" fur µ < X Jo/rsome cardinal X < K . Then there

i.e u JrcC set X C K such that 1 X 11A µ I - K for all µ < K .

In 141 the theorem is proved assuming G .C .11 . In 1 181 a proof is out-
lined without assuming G .C.11. In both papers a is assumed to be a car-
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dinal. The idea of looking for free sets if u is an ordinal < K occurs

first in [ 16] . The proof outlined in [ 18] works for this case without essen-

tial changes .

§8 . GRAPH CONSTRUCTIONS

The next theorem contains one of the main ideas of -,everal transfinite

constructions to be given later .

Theorem 8 .1 . Let X be an infinite cardinal and let S be the least
cardinal such that V > X. Then there is a "triangle-free" graph b on
X such that P*('', X, S) .

Proof. Note first that S is a regular cardinal with w < S < cf(X) .

First we split X into the union of S disjoint sets each of cardinality X :

X= U A t .
t<ó

Put BE = U A for t < S. We define the graph and a mapping f :
n<t 71

X inductively by defining for each x C A t , t < S a subset G(x) C

C Bt . The intention is that G(x) _ {y E BE : y is joined to x in

and the mapping f I { {y, x} : y C G(x)} will be defined for each x .

Assume that ~ < S and this has been done for all r) <

	

x E A 71

I B t is already defined .

Let Kt = {X C Bt : X is a partial transversal of the A~, (r~ < )
and X is a free set of s I B t } .

Now considering that X 1 t' = X = I A t I we can arrange matters so
that G(x) E Kt should hold for all x C A t and moreover for all X C Kt ,

g C X X, there are pairwise disjoint sets A t (X, g) C A t satisfying

I A t(X, g) I = X and G(x) = X for x E A t (X, g) . Finally for y E G(x),

x (E A t (X, g) we put

f({x, Y }) = g(Y)-

This defines the graph 1-6, and a mapping f: S-> X of it. We claim that



this mapping establishes P*( N, A, S) . It is clear from the construction that
contains no triangles .

Assume X = U Tv for some S' < S is a disjoint partition of the
v< s'

vertices of 16 .

Assume further indirectly that for each y C Tv , v < 6' there is a
p(y) < A for which

(1)

	

f({x, v J) *- p(y) holds for all x E TV with {x, y} E IS .

Let V={v<6' : I{i;<5 : ITvnAtl=X}I=S} and put M=S'-N .
By the definition of N there is a one-to-one mapping gyp : N S

such that I T, n
ASOW

I = X for all v C ,N' . Put F= ~p(.N) . Then I FI <
S' < S < cf (N), and T~ i(It , ) n A t I = A for

	

C F. Using the regu-

larity of E we now find a ~ < S such that F C

	

and I Tv n A t I< X
for v C M . After this we consider the set mapping G(x) on the set
U T

	

n A

	

Then, as a corollary of Lemma 7 .6, there is a set
t~F

	

-'( { t } >

	

t
X which is free for the set-mapping G(x) and meets Tv n A1PW in ex-
actly one point for v E N. By the construction, X C Kt

Let

(2)

	

g(1 •) = p(y) for y C X

where the p(v) are defined by (I) .

Considering S' < S < cf (4 I A n U T I < A. Hence there are x Et

	

µ F :11

	

µ
C A t (X, g) and v C .V such that x C Tv . By the choice of X there is
y C X, v C Tv . Then by the definition (2) of g and by the definition
of f

{x, y C T,, f({-Y, y J1 ) = g(y) = p(v), {.x, y} C S

and this contradicts (1) .

Theorem 8.1 implies that if 2" = K + then there is a "triangle-free"
graph . on K+ satisfying P*( .~', K+ , K + ) . However, if we assume this
hypothesis we can do better than that .

- 45 5 -



First we restate some old results .

Definition 8 .2. The generalized Specker graph (;S,,(K) is defined for
I < n < w as follows . The vertices are the increasing 11 + n + 1-tuples
.̀ E n'+n+

1 K . Two vertices .v, i are joined if' either

X II < yo < .vrr + 1

	

< . . . <
vn + n

< )'
rr

,

or

Y', < -v o < yn + 1 < x 1 < . . . < 1' 2
+ n

< .v
n

	

n )

As to these graphs we offer ( 131 as a reference where several other
generalization and history are dealt with .

We state

Lennna S .3 ( P . F r d ő s

	

A . H a j n a 1 151 p . 76, Theorem 7 .4) .

(A) GS (K) contains no (', i , 1 for• 1 5 i

	

li .

(B) 1f n < w -< K then C11r (GSrr (K)) = K .

As a corollary of' this for all K > w and I < n < w there is a graph
on K containing no short odd circuits (',i 1 ( l

	

i

	

n) and having
chromatic number K .

Since in 15 1 GS rr (K) was defined differently (using 211 2 + 1-tuples
instead of j12 + n + I-tuples) and the statement analogous to (A) was not
actually proved we outline a proof of (A) .

First we prove an elementary lemma . Assume l < i ~< n < w,
{1'...,2i+ 1,1= to u l,, to n 1 1 - 0, 110 1>1/ 1 1 . Then there exist
ko	k,j+ 1 E n - +- n + I such that

1E111

	

k i > A- i

	

11,

jc11 ski>ki 1 +n+ I,

	

k,il 1 <k 11 .

To see this, without loss of generality we can assunlr that 1 t o i --
=i+ 1, II 1 I=i. For I <j-2i-1- 1 let s --

	

n if' íF1 11 , .~i -= n-~ 1

if j E I 1 . Let p - min {0, s 1

	

i s,, . . . , s

	

. . . + s,20 i
} . For
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0,<i-<2i+ 1 , let ki =

	

a + s t + . . . + si . It is easy to check that all
requirements are fulfilled .

Now suppose GS,,(K) contains a C,i+ z for some 1 < i < n . Let
a (o) , . . , a (2 ` + 1) be the set of vertices of this C2i+ I* For 1 < j < 2i + I
Put j E I o if a( 1) < aó ) and j E I t if a n( ' ) < ao 1) . Then I Io I

I t I, and we may assume 110 I > I I I I . Obtain k o , . . . , k )i+ i from
the above lemma . By the definition of GSn (K) we then have

a(0) < at .t) < . . . < a(2i+ 1) = a (e)

	

< a (o)
~0

	

i 1

	

k 2i+ 1

	

k ?i+ 1

	

ko

a contradiction .

We now state another old result .

Lemma 8.4 (P . Erdős -- A . If ajnal

	

E .C . M ilner [10]
p. 222, Lemma 14 .1) .

--~K = K + s a mapping f : [ K+ ] 2

	

+:, SSUM( K > W,

	

. T/im t%im i
Sllc/i that ()r all A C [K + I" , B E J K + ]' j thcrc is a ~ C A such that
K+ _ tfi(~, T? "1 )'. 7? C- B } -

~
This is a gencralization of K+

	

K4 l
-~

	

1

	

and the proof is to be
K

	

h +-

-> K

carried out using auxiliary functions -g - just as in the proof of the pre-
vious theorem .

Theorem 8.5 .

	

Let K > ci, ~^ = K

	

Then for am , n < ca there
is a graph .% on K + stich t/lat P*(

	

K + , K + ) a/ul
(1,

i+ 1

	

/c~r 1 < i < 11 .

Proof . First we split K + Into the union of K1 disjoint sets K + _

U A . where i .d,

	

By Lemma 8 .3, we can choose a -graph

on K + such that Chr ( '~ ) = K~ and

	

contains no C, i+ 1 for
I<i<n .

Let %

	

{J . .1, , a ~ ] :

	

1 E

	

Let further f be a mapping sat-
isfying the requirements of Lemma 8 .4 and let J = f l '

	

~~ beingg homo-
morphic to ~, contains no C,i+ 1 for 1 < i < n either .

.~~ contains no



Let now K + = U T be a disjoint partition of K+ . We define
V< K+ V

TV = { < K + : I TV n A t I = K+ }- By K + -' (K + )', we have K + = U T~ .
V < K

Using that Chr (S) = K+ it follows that there are v < K and r) E Tv ,
{ , rl} E I-Ii . Then there are A C TV n A t , B c Tv n A TE , JAI= K, I B I =

= K+ . By 8.4, there is p E A with K + _ {f({p, a} : a E B} .

Without assuming G .C .H. we can prove the existence of a short odd

circuitless graph 'N satisfying P*(S, K + , K + ) only on a set of cardinality

(2K)+ .

Theorem 8 .6 . Assume ii < W < K . There is a graph S on (2')+

such that P*( ,.,";, (2')+ , K+ ) and .j contains no C2i+ i for 1 < i < n.

Proof . Let X _ (2')+ . We now split A into the union of X dis-

joint sets X = U A t such that I A t I=X for t < A . Applying 8.3 we
t<~

choose a .;; on X with Chr ('^) = A and not containing C2i+ I for

I < i < n . Let `I _ {[A t , A 77 ] : for {t, ri} E ~%} . Just as in the previous

proof .% does not contain Czi+ t for 1 <i<n . Let now t<-q< X,
{t, rj} E e' be fixed and define f I [A t , A T1 ] as follows. The set

Bt a = {Mg) : X E [A t ]" A g : X- X)

has cardinality X. Choose a one-to-one mapping ht, n of B t

	

into
A T, . If y e A 7 , y = h t 77 (X, g) for some (X, g) E Bt ri and x E X put
f({x, y}) = g(x) and put f({x, y}) = 0 in the other cases .

We claim that this f establishes P*(1, A, K+ ) on

	

Let X _
U TV be a disjoint partition of X, the set of vertices, into the union
V<K

Of K Sets .

Assume now indirectly that for all x E T. and V < K there is
p(x) < X such that

(1)

	

f({x, y}) -k p(x) holds for all y E T~ .

Define R(Y) C X for all YE P(K) as follows :

R(Y) = {t < X: Y = {v < K : A t n T. t- 0} } .



Obviously X =

		

U

	

R(Y) . Since Chr ( ) = A > 2', there are
YEP(")- {01

Y E P(K) - {~} and t < n, t, n E R(Y) such that {t, r)} E ~ . Then there
is X E [A t such that I X n T. I = 1 for all v E Y. Define g: X - X
as follows :

For x E X let g(x) = p(x) where p is the function defined in (1) .
By the construction there is a y = h t 77 (X, g) E A 71 and f({x, y}) = g(x)
for this y and x E X. Using that rt E R(Y), v E Y for the v with
y E Tv . Then for this v there are x, y E Tv , { x, y} E :, with f({x, y}) _
= p(x) a contradiction to (1) .

§9 . GRAPH CONSTRUCTIONS. SPLITTING KNOWN GRAPHS

First we recall a technical lemma about sets of the form 'K .

Lemma 9.1 . Let K > w, A a set of ordinals. Let Inc (A K) _

_ {x E A K : x0, < x Q for a < 0; a, R E A} . Each of these sets has a natural
lexicographical ordering < _ -<A," . Assume now that 1 < j < W, S <
< cf (K) and Inc (jK) = U T is a partition of Inc ('K) . For i < j
define

	

t<b t

Tt _ {x E Inc ('K) : {y E Inc (1- 'K) :

lxo . . . x1-- I Y O . . . Yi- i- 1) E Tt }

has type Ki - ` in the lexicographical ordering} .

The following statements are easy to verify .

(A) Inc (`K) = U T` for i < j .
Z<6 t

(B) If X E T', i < j, then I {y < K : (xo , . . . , xi _ 1 , Y) c Tt+ 1 } I = K .

(C) Assume io , i 1 < j, x E T' y E Tt 1 , x„ xµ for v < io ,
µ < i 1 . Then for an v ordering condition -< of the set {x ,, : v < j} u
U {yµ : p < j } which is an extension of the given ordering of {x,, : v < is } u

U {yµ : p < i 1 } there are x', y'(=- Tt , x' j io = x, Y' l i 1 = y satisfying the
ordering condition .



We leave the verification of these statements to the reader .

Lemma 9.2 . Let K >~ w, X _> 1 . Suppose there are X "edge-(lis-
joint"graphs .i, t , ( < A) on K such that for any partition of K into
< 8 classes there is a class in which each of the graphs has a vertex with
relative valency K . Then P(GSn (K), X, S) holds Jór all I < n < w .

Proof. Note that the assumption implies S < cf (K) . Let j
= n 2 + n + 1 . Then, by definition 8 .2, Inc (fK) is the set of vertices 1'
of GSn (K) . We define f: GSn (K)

	

X by the following stipulations . Let
{x, y } E GSn (K) . Put f({x, r}) _ ~ if {s o , yo } E ,fit and let J({ .v, yj) = 0
if {x o , 1 . 0 1)

	

U .% t . To see that this f establishes P(GS11 (K), X, S)
t<~

let V = U Tv be a partition of the vertices with S' < S . By 9 .1, K
v< ó

U T1 is a partition of K into the union of < 8 sets. By the assump-
u<b

tion, there is v < S' such that for all ~ < A there is _ 0 E Ti with rela-
tive valency K in "i' t . Let ~ < X be fixed and let x o satisfy this re-
quirement. By 9 .1 (B) we can choose x' E T" + i with V~ _ .v o . By the
assumption, there is y o E T1 with {xo , yo } E :5 t , xn < y o . By 9 .1 (C)
there are x, y E TV , {x, y 1 E GSn (K) such that X I fr + 1 = _V', y 1

	

yo*
Then f({x, y})

	

~ .

We now obtain

Corollary 9 .3 . If K _> w is regular arnl K

	

K 12 tlucrr
P(GS,(K), A, K) for all 1 < n < w .

Proof. Let J' . IKJ' -* X establish K- IKJ2 . Let

	

; t = teE IKI- :

f(e) _ } . Assume K = U Tv for some 6' < K . Then, by the regularity
v<6 ,

of K, there is a v < S' with I T h I -- K . For this Tv each

	

contains
an x E Tv with relative valency K otherwise there is a free set of ~5 t

with cardinality I T v I = K . Hence the result follows from the previous
lemma .

Note that by Corollary 9 .3 we see that the relation K ---> 1 K 12 plays
an important role in constructing graphs satisfying P and P* properties .
We restate here some old results .



Lemma 9.4 (F . Galvin - S . Shelah [171 pp. 170, 171) .

(a) w l H [w 1 14,

(b) cf (2 t~ 0 )

	

[cf (2 tA0 )1x o n 2 0 - [ 2 80 1 2N 0 '

We get the following corollaries .

Corollary 9 .4 .1 . For all 1 < n < w, P*(GSn (w l ), 4, 8 1
)) .

Proof . By 9.3 and 9.4 (a) we get P(GSn (co 1 ), 4, N 1 ) . Then, by 7 . 1,
we have P*(GSn (co t ), 4, 8 1 ) as well .

Corollary 9 .5 . If cf (2 80 ) _ 81 then for all 1 < n < w

P(GSn (w l ), N 1 , 8 1 ) .

Proof. By 9 .4 (b) 1 +~ [N11288 0 , hence, by 9.3, P(GSn (w 1),
11 01 11 1 )

Considering that P( , to o , N 2 ) is false for every graph N on w l the

result now follows from lemma 7 .3 .

Note that by theorem 8 .5 the stronger assumption 2 8 0 = N, implies

the stronger conclusion that P*( '-,, , N
1 ,

8 1 ) holds for some "short odd

circuitless" .tj on w i . We want to mention that with the proof of Lem-

ma 7.3 one can obtain the conclusion N 1

	

[N 1 1

	

t

	

[81]2

	

as
0

	

1

well .

Now we state two other corollaries .

Corollary 9.6 . P*(GSn (cf (2 80))), 8 o , cf (2")) .

Proof. cf (2") is regular . Hence the corollary follows from 9.3,

9.4 (b) and 7 .1 .

Corollary 9.7 . Let X be an infinite cardinal and let 5 be the least
cardinal such that X 6 > A. Then for all 1 < n < w, P(GSn ('), X, S) .

Proof. It is easy to see that the graph constructed for the proof of
Theorem 8. 1, and the coloring f of this graph given there satisfies the

requirements of Lemma 9.2 with

	

t = f -1 (It)) for t < A. We omit the

details .



It is now time to state some open problems .

Problem 5. Is it a theorem of ZFC that there is a graph .q on w,
such that P(S, 80, 81 ), or in fact does P([w 1 ] 2 , 8 0 , 8 1 ) hold?

Note that this is equivalent to P( ., , 8 1 , 8 1 ) ( by 7 .3) . The relevant
partial results are Corollaries 9 .4, 9 .5 and 9 .20 (a) which will be proved
later .

Also note that, by 9 .2, a positive answer would follow if w 1

H [stationary subset of w 1 ]K
0

is provable in ZFC. However, we do not

know the answer to this problem either . In view of the fact that the results
stated in 9.4 give all we know about the - [ ] symbol in ZFC this latter
question is probably even more interesting than Problem 5 itself .

Problem 6 . Is the following statement provable in ZFC?

(A) For any 1 < n < w there is a graph

	

on 2 x0 such that
P*(,,,, 2

x
0 , N, ) and

	

contains no C2i+ 1 for 1 < i < n.

By Theorem 8.5, C .H . - (A) . By Theorem 8. 1, (A) holds for n - 1 .

By Theorem 8 .6, P*('(, , (2 8 0)'- , 8 1 ) holds for some ., on (2 x o )+
By Corollary 9 .7 we have P(GSn (2 x 0 ), 2x 0 8 1 ) hence by 7 .3 we also
have P*(GS

n (2x o ), 80, 81) • By Corollary 9 .8 we have P*(GSn (cf (2x 0 )),

80 , cf (2 x0 )) .

We now formulate some results and problems of finite character .

Corollary 9.8 . P(GS n (w), 8 0 , 80 ) holds for all I < n < w .

Proof. By Corollary 9 .7 .

Corollary 9.9 . 1 ,ár all n, h, k < w there is an to < w stick that
P(GS,00, h, k) holds.

Proof. By Corollary 9 .8 and by compactness .

Theorem 9 .10 . If to - ( p)" 2 +n+ 1 and in -+-> [p ] 2n 2 +2?z+ 2 fot-

some p then P(GS,(m), h, k + 1) .



Proof. By the assumption there is a g : [in ] 2n 2 + 211 + 2 - h such that
all X C m, I XI = p are completely inhomogenous for this g i .e .
g( [x] 2n 2 +211+2 ) = h Let now V =- Inc (112+n+ i m) be the set of vertices

of GSn (m) . V can be canonically identified to Imin 2 + n + i Let now
x, y E V, {x, y) E GSn (in) . Put f({x, y)) = g (Range (x) u Range (y)) .
We claim that f establishes P(GSn (m), h, k + 1) . Otherwise there is

U T. = V contradicting this . By in -* (p)~2+n+1,Xj n 2 + n + 1 C Tj for
j<k
some j < k, I X I = p and this X is not completely inhomogeneous .

Corollary 9 .1 1 . If 111 - (211 2 + 21, + 2)k-' + n + i t1ien
Chr (GSn (m)) > k.

This is the general method which is used in [51 to construct short odd
circuitless large chromatic graphs .

Finally to conclude this chapter we prove sane results about splitting
graphs of different type .

Definition 9 .12. If ~p is an order type tp (R(-<) _ ~p we consider

the edge-graph G(~p) the set of vertices of which is [R1 2 . Two pairs
{x, y), {z, u) are joined in I:(~p) iff either x < y = z -< a or z -< u =

= x

	

v .

Lemma 9 .13 (P . Erdős - A . 11ajna1 [7 J) . If I ~o i> 8 0 , then
Chr (!E(~p)) equals to the least cardinal K such that 2" > I ~OI

•

Lemma 9 .14 . Suppose I ápI = I >p I = 8 ,,, , 5 > w . Then

P(IE(~p), X, 5) - P(C(> ), X, S) ,

P*(IE(~p), X, s) - P*(IE(~), X, b)

Proof. Assume tp wa (-< 1 ) _ gyp, tp w a (- < 2 ) _ 0 for some orderings
~ i and 12 . It is sufficient to prove the implications from left to right .

Let f: [w o, 1 3 X establish P(IE(~p), X, S) . We claim that f establishes

P(E(> ), X, S) as well . Let [ wa 12
= U T„ for Some K < 5 be given .

V< N

Put Tv0 =f {x,y) :x~ I yAx -< 2 y)nT., TAI ={ {x,y) :x-<IyA

A y-< 2 x) n T ,, . Then 2K < S, hence by the assumption, there are v < K



and E < 2 such that for all t < X there are a0 -< 1 a1 -< 1 a2 with
f({a 0 , a 1 , a 2 )) _ ~, {a0 , a 1 ), {a 1 , a 2 ) E Tv E , {{a0 , a 1 ), {a 1 , a 2 )) E

E E(~p) . Then either a0 -<2 a 1 -< 2 a2 or a2 ~2 al -<2 a0 hence
{{a0 , a 1 ), {a 1 , a2 )) E E(>) in both cases and {a 0 , a 1 ), {a 1 , a 2 ) E Tv .

The same argument works for the proof of the second equivalence .

Lemma 9 .15 . Let gyp, ~ be order types . If ~p

	

[ 01 3 and yp (~)K
for all K < 6 then P(E(~p), X, S) .

Proof . Let tp R(-<) _ gyp. Let g : [R]3 --> A establish gyp- , [>G]3 . Put

f({x, y)) = g(x U y) for {x, y) E E(~p) . Let U Tv = [ R] 2 be a parti-
V< K

tion of length K < S of the set of vertices . By

	

-, (~)K there are v < K

and X C R, tp X( --<) _

	

and [X] 2 C Tv . Then, by the definition of

g, g([X] 3 ) = A and by the definition of f, f([[X] 2 ] 2 n E(áp)) = A .

To draw the consequences of this lemma we need

Lemma 9 .16 . Let a > w, y, 5 be cardinals. Assume

	

Then
X+ - [ y+ 1]b .

Proof. For each ~ < A+ let ft : [t] 2 - 5 establish X H [Y,2. For

ri, } E [a+ ] 3 ~ < 77 <

	

put f({~, rl, t)) = ft ({~,

	

f obviously

establishes A+ _ [y + 11 3y .

Theorem 9 .17 .

(a) K > No

	

P(E((2 K )+ ), 2, K+ ),

(b) 2 x0 < 2 m 1

	

P(E((2x0)+, 4, 8 1 )>

(c) 2' -,,-> [K+ ]s

	

P(E((2 K )+, b, K+ ) •

Proof . For all proofs note that by the E r d ő s- R a ti o theorem

(2K )+ -* (K + + 1)K holds . We always apply Lemma 9.15, we only have to

indicate the

	

and the partition relations we use .

(a) >y = K+ (2K ) +

	

[ K+ ] z follows from 2 2K ~~ (K+
)23' see

p. 125, Lemma 5/A .



(b)

	

= w l . By [91 (p . 13 . Problem 17) . 2 8 i ~+ [WI 1 3

(c) > = K+ + 1 . By 9 .16 .

Let (n)k and [n1' denote the minimal in for which m --> (n)k and
in - [n]k' hold respectively .

Theorem 9.18 . For each 1 < k < w there is an in such that
P(E(m), k, k + 1) . As a corollary of this P(E(w), 80 , á`i0 ) holds .

Proof. By 9.15 it is sufficient to see that there is an integer n for
which (n) 2 < In 1k .

By known methods (see e .g . [31) .

(n)k < k k " while, for all e > U and n > V(k, e),
/ i

	

2
l6 _ F ),i

[n]3 > (
k
	k -~

	

This proves the theorem .

Now we prove a lemma which leads to a strengthening of 9 .17 (c)
and 9.18 .

Lemma 9 .19 . Assume T, X > w and S T < X. Then
VIC < T(P(E(X), K, T)) implies P(E(X), S, T) .

Proof . By the assumption, P(E(X), I X I , T) holds for all X E 16
1<

r

By ST < X, we can choose a disjoint partition

L'(X) = U G X
X(-161 7

such that P( .5 X , I X1, T) . We can choose a mapping fX : 'íX -> X which
establishes this fact . Put f =

	

U

	

fX . We claim that f establishes
Xk (61 < ,r

P(E(X), S, T) . In fact if [X]' = U Tv for some K < T, then for each
V<K

X E [51< r, there is v(X) < K such that for all ~ E X there are u, v E

E T1,, x) with f({u, v)) _ t, {u, v} E :4X c E(X) .

Now the statement follows because there is a v < K such that
U {X e [51" : v(X) = v) = S . This holds because otherwise there is
r? V (7 u {X c [S]< T : v(X) -= v), rl v < 6 for all

	

v < K, and



X= {?7 v : v < K} F [S]< 'r, a contradiction .

Theorem 9.20 .

(a) P(E(wa ), N,,, NO ) for all ci,

(b) 2" _ [K+ ]" - P(E((2" )+ ), (2 K ) + , K+ ),

(c) 2" = K+ - P(E(K+ + ), K + +, K + )

H
Proof . Considering 8,2 _ 8 ,,, (a) follows from Theorem 9 .18 and

Lemma 9.19 . By Theorem 9 .17 (c) 2" -H [K+ ]K implies P(E((2" )+ ), K, K + ) .

Applying Lemma 9.19 with A = ( 2" )+ S = (2" )+ 'r = K + we get that
p(E((2 K )+ ) ( 2" )+ K

+ ) holds . This proves (b), (c) is a corollary of thisl
since 2" = K+ implies K + -** [K+ ]

2

K- + .

Let us remark that for finite graphs 9 .8 gives a result which is stronger
than 9.18 since GSn (w) does not contain short odd circuits . However,
here it is possible to exclude all short circuits .

Theorem 9.21 . For any n < w there is a graph .1 on w such that
AS, 8 0 , ?S o ) and

	

contains no ( i for 3 < i < n + 3 .

The proof can be carried out by using the "probabilistic method" .
Since this is not in the line of this paper we omit it .

Finally we state a problem left open by the above results .

Problem 7 . Given n < w, is there is short circuitless graph -V on
w such that P*( .~ , No , No ) holds?

Note that the previous theorem gives an affirmative answer P* is
replaced by P, and 7.1 yields then P*(%, k, 80 ) for all k < w .

§ 10. CONSTRUCTIONS OF RELATIVELY SMALL n-TUPLE
SYSTEMS NOT CONTAINING LARGE FREE SETS

Definition 10 .1 . Let (R, J) be an ordered set, 1 < n < w, X, Y E

E [R]n . X, Y are said to intersect canonically iff X= fx~ : i< n}, Y=
_ {yj : i < n} where both sequences are increasing in the ordering

	

of



R, and X n Y = {x t : i E N} _ {y t : i E N} for some N c n .

Theorem 10.2 . There is a triple system _,-I on w i such that

(1) there is no independent 8 i -set for Y,

(2) the induced graph contains no complete 8, (in fact for any

X E [w,] 81 there exist A E [X]"O, B E [X]`~ i such that no triple meets

both A and B),

(3) if two triples of `J hare an edge in common then they intersect

canonically, hence

(4) each triple of :~ has two edges which are contained in at most
No triples of i and

(5) any four points contain at most two triples .

Proof. Let - i be a Specker ordering of w i and let -< z be an
ordering of w, which is embeddable is the ordering of reals . Let ,j be
the set of all triples ` } E (w i ] 3 such that s < r < i • t , i x
and z -< 2 r _I_ ) x . The first two statements follow from Lemma 7 of [ 17]
while (3), (4) and (5) are easy consequences of the definition .

Definition 10 .3 . Let j 3 be the triple-system with four vertices and
three triangles . Let i4 be the triple-system having five vertices and three
triples having one point in common in such a way that two of the triples
meet in at most one point . See-Diagrams 3, 4 .

Diagram 3 Diagram 4

4



Corollary 10 .4.

8 1

	

(N 1 , J 3 )3 .

Theorem 10 . 2 collects facts we can establish in ZFC for a triple-system
on w, not containing a complete N,,

Assuming G .C .H. we can prove the following stronger

Theorem 10.5 . If 2' = K + then there is a triple s stem v , Y _

= U V on K+ such that
;1<K+

	

P

(1) y' µ n YV = 0 for µ < V < K+ ,

(2) there is no independent K+ for any

(3) the graph induced b>> v' contains no complete K + ,

(4) if two triples in l have a common edge it is the first edge of

both, hence they intersect canonically and

(5) any n-set contains at most [0~4l)` triples of / .

Let us remark that (5) is best possible by Corollary 3 .6 . We can not
prove (5) even for K = 82 without assuming C .H .

Proof. By 2' = K + , we can choose an h : [K+ 1 2 -, K + which sat-
isfies the following requirement slightly stronger than establishing K'

[K+ 1 2
K+

.

(i) For each set B C [K + 1`, 1 BI = K of vertex disjoint pairs and
for all a < K + there is a ~ < K + such that for all ~ < r? < K + there are
K different Z C B with h({u, 711) = o for u E ' .

The routine proof of this we leave to the render . We now define
R C [~ + 11 3 for t < K+ with the intention to put v = U R

	

R

will consist of triples of the form { .ro , .v 1 , t } _= X such that {.V o , .V l } n

n {y o , y I } _ 0 for X Y C R, . Moreover we can choose R t to sat-
isfy the following requirements (ii), (iii) :



(ü) h({x o , x l }) = 1, 2 < h({x o , t}) = h({x1 ; t}) for X C Rg .

Let [K+ ]" _ {A t : < K + } and

	

t = {A,7 : Ti < t n A n C t} .

(iii) Let A n C Ft , 2 < a < t . There are K triples in R t such
that h({x o , x i }) = 1, h({x o , t}) = h({x t , t}) = a provided it is possible
to choose K triples satisfying the above requirements at all . We now put
X = {x o , x l , t} C

	

Y11 iff X C R t n h({x 0 , t}) = p + 2 . Obviously then
Y = U Y

	

and (1) holds. (3) holds since h(e) 0 for all edges e inu<"

	

u
the induced graph . To see that (2) holds let A C [K+ ]"+ p < K +

By (i), there is a set B C [A] 2 , IBS = K of vertex disjoint pairs with
h(e) = 1 for e C B . By (i) and (iii) there is a to < K+ such that for all
to < t < K + there is an {x o , x 1 } C B with {x0 , x t , t} C R t , h({x 0 , t}) _
= h({x l , t}) = a = µ + 2 . Then there is a t C A satisfying this require-
ment, hence {xo , X 1 , t } C [A ] 3 n ,,e µ . (4) is obvious from the choice of
R t , and (5) is a corollary of (4) .

The following are immediate

Corollary 10 .6 .

2 " = K+ - K+ -ra [(K + ) +

	

3 V Y 3"

	

°

	

4 ]

	

'

C .11.-8 1 +>(8 1l -/ 3 VJ 4 ] 3 .

This should be compared with Corollary 10 .4 obtained in ZFC .

Corollary 10.7 . If _'
N
a = a+1, then

h 3 (n> a) _ (n 41)~

Proof. By Corollary 3 .6 and Theorem 10 .5 (5) .

The first two clauses of the next theorem show that there are arbitrari-
ly large chromatic finite n-tuple systems

	

with W 1 --> (Col, J)" .

Theorem 10 .8 . For any positive integer n>2 there is an n-tuple
system y such that



(í) K -)' (K, Y)" for every regular cardinal K.

(ü) Chr ( Y') _ 8 0 ,

(iii) for any

	

'' C y' with Chr ( .y') > 2 there exist X, Y E .y'

with I X n Y1 = it - l .

Proof. Note first that is sufficient to prove that for each k < w
there are n-tuple systems Y k satisfying (i), (iii) and Chr ( J k ) > k . In
fact if K (K, V'k )" for k < w, then K -> (K, J')" where J is the
union of vertex disjoint copies of the Y k , (k < w) . We now use induc-
tion on it . The statement is true for tz = 2 and for all k < w because
of K - (K, k)' and since all graphs with valency one have chromatic num-
ber at most 1 . Let now n > 3, and assume the statement is true for n - 1

for all k. We now use induction on k to prove the statement for n
and for all k < w . We may assume k > 2 and that the statement is true
for k .

Let v' 0 be an (n -- I )-tuple system with Chr ( J 0 ) > k + 1 such
that (i) holds for J' 0 . Let further J' (Y) be an n-tuple system satisfy-
ing (i), (iii) and Chr(J'(Y))> k for all YE Yo . We may assume .' 0 ,

Y( Y) (Y E J' 0 ) to be vertex disjoint . For each Y E v' o let J ( Y) _

_ {Y {x ) : x C U J (Y) ) . We claim that V = U {J (Y) J J (Y) : YE

C-- <<f' e ) satisfies (i), Gii) and Chr ( ~') > k + 1 .

To see that ('i) holds, let 1 be an n-tuple system on K such that there
is no K-set free for a . Let j - { Y E [Ki ll -- i : ({x E K : Y u {.V) E _Z) I -

= K) . If theree is a K-set A C K free for ., then every maximal subset
of A free for :/ has cardinality K. Hence we may assume that there
is no K-set free for _ either. By the assumption on 1' 0 , . ; contains
.y, 0 . We can now choose disjoint K-sets A( Y) C K for YC Y o such
that Y u {x) C 2 for all _r • E A( Y) . By the choice of J ( Y), each
=z 1 AM contains . ,,I( Y) hence 1 contains J' .

We now claim Chr ( J' ) > k . Let 1' = U <~' and assume f: V-> k .
By the choice of J' 0 , there are Y E ,)P 0 and v < K such that f( Y) _
_ {v ) . Then, by the choice of' Y ( Y) and ! ' ( Y) either f(z) _ {v ) for



some z C 1'(Y) or f: U ~9'(Y) - k - {v} and f(Z) _ {µ} for some
Z E i (Y) and µ < K .

Finally to see that (iii) holds assume I X n YI < n - 1 for all X
Y C Y' for some Y' C Y . Let V(Y), VD denote the set of vertices

of _90 (Y), 9" 0 respectively . Then, by the assumption, there are f y,
V( Y) -> 2 establishing the fact that Y' A _97 ( Y) is at most two-chromatic .
By the construction, and by the choice of Y', I Y' A

	

( Y) I < 1 for all
YE Y 0 . Hence there is at most one vertex x E V( Y) contained in an
element of ~r' n . (Y) for Y C :i'0 . We may assume that fy, (x) = 1 for
this x and we can define f by f(x) = fy,(x) for x C V(Y), YC .9 0
and flx) = 0 for x C V0 . This f then establishes Chr (Y1 ) 5 2 .

We now state two more results which can be proved using similar con-
structions . The first of these theorems shows that for every infinite cardinal
K there are e .g . triple systems Y with chromatic number > K such that
all subsystems not containing two triples with a common edge have chro-
matic number at most two .

An old problem of E r d ő s and H a j n a l[ 5 j asks if every graph of
chromatic number > K contains a subgraph of chromatic number > K

not containing triangles or more generally C2i+ r for some fixed n and
1 < i < n. This can be reformulated as follows : It is true that if S(0 is
a fixed graph such that there are graphs with arbitrary large chromatic
number not containing :el o then every graph 's with chromatic number
> K > 80 contains a subgraph ~' with chromatic number > K and not
containing .r, 0 . Theorems 10.9 and 10 .10 show that a generalization of
this fails to be true for n-tuple systems with n > 3 and in a sense for
X-tuple systems .

Theorem 10.9 . Let 2 < n < N 0 < K . Then there is an n-triple sys-

tem Y such tliat :

(i)

	

I •99I = K-K
X < K

(ü) Chr ( .~ ) = K .

K 1~ .



(iii) For any 9' C Y with Chr (Y') > 2 there exist X, Y E <91'

with IXnYI=n-1 .

Theorem 10 .10 . For any infinite cardinals K and A there is a JX-

tuple system ., such that. ,

(i) X,YEYAX Y-IX-Y1=IY-X1=A.

(ü) Chr ( .9) = K .

(iii) For any Y' C y with Chr (Y') > 2 there
with X Y and I X n Y I_ X .

We omit the proofs .

To carry out the contraction for the proof of the last theorem the
following lemma is useful .

Lemma 10.1 (P . Erdős - E .C . Milner [22]) . For any infi-

nite cardinal K, [K] \83' is the union of 2 8 a an tichains.

To conclude this chapter we state

Problem 8. Characterize the finite triple systems T such that
81

	

( 1,
j7-

) 3 holds .

3.3 and 3 .6 give classes of finite triple systems for which N, ->
-> (8 1 ,

	

holds .

4.2 shows that 81

	

.T2 ) 3 holds where .T 2 does not belong
to the above classes .

Theorems 10.2, 10 .5 and Corollaries 10 .4, 10 .6, 10 .7 give negative
results .

Theorem 10.8 shows that there are finite triple systems

	

with 81 -->
(l~ l , j-)3 having preassigned chromatic number k < w for all k < w .

We now call attention to a few instances of the above problem and
some related problems .

exist X, Y C Y'



Problem 8/A . Does 81 -> (81,
`y l v y, )3

	

1
> ( K 1 , J' 1 ) 3 v

V

	

1

	

( 1 , '/' 2 ) 3 ~

Problem 8/13 . For which pairs K, A of infinite cardinals is it true
that for every finite triple system

	

K -1 (K, y ) 3

	

A (~, J )3 ?

Definition 10.12 . Let

	

5 , r6 be the following triple systems

.J 5

Diagram 5

./ 6

Problems

8/C. Does 8 1 ( 1 ' / 5 )3
,)

8/D. Does 81 (81,
'F6

) 3 .

8/E. Does ZFC i - 81 +~ (81,

	

4 )3 .

8/E should be compared with 10 .4 and 10.6 .

As to 8/C, . 5 is the simplest (3, 1)-system for which we cannot
prove an arrow relation . On the other hand we remark that it is not a the-
orem of ZFC that 81 - (8 1 , .~F- ) 3 olds for all finite (3, 1)-systems j -
as shown by the following results :

A Steiner triple system Y is a (3, 1)-system such that all pairs of
vertices of ,/' are contained in an element of /' .

Theorem 10 .13 .

(A) If there is a Suslin cf (K)-tree then there is a triple system Y'

orr K such that



( 1 ) J has no free set of power K,

(2) J contains no Steiner triple system consisting of more than one
triple.

(B) If K is a singular cardinal then there is a triple system Y on
K such that

(1) Y has no free set of power K,

(2) If Y' is a finite Steiner triple system contained in J' then
J" has 2m -- I Vertices for some m < w .

We omit the proofs .

§ 11 . CONSTRUCTIONS OF RELATIVELY SMALL LARGE
CHROMATIC TRIPLE SYSTEMS

Quite a few of the constructions to be given will have a common
structure. We think it worthwile to introduce the following special con-
ventions . (All constructions described in this chapter give a chromatic
triple systems which assuming G .C .H . have cardinality A .)

Definition 11 . 1 . Consider aa fixed ordinal A. For a, a < A let F, _
_ {(a, a) : 0<X) and RR = {(a, a) : a < X ) . The R0 s are ranks, the
F,'s are files . A n-systefn (V-system) on X X A is a triple system
whose elements all have the form {x, y, z) where x ., Y E Ra , _r t y,
z c R Q and a < a, (a > a). We call (x, y, z) a triple with base {x, y )
and apex z lying on the ranks a and a . We define graphs 'fi I ( Y),
'N 2 ( J') Oil X as follows : {a, a) E (A] 2 is an edge of

	

I ( ) iff there
is a triple in ,y whose base meets Fa and I J, and edge of .,, 2 ( .<< )

iff there is a triple in Y lying on R« and RV

Lemma 11 . 2. Let X >- 0 be a cardinal. If '~ I, S 2 are A-chromat-
ic graphs on A, then there is a X-chromatic A-system (V-system)
on XX A with S I (J)= .h l , lei 2 ( `V')= J 2'

Proof. Let Y be the set of all triples of the form
{(al 1 a2 ), (a1, a 2 ), (0 1 , a, )) where {a1, al } E .~ I , {U2' az } E 2 and



a, < 02, (a 2 > 02 ) . Then

	

~( ) _ ' t for i = 1, 2. Let f: X X X -> i

for some r < X . Let Tv __ {(3 < X : there are a,, ai such that
{al , aí } (E 'S, and f((a l , Q)) = f((a,, P)) = v} for v < 7 .

Considering that Chr (`N 1 ) = X, we have X = U Tv . Using
D< T

Chr ('S,) = X there are a,,

	

< X and v < 7 such that {a l , 07 } t ~,
and a 2

	

T. . We can choose al , aí and 0 1 in such a way that
{al, ai } E i , and f((al , a, )j == f((051, 02 )) = v . This proves Chr

X .

Definition 11 .3. Let o be the triple system with four points and
two triples . Let .i 7 be the triple system containing five vertices and four
triples such that three of these triples have a common edge and the fourth
triple does not meet this edge . Let ; s be a triple system with ten ver-
tices and five triples and forming a pentagon as shown on the Diagram 6 .

Diagram 6

,% 7

Corollary 11 .4 . For any cardinal X w, Mere is a X-chromatic
triple svstcnr Oil X Containing no

Proof. In lemma 1 1 .2 take

	

1 to be the complete graph on X
and S, a X-chromatic graph on X containing no triangles .

Note that by the reasoning given in the proof of Theorem 10 .8 X
(X, a 7 ) 3 holds for all regular X .

Lemma 11 .5 . Let K be an infinite cardinal, and let

	

1, ~, be

3 8



K-chromatic graphs oil K . For each ordinal a < K let Pa = ' S 1 , and
let P = U P. . Let /' be the triple system oil P X K consisting of

a<K
the triples of the forral {(Q, n), (Q, V), (T, w)} where or E Pa , T E PQ ,
a < 0 < K, {a, R} E "')2, Q C T, T(a) _ {u, v}, and 1V < K . Then
Chr (,v ) = K.

Proof . Let f: P X K - 6 for some S < K. We now define a p E

E
W

1 ., 1 Ly induction on a < w l . Assume p I a has already been defined .
Then p I a E P. . Considering that Chr ('S 1 ) = K, we can pick u a , v« E K,
{u« , v« } E 1 and v a < S such that f((p I a, u « >) = f((p I a, va )) = v im .
We then put p(a) _ {ua , v ,,, } . By Chr ( .' 2 ) , K, there are a < Q < K,
{a, 01 E :j 2 , and v < S such that v a = vQ = v . Put v = va = v R , it = at « ,

v = v« , w = u., a= p I a, T = pig. Then X = {( Q, u), (o, v), (T, w)} E <í

and J(X) _ {v} . Hence Chr ( ~' ) > K . Since Chr (J') < K is obvious
this proves the lemma .

Theorem 11 .6 . For any infinite cardinal K is a triple system ~'
such that

(1) C]nrGv')=K +,

(2) I

	

1 = 2',

.`91 contains do j- 1 , J 3 , % 4 , % 2 , % 8 ,

if ~0 C Y and ./' 0 contains no i 0 then Chr ( J 0 ) < 2,

if J 0 C Y and I w' 0 1< 80 , then X (X, y 0 )3 for even,
regular X .

Proof. We use Lemma 1 1 .5, with K replaced by K -F . We take for
J i a graph with no triangles or pentagons, take for 2 a graph with no
triangles, both of chromatic number K . (1) follows from the lemma .

1 J' 1 =

		

aK = 2' hence (2) holds .
a< n+

To prove the rest observe first that if (T, IV) E P X K and a triple X
of v' contains it, and X has a vertex (a, it) with D((j) < D(T) then

X is uniquely determined by D(T) ; X = {(TI D(Q), it ), (TI D(Q), v), (T, IV))



where {u, v ) = 7(D(a)) .

It follows that the pairs of P X K contained in more than one triple
of J have the form {(a, u), (a, v)) and all the other vertices of the
triples containing this pair are of the form (7, 10 with D(7) > D(a),
a C 7 .

This arrangement implies immediately that J' contains no T 3 and
7 are excluded because % 2 does not contain triangles .

In case of j- 1 and J 8 there is a unique way to pick an edge
from each triple so that these edges form a triangle and a pentagon re-
spectively . Now meditation shows that if Y contained a , or a J g
then the triangle or the pentagon would be contained in ,,j 1 . We omit the
cumbersome discussion . We only want to point out that the same argu-
ment does not work for circuits of length seven defined analogously . This
proves (3) .

(4) and (5) follow since all finite subsystems

	

o of Y are con-
tained in systems constructed for the proof of Theorem 10.8 .

Lemma 1 1 .7 . Let N be an infinite cardinal. Suppose s 1 , IN ., are
graphs on N such that P(S I, N, K) and P*(!V,, N, K) . Then there is a
V-system v on N X N such that :

(1) Chr ( /') > K .

(?) `-í; i (

	

"%, ( ./') are subgraphs of '4 1 , `J, respectivel v.

(3) any two triples lying on the same two ranks have the same apex .

(4) no two triangles have the same base .

Proof. Choose mappings

	

establishing P(',% 1 , N, K) and
P*( :~ , N, K) respectively .

Let f, = h • f; where h is a N-to-1 mapping of N onto N .

Let

	

consist of all triples of the form

{(a l Ia,),((31,0,),(01,0 .)))



such that a l < 02'
{a, , 0, } C ""2' f, ({a, , az }) = Ce , {Q i , 0i } E i and

ft ({Qt , 0i }) = a, .

(2), (3) and (4) hold by the construction . To see (1) let g : X X X -> S
for some S < K . By the choice of ft , for each R < X there exists
v = g(p) such that for all a < X there are y, S < X with {y , S } C

6)) = a and g((y, Q)) = g((S, 0)) = v . By the choice of J'2*; , there
are v < S and a z < X such that for all

	

< X there is a

	

with
{az ,

	

f'*({a,, Q}) _ t and g(a,) = g((3) = v. By g(a, ) = v, there
is an a i such that g((a i , a, )) = v . Then there is a 0 2 > a ) such that
g(0 2 ) = v, {a, , 02 } C , , and h(J; ({a, , 0, })) = a i . By g(a, ) = v, there
are

	

< X such that

	

Oi } C i , J' i (A , (3'i }) = a2 , and
g((01, Rz ), ((3i , Q, )) = v. Then X = {(al , a, ), (a t , 0 2 ), (0 1 , {3 z )} C Y' and
g(X) = v . This proves Chr ( l') > K .

Lemma 1 1 .8 . Let X be all infinite cardinal, K the least cardinal
such that X" > X and n < w. Then there is a V-si •stem oil X X X such
that . -

( I) Chr( .`/)>K .

(2)

	

i ( J ) contains no C',, + i for 1 < i < n .

(3) :~,( r ) contains no triangles.

(4) any two triples lying oil the same two ranks hare the stone apcx .

(5) no two triples hate the wire base .

Proof. By the previous lemma it is sufficient to exhibit graphs

	

i ,
, on X such that P( .~ I , X, K ), P*( :~ , , X, K ), S I contains no c

for 1 <- i < n and

	

contains no triangles. The existence of such graphs
follows from Theorems 9 .7 and 8 .1 respectively .

Lemma 11 .9 . Let K be an infinite cardinal such that 2" = K + curd
let tt < w. Than there is a V-s.rstcnts ~' ott K + X K+ such that . -

( 1) Chr ( :~) = K+ .

(2)

	

i (, ) and

	

V ) contain no C j+ 1 for I < i - n.



(3) anv two triples lying on the same two ranks have the same apex .

(4) no two triples have the same base.

Proof . By Lemma 11 .7 and Theorem 8 .5 .

Definition 11 .10. Let J-9 be a triple system with five vertices and
three triples . Two of these triples have an edge in common, the third triple
does not meet this edge ; see Diagram 7 .

Diagram 7

Theorem 11 .11 . Let A be alt infinite carclittal . K the least cardinal

such that A" > A. Then there is a triple system .'/ ott A such that

Chr ( l ) > K and .'1 contains no J 9 .

Proof. Let i be the triple system constructed in Lemma 11 .8 with
n = 1 . Then Chr ( / ) > K . Assume .1 contains a J9 . Then the com-
mon edge of the two triangles of J 9 meets two ranks, and then .~'
woLdd have to contain a triangle .

Lemma 11 . 12 . Let K be alt infinite cardinal such that 2^ = K+ ,

and let n < w. Then there is a A-system (V-system) .`i ott K + X K+

such that :

(1) Chr(J')= K + .

(2) í% ( `i ) alul .%,( .`i ) contain no C',i+ i for 1 < i < n .

(3) any two triples with the same base have their apexes on the same

rank .

(4) any two triples ivitlt the same apex have disjoint bases .

.i 9

479 -



Proof . By Theorem 8 .5 we can choose a graph on K+ which
contains no C2i+ t for 1 < i < n such that P( .(,, K + , K+ ) . Let f be
a mapping f: 'y' -~ K + which establishes P(" , K + , K + ) . Define 7r :
K+ X K+ - K + by 7r((R t , 02 )) _ 0t . For a, R < K+ let .y (a, o) be the

collection of all X such that :

(i) XC [R 9 ] 2 .

(ü) {x, y } E X {rr(x), 7r(y)} E and fl {7r(x), rr(y)}) = a.

(iii) e*e'EX-ene'=0.

(iv) I X I = K.

Now, by a routine transfinite induction, one can construct a A-sys-

tem (V-system) Y satisfying the following conditions :

(a) .-!~ i ('(JI),

	

2 ( .f') are subgraphs of

	

,

(b) if a triple has apex (a i , a 2 ) and base {(a i , 0, ), (Q i ,

	

)} then

flo l , 0 1 1) = a,

(c) any two triangles with the same apex have disjoint bases,

(d) if {a 2 , 0 2 } E S I a, > 02 (a, < 0 2 ) and X E -ii (a,, 0,) then

for every sufficiently large a i < K + there is a triple in F with apex

W,, a 2 ) whose base belongs to X.

We omit the details of the construction . Now ,/' satisfies the re-

quirements (2), (3), (4) by the construction . Let g : K + X K + - K . By the

choice of ', for each 0 < K+ there exists a v = g((3) satisfying the fol-

lowing requirement . For each a < K+ there are K + "vertex disjoint"

pairs {x, y} E R p , with {7r(x), ir(r)) E <, f({7r(x), 7r(á , ))) = a and

g(x) = g(y) = v . Again, by the choice of s there are a 2 , (3 2 < K + ,

fa t , 02 } C S , such that g(a 2 ) = g(02 ) = v for some v < K + . Say we are

constructing a ZN-system and a 2 < 02 . By g((3 2 ) = v there is an X E

e i/ (a2, 02 ) such that g(x) = g(r) v holds for all pairs ( .Y, y } E X.
"Then, by (d), and by g2 (a) = v there is an a i such that

g((a I 1 (Y) = v and there is a triple Y in Y with apex (a, , a 2 ) whose



base belongs to X. But then g(X) _ {v } for this triple of _9 . Hence

Chr (í') = K + .

Theorem 11 .13 . Let K be all infinite cardinal such that 2" = K +

an(l let N< w . Tlten there is a K+ -chromatic triple system

	

Oil K'

spelt that for each n < N ally n points contain at most j8 triples .

Proof. Take V - for the system given by Lemma 11 . 12 with some

n, 211 + 1 > N . It is a matter of easy finite computation to verify the

statement for this 'Y' .

Corollary 11 .14 . Assume G.C .H . Then g3 (nl, a)

	

lot. all a .

Proof. By Corollary 3.3 and Theorem 11 .13 .

To conclude this chapter we state

Problem 9. Characterize the (finite) triple systems that occur in every
S 1 -chromatic triple system on w t ,

To have a short notation : Let G 3 (K) denote the class of finite triple
systems which occur in every K-chromatic triple system on K .

Corollary 3.3 shows that G 3 (w i ) is large e.g . ~ , o E G3 (w 1 ) . By
Corollary 1 1 .4, -j-

	

G 3 (w 1 ) but +~ 1

	

( ~ t , .

	

) 3 . By Theorem 11 .67

	

7
C.H. implies i 1 , .T3,

-'-4,
.i 8 q G 3 (w t ) . By Theorem 11 .1 1 C.H . im-

plies i 9 C/ G 3 (w t ) . Note that all these examples j- (7 G 3 (w t ) are such
that they satisfy the necessary conditions given by Corollary 11 . 14 .

We now state the simplest unsolved instances and some related prob-

lens .

Problems

91x1 . Does ZFC --

	

a , ., s ,

	

(-, F G .,(w t )`'

9113. Is there an 8, -chromatic triple system on

	

whirl, avoids

both /-,1 and

	

9



9/C . Is there an N 1 -chromatic triple system on w, which avoids
J 1, J 3 , .i 4 and J9 ?

9/D. Let Y 1 , Y 2 be finite triple systems . Suppose that for each
of them there is an 8 1 -chromatic triple system on w,, avoiding it . Does
it follow that there is an 8 1 -chromatic triple system on w l , avoiding
both?

9/E. Let K, X > No . Is G 3 (K) = G 3 (Á)?

§ 12 . CONSTRUCTIONS OF (n, i)-SYSTEMS HAVING LARGE
CHROMATIC NUMBER

Put =O(K)=K, _-,+1(K)=2"n(K) for all K and n < w .

The next lemma is our main tool in the constructions to be given
here. As we have already mentioned in §6, it concerns P and P* prop-
erties .

Lemma 12.1 . Let 1 < r < s < too < S < A. Assume that at least one
of the following conditions holds :

(a) s - r = 1 and X K < X for K < 6,

(b) s--r<,r and X' + <X for K<5,

(c) 2 < s - r, and there are (s - r, r)-systems

	

such that
K = X and P(J' K , K, K+ ) for 1 C K < S .

Then there exists an (s, r)-system Y, I Y I = A such that

P*(Y, X, 5, r) .

Proof . If (c) holds let Y
K
= U YK

V
be a disjoint partition of

UG K

establishing P( Y K , K, K+) for 1 <K<6 .

If (a) holds let Y K consist of a single one element set and put

`9 K, v = yK
for v < K .

If (b) holds let
'5~"K = [K+ ] s-

r
./ K = J'K

V
for V < K . Let r be

the smallest cardinal such that XT > A . Then w < 6 < T < X and r is



regular in all cases . We are going to define Y on X X T. Put R R =
= X X 101, TQ =XX R for 0<T.

For each a < T, let .ii (0) consist of the set of all sequences X =
_ (X V : V < K) satisfying the following conditions :

(1) 1 ~< K<5,

(2) X„ c [To ]', 1 Xy 1 = 1 YK v I, X~ n Xµ = O for v, µ < S, v * p,

(3) AnB=O for AEX., BEX9 , AFB, v,p<K .

Let further .:~ (a) be the set of all triples (X, g, ~) such that X E

D(g) = U Xv , R(g) c X and ~ < T . By the assumption, I .Y1 (Q)1 =
VG K

= I

	

(a) I = A for all 0<-r.

We can now assume that for each O < T and A = (X, g, ~) there

are "vertex-disjoint" copies Y ~(A) of Y,, in RR where K = D(X) .

We will denote by YO ,(A) the subsets of YO(A) corresponding to

the sets `, K V
for V < K respectively . We now choose a one-to-one map-

ping APR V (A) of J a ,(A) onto Xv for each a < T, 1 < K < 5, v < K,

A,= (X, g, ~) C X (0) . .1' will consist of sets of the form Y U Z, Y C

E [R R ]s r Z C [ TQ ]r for Q < T satisfying the following conditions :

(4) There are 0 < T, A = (X, g, ~) E A'(0) such that Y C .%' Q (A) A

A K = D(X) .

(5) There is a v < K such that YC v"Q ~(A) and Z= ~p R
V
(A) (Y) .

We put O(Y u Z) = Q for all Y U Z C J .

First of all it is obvious that I •l' I = X. We now check that v' is

an (s, r)-system . Let U = Y U Z, U' = Y U Z.' ; U, U' C .1, U U',

O(U) _ 0, a(U') _ 0' . If a Q' then obviously I Un V I < r in all cases .

Assume R = 0' . Considering that the 1'O(A) are "vertex-disjoint" and

I Z I = I Z I = r, we can assume that U, U' C 9' 0 (A) for some A = (X, g, >,

D(X) = K . Then, by (3), (4), (5), and by the definition of ap p v(A), Z

and Z' and disjoint . If (a) and (b) hold then I U n U' l < I Y n YI
s -- r< r . If (c) holds then Y Y, hence I U n U' I< I Y n YI< r

because of the 1 K are (s -- r, r)-systems .



It remains to see that P*( .`i', X, S, r) holds. We define a mapping
f .̀ J - X as follows. Let O(U) _ 0, U= Y U Z E J . Then Y E ,J' O (A)
for some A = (X, g, ~) E 4 (0) with D(X) = K and Z_ E U X~ . Let

V< K

f(U) = g(Z) . We claim that this f establishes P*( .Y', X, S, r) . In fact,
assume X x r = U P is a disjoint partition of the set of vertices into

µ< K µ
K < S classes . Let X= Im < K : I Pµ _> ,r} and Al = K - .A- . By the regu-
larity of 7, we can choose a 0 < 7 and an X E -// (0), D(X) = K such
that U Xµ C Pµ for p E A'. Assume indirectly, that for all µ < K, Z E

• [Pµ ]' there is an lr(Z) < X such that f(Y u Z) h(Z) for all Y U Z E

•

	

J , Y uZ_ c Pµ . Let g = h I U Xµ . We can now choose a t < r
µ<K

such that for A = (X, g, t) E _* (O), U Y Q (A) C U P . Then either of
µ(=N µ

the assumptions (a), (b), (c) implies that there is a µ E :A', such that for
all v < K there is a Y E Y,, ~(A), Y C Pµ . If (a) holds this is trivial, if
(b) holds this follows from K+

	

(s -- r)K and from the fact that each
YE .f A belongs to each .Y'a

	

for all v < K . If (c) holds this is true
because .Y' = U ~K

	

establishes P( Y K , K, K') . Now pick a Y E
V<K•

	

~R µ (A), Y C Pa and let Z = ~p
0

µ (A)(Y) . Then Y u Z C Pµ ,
Y U Z E Y . By the choice of f, f(Y u Z) = g(Z) . However this contra-
dicts the definition of h and g .

The next theorem yields the "if" part of Theorem B .

Theorem 12 .2 . Let I < i < n < mi + 1 < No < X . Let S be the

least cardinal such that X - ' n - 1ts> > X. Then there is an (n, i)-system Y
such that I Y I = X and P*( .P, X, S, i) .

Proof. The assumption implies m >_ 1 . We prove the theorem by in-
duction on m . Assume nz = 1 . Put r = i, s = n . Then s - r = 1,

ym 1(K) = K hence XK < X for K < 6, and the statement follows from
Lemma 12 .1 (a) .

Assume in > 1 and the theorem is true for m -- 1 . Put r = i, s = n .
Then s - r < (m

	

I )i -i- 1 . We now apply the induction hypothesis for
X' -_ :,,r I (K) for each K < S . Considering that X' r "' - 2 ~K> < X' for each
K, it follows that there exist (s - - r, r)-systems ~ K ,

	

`', I = : M 1 (K)



such that P(,l K , K, K+ ) holds for K < S . Then, by the definition of 5,
condition (c) of Lemma 12.1 holds, hence there is an (s, r) _ (n, i)-system
Y, I Y I = A such that P*( Y, a, 5, i) holds.

Corollary 12 .3 . If 1 < i < rt < nii + 1 < 8 0 < K than there is an
(n, i)-system Y such that 1 .91 = _ In (K) and P*(,9,-m(K), K+, i) holds.

Proof. Since A- "n - i
""

= A for A = _ 11 (K),

the above theorem with X _

	

( K), 5 = K+ .

Corollary 12 .4 . Assume G .C.H . If 1 < i < n < mi + 1 < 8 0 then

there is an (n, i)-system J/ such that 1

	

1 = 8a+in and

P*( Y, 8«+», , 8' a+ t , i) holds and, as a corollary of this, Chr ( Y') > NU ,

We now state a corollary for finite set-systems .

Corollary 12 .5 . For any positive integers i, n, k with 1 < i < n
there is a finite (n, i)-system such that P*( Y, k, k + 1, i) holds .

Proof . There is an integer ni such that tt mi + 1 . By Corollary
12 .3, there is an (n, i)-system ,/" such that P*( k, k + l, i) holds.
The result now follows by compactness .

In case we do not assume G .C.H. Theorem 12 .2 is not the only way
to exploit the force of Lemma 12 .1 . In fact we are going to prove several
results which seem to be incomparable with 12 .2 in the absence of G .C .H .

Theorem 12 .6 . Let 1 < i < n < mi < 8e < X and let S be the last

cardinal such that A "' '(' ) > ~. Theu there is an (>t, i)-si ,stcnt 11

such that I i I =_

	

and P*( ,i , A, S, i) .

Proof . By the assumptions, to = 2 . We prove the theorem by in-
duction on m . Let m = 2. Put r i, s =_= n . Then s r - r, and
_ n1 ,(K + ) -= K i ; XK

	

X holds for K < S . 1-fence the result follows from
Lemma 12 .1 (h) . Assume now nt > 2 and that the statement is true for
/it 1 . Put r - i, s = n . Then s < (m 1) i . Let X' = -„ ? ( K'- )

for K < 6 . Hence 8h "' 3~T < Xh for T < K . It follows, by the in-
duction hypothesis, that for each I < tc < S there exist (s r, r)-systems

m > 1 we can use

4 rés



X,n_ , (K+ ) such that P( Y, K, K + ) . Since

	

- 'n -
2 ~
K+ ~

	

A

for K < 6, condition (c) of Lemma 12 .1 holds. Hence, by 12 . 1, there ex-
ists an (s, r) _ (n, i)-system Y, I Y I = X with P*( Y, A, 8, i) .

Corollary 12.7 . If I < i < n < mi < So < K, then there is an (it, i)-
system /' such that I V I = `,n _ 1 (K) and P*(

	

_,n
- 1 (K), K, i) .

Proof. Let A =
'in _ I (K)-

Since m >, 2, X= m
-
2(1+)

< -1-1 in _ 1 (K)

for all r < K. Hence, by the above theorem, P*( ~,
m 1

(K), K, i) holds .

Lemma 12.8 . Let 1 < r < n < So < K < A . If there are order types
gyp, ~ such that I ~p ) = X, ~p - (' )K and gyp, [> ]K + i

	

then there is ait
n-tuple system / , such that I Y I = A and P*( .1 , K, K + , I ) .

Proof. In fact since there is no other requirement we can take 'i =

_ [A]n and prove that P*( ./ , K, K+ , 1) holds. By 7. 1, it is sufficient to

see that P( Y, K, K + ) holds. Let
~1

be an ordering of A such that

tp X (~1 ) _ gyp. Let now f: [X]r+ 1

	

K establish ~p+~

	

]K+ 1 . We write

each element Y EE [X]n in the form Y = Yo U Y 1 where yo E [X]r+ 1

Y1 E [A]n-r- 1 and Y o -< I Y 1 . Define f: [Xl n

	

K by f( Y)=f(Y o )

for Y E [X]n . Let now A =- U Pµ . Choose Pµ = E) U R µ so that
u<K

Oµ -< I Rµ , I R µ <n--r- 1 and I Rµ 1 = n - r 1 if Uµ has a last

element for µ < K . By K > w, and ~p [ ,] K+ 1 we have 1 ' 1 ~>K .

Hence, by ~p -> (> )' there is a µ < K such that tp 0- (
< 1 ) ,

~ . By

~0- [ ~] K+ 1 for each v < K there is Y
o,

E [Uµ ]r+
1 with f( Y o, v ) = v .

There is Y 1,, C Pµ, Y
O, V

-' 1 Yl,v , I Y l .

	

= 11 - r - 1 . Hence

f(Yoy uY ly )=v, Yo, UY1, CPu .

Lemma 12.9 . Let 1<t<i<n<mi41<8 0 <K<A and m>-2 .
Suppose: there are order types gyp, ' such that I ~o I = X,

	

(' ) 1 ,

~p

	

[ yr ]K+ 1 . Then there is an (n, i)-system

	

such that I

	

= in 1 (A)

and P * ( V', Z n 1 (X), K + , 1) .

Proof. By induction on m . Assume m = 2. Put r = i, s = n . Then

s r < r + 1 . If s - r < r then because of K+ < X,

	

1 (a) K + < _ 1 (X)

holds. If s - r - r + 1 >- t + 1, then by the previous lemma there are

(s - r, r)-systems 1' , , I ./, I < A satisfying P( :~',, T, T+ ) for all T < K + .



Hence, by 12.1, there is an (s, r) _ (n, i)-system Y, 1

	

1 == in -I (A)
such that P*( Y, Mtn 1 (A), K + , i) . The general step of the induction fol-
lows from Lemma 12 .1 the same way as in the previous proofs .

Theorem 12 .10 . If 1 < i < n < mi + 1 < o and nt > 2, then there

is an (n, i)-system

	

such that 1 Y 1 = = m 1 (cf (2'` 0 )), and

P*( ` , 1 tn - 1 (cf(2" )), N 1 , i) •

Proof. Choose t = 1 ~p _ >Jr = cf (2' 0) in the previous lemma .

cf (2")

	

(cf (280 ))' 0 holds because of (2 8 0 ) is regular and > 8 0 ,

cf (2 8 0 ) ~~ [ cf (2"" 0), o is the result of G a 1 v i n and S h e 1 a h mentioned

in 9 .4 . The statement now follows from Lemma 12 .9 .

Theorem 12 .1 1 . If 1 < k < i < it < mi + 1 < 80 and m > 2 then
there is mi (n, i)-system Y such that I Y I = - n, I ( Sk ) and

( -~/'

	

,n - 1 ( 8 k ) I 8k

Proof. To apply Lemma 12.9 put t = k + 1, ~p = ~ = cok, K = 8 k 1 .
By a result of F . Ga1vin and S . She1ah [17] p. 168, 8 +* [8]k+2

k k
.

Hence the theorem follows from lemma 12 .9 .

Theorem 12.12 . If 1 < r < i < it < mi +- 1 < No , m > 2 and
2Na < 8a+r, then there is an (it, i)-system Y such that I ~v I =

- in - I(Na+r) and P*('l/" M in -- I (Sa+r ) ' 8a+r , i) '

Proof. To apply Lemma 12.9 put t = r, _ ' = Na +r' K = 8a+r- 1

B a result of S . S h e l a h 23

	

Ka

	

r+ 1By

	

[

	

] 2

	

a+r

	

a+r
r* [ a +r ] "ta+r

Finally we prove a consistency result

Theorem 12 .13 . Con (ZF) - Con (ZFC + 2" = 2 ,1 = anything
reasonable + for each integer to > 2), there is an (in + 1, 1)-svstcm
such that I J I = -11, _ 1 (80 ) and P*(J , =11, _,(NO), 8 1 , 1) '

Proof. By a result of B a u m g a r t n e r[ 1] Con (ZF) - Con (ZFC +

+ 2'~ 0 = 2 1 = anything reasonable + 8 1 -f* [ 8112 ) . Assume now that
0



1

	

[ N 1 ] 0 and 2x 0 = 28 1 . We apply Lemma 12.9 with t = I = i,

n = rn + 1 ; K = S 0 ;

	

_

	

_ 81 . If follows that there is an (in + 1, I )-
system y' with i

	

1 = _,n -1 (8 1 ) _ = m -1(80) such that

P*( `f , -m 1(80), 81, i) holds .

§ 13 . CONSTRUCTIONS OF 3-CIRCUITLESS n-TUPLE
SYSTEMS OF LARGE CHROMATIC NUMBER

In [5] p . 94 a general concept of s-circuitless n-tuple systems was
defined . In this paper we are going to consider 3-circuitless set-systems and
we give a definition of this special case only .

Definition . A set-system J' is said to be 3-circuitless if no two
members intersect in more than one point, and every family of pairwise
intersecting members of J has a nonempty intersection .

Note that a 3-circuitless n-tuple system is an (n, 1)-system as well .
3-circuitless graphs are "triangle-free" graphs . Our aim is again to construct
3-circuitless n-tuple systems having large chromatic numbers . This way we
are going to generalize the instances concerning (n, 1)-systems of the pre-
vious results. The proofs of these results follow the same pattern as well .
First we prove a lemma corresponding to 12-1 .

Lemma 13 .1 Let 2 < n < N0 < S < X . Por each cardinal K,

I < K < A let Y K be a 3-circuitless n-tuple system such that

P( Y, K, K+ ) . Assume that for 1 < K < 5 we have 2K < A = A K .
Then there is a 3-circuitless n+ 1-tuple system Y with I Y I= A such
that P*(,y, A, 5, 1) .

We are going to prove the following more general result .

Lemma 13 .1/A . Assume that the conditions of Lenuna 13 .1 hold .

Let e; be a graph on A with Chr ( ;/') = A . Then the set-system
fined below on A X A satisfies the requirements of 13 .1 .

(Note that for the proof of 13 .1 ~ can be taken to [A] 2- .)

Proof. Put RR = A X {01 . For each J K , I < K < 5 let

,9~ de-



~K = U J K, V be a disjoint partition of v• K establishing P(,,,",, K, K').
v<6

For each < X and I < K < S we choose n-tuple systems Y' K (a, )
isomorphic to .,/ ' K with set of vertices V,(O, ~) in such a way that the
VK (Q, ~) are disjoint and RR = U { V K (R, ~) : I < K < S n ~ < X) . We de-
note the corresponding partitions by / K v(0, ~) for v < K .

For each a < X and 1 <K<5 let /~ (a, K) be the set of all se-
quences X satisfying the following conditions :

(1)(a) X = (XV : V < K),

(b) X, n Xµ for v p; v, µ < K,

(c)

	

Xv I = 1
<~ K U

for v < K,

(d) X = U Xy , X C R« ,
V< K

(e) X n VK (a, ~) I < 1 for 1 <-K< S, ~ < X .

For each a < X, 1 < K < S let

	

K) be the set of triples A = (X, g, rl)

satisfying the following conditions :

(2)(a) There is a < a such that {a, a) E

	

and X E -# (a, K),

(b) g: X- X,

(c) n < X .

Let L = fo : There is an a < 0 with {a, a) E 1 . It is obvious from the as-
sumptions that I # (a, K) I = A (Q, K) I = X for oz< X, R E L, 1 <K< S .
For each 0 E L and 1 < K < S we choose a one-to-one mapping ~pQ K of

X onto A (0, K) . For each 0 E L, 1 < K < S, and ~ < X we choose a
one-to-one mapping ~pQ K t of

	

t) onto X where ~p R K O = A

and A = (X, g, ~) in such a way that áp0 K t maps

	

onto X..

This is possible by (1) (a)-(d) and (2) (a) .

We are now in a position to define the n + 1-tuple system sat-
isfying the requirements of the theorem . Y' will consist of n + I-tuples
having the form Z = Y u {x) satisfying the following conditions :



(3)(a) There are a E L, 1 < K < S, ~ < X such that Y E J K ((3, t),

(b) x = ~pQ K t(Y)-

We now define an f: Y --> X which we claim establishing
P*( Y, X, S, 1) . If Y u {x} satisfies the above requirements, then

'Pp K O = A = (X, g, n) for some A E . (a, K) and x E X . Put

It is obvious that _V is an n + I-tuple system with

Note now that for an Y u {x } E <v , the numbers (J, K, ~ are uniquely
determined and depend only on Y . We denote them by ~(Y), K(Y),

t(Y) . Moreover there is a unique v < K for which Y C- Y ", (10, t) and
x E X. for the corresponding x. Denote this v by v(Y). There is also
a unique a( Y) = a such that x E Re,, {a, 0) E .

First we are going to check that Y is 3-circuitless . Just as in the
proof of Lemma 12 .1 it is easy to see that ~' is an (n + 1, 1)-system .
To see that `' is 3-circuitless it is now obviously sufficient to see that if
Zi = Yi u {xi}, i < 2 are three different members of v' having pairwise
non-empty intersections then n Zi t- 0 . Assume now that the Zi have

i<2
pairwise non-empty intersections .

Put ai = a(Yi), Oi = O(Yt), Ki = K(Yi), ti = t(Y,), v, = \)(Y,) for
i < 2 . Note that I Y I = n >_ 2 for i < 2 and the Y and different as
well . We may assume 00 > O1 _> a, . We now distinguish several cases to
see that A Zi ~ .

i<2

Case a. 00 - ai

	

02'

a/ 1 . Yon Yi *-0. Then K0 = K i , to = ti, x o I x i , hence Y,
must meet say Y . Then Ko - K2, to = t2, x1

	

X,, -Vo -V, . Hence
Y2 must meet YI as well . Then (l Yi =

	

since < K (00, to) is 3-
i< z

	

o
circuitless .

a/2 . Yi n Y. _ o for i, j < 2, i j . Then (Í
i<2

fl Yu{x})=g(x) .

490 -

1~j'1=X .

Zi={x0}={xi}=



Case b . 00 = 01 > 05, .

b/ 1 . Yo n Y, =0. Then A Zi = {xo) _ {x 1 ) .
i<2

b/2 . Yo n Y,

	

0. Then KO = K1, ~o = ~1, xo x1 . By the as-
sumption, x0, x, E Z2 . By (1)(d) and (2)(a) we have ao = a,, Then
ao = 02' xo , x 1 E VK 2(021 ~2 ) . This contradicts (1)(e) .

Case c. 00 > R1, 02 • In this case A Zi = {xo ) .
i< 2

It remains to prove that the f defined above establishes P*( <<', )', S, 1) .
Let X X A= U P be a disjoint partition of X X X for some K< S .

A< K µ
Assume now indirectly, that for each x E X X X, x E PU there is a
p(x) < a such that

(4) f(Z) * p(x) holds for all x c Z C PV, Z E ,/' . For each Q < A
let

U(0)=(p< K : IPµ n RQI=X) .

Considering, that K < cf (A), O(0)

	

for a < X. Considering that
U(0) C P(K), 2' < a and the fact that Chr

	

X it now follows that
there are a < 0 < A, {a, R } E such that O(a) = O((3)= U ~ . Note
that then 0 E L . Using the fact that I Pµ n R« I = X for p E O, and
that I VK,(a, ~) I < A we can choose pairwise disjoint sets Xµ C R . such
that I Xµ I= I w K ,)l I for p< K, Xµ C Pµ

	

for P E U and that

Ix µ n V" (a, 0) 1 < 1

	

for p < K, 1 < K' < S, ~ < X. Then
X = (X : p < K)E # (a, K), by (1) . Let X = U Xµ and g = p X.

µ

	

µ K

Now using the fact that I Pµ n R0 I < A for p O and K < cf (A)
we can find numbers ~, n < X such that VK (~3, ) C U Pµ and

	

O _
µE0

_ (X, g, 71) = A . Using the fact that P( J K , K, K+ ) is established by
'V, v (v < K) we now find a p E O such that for all v < K there is a
Y E J'K ~(0, ~), Y C Pµ . Pick a Y C Pµ, Y E J K,µ((3, ~) . Let x=
_ ~0Q K t(Y) . Then by the choice of this function x E Xµ C Pµ, Y U {x} E
E ~t and by the definition of f, f(Y U {x) ) = g(x) .

Then, by the definition of g, fl Y U {x)) = p(x), x E Y U {x) E ~,



Y u {x} c Pµ and this contradicts the definition (4) of p .

Theorem 13.2 . Let 2 < n < 80 < X and let S be the least cardinal

such that X: n
-2(b) > X . Then there is a 3-circuitless n-tuple system Y

such that I Y I = X and P*( Y, A, S, 1) .

Proof. By induction on n . For n = 2 this is Theorem 8 .1 . Assume

the theorem is true for some n > 2 . Let S' be the least cardinal such

that A r" - ((s) > X. Assume K < S . Then X :"- 1(K) = A and 2' <

<

	

((K) for K < S . On the other hand the least cardinal T for which

.- I (K) -" 2(T) > ~" 1 (K) is not less than K + . Hence applying the
induction hypothesis we get that there are 3-circuitless n-tuple systems
J' K with I J' K I = --„ i (K) satisfying P( ./' K , K, K + ) for I <K< S' .
Then, by the previous lemma, there is a 3-circuitless n + I-tuple system
,f with I ./' I = X such that P*( V, , A, S, 1) holds .

Corollary 13 .3 . If 2 < n < No < K, then there is a 3-circuitless n-
tuple system /' such that I Y I = d„ _ I (K) and P*( ~/ , _" I (K), K + , 1) .

Proof. Let A = : n -I (K) . Then Ar"
2(T)

= A for all T < K + .
Hence the result follows from Theorem 13 .2 .

Corollary 13 .4 . 1,or any positive integers n, k with u > 2 there is
a finite 3-circuitless n-tuple system ,/ such that P*( ./ , k, k + l, 1 )

Proof. As a corollary of the previous result there is an /'' satisfy-
ing all the requirements but the finiteness . The result then follows by com-
pactness . The following is an improvement of Theorem 13 .2 for K = 8O
and n >- 3 .

Theorem 13 .5 . If 3 < n < to o , then there is a 3-circuitless as-tuplc

stmt /' such drat I •/ 1 = =„ ,(cf (2 , o)) and

P*( /', . ~~ 2 (cf (2
80», 8 1 , 1 ) .

Proof. By induction on n . Assume fa = 3 . Let x _ ,
.
cf(2~ v 0 ) .

b= 8 1 , . By our Theorem 9 .6, we have P*(GS t (cf(2 S0 ),

	

cf(~~ 0 ))
and by 8.3, GSn (T) is „triangle-free" . Considering cl' ('

	

) > +

	

it Col-



lows that for 1 < K < 8, there are "triangle-free" graphs /;,, satisfying

R "i K K K + ) X 'K

	

Xce(2 NI 0 ) = X . Moreover if K < 8 1 , then
No

2K <

	

280 < 2` Q2 ) hence the result follows from Lemma 13 .1 .

The general step of the induction is to be carried out the same way
as in the proof of Theorem 3 .2 . We omit it .

Corollary 13.6 . 1,or any cardinal K, there is a graph .~ such that:

(1) 'q contains no quadrilateral with a diagonal,

(2)

	

(3)K,

(3) K > 80 implies 1

	

22K

(4) K = 8o implies 1 :.6, ' 1 - 2 c' (2 80 )

(5) K < No implies I 1 < 8 0 ,

Proof. The result follows from Corollaries 13 .3, 13.4 and Theorem
13.5 considering the fact that if l' is a 3-circuitless triple-system then
Y is the set of triangles contained in the graph induced by .1' .

§ 14. THE "SMALLEST TRIPLE SYSTEMS" OF LARGE
CARDINALITY. THE UPPER ESTIMATES FOR g et (t, a)

The induction method described in Lemma 13 .1 does not work for
"s-circuitless " set systems . However we can get triple systems with some
specific properties if in the construction given in Lemma 3 .1 we start from
graphs containing no short odd circuits . The word "smallest" is used here
in an intuitive sense . We do not have a proof that all finite triple systems
which occur in the systems constructed below do occur e .g. in the special
triple-systems constructed in § 15 and 1 12 J for the corresponding values
of parameters .

Theorem 14 .1 . Let n < 8 0 < K and let X = 2 2 ' . Let Ro = X u fO}

and assume R ,3 U { Jjo, ~) : 0 < X n ~ < X} where the h(0, ~) are pair-

wise disjoint and have cardinality 2' . There exists a 3-circuitless triple

s.rstem ~V ' on X X X satis,j'ving the following conditions

493--



(1) P*(Y, 22K,
K+, 1)

(2) If X E

	

then 1 X n V(0, t ) 1 = 2, 1 X n V(a, ~» = 1 for some
a,0,~,n; a<o.

(3) Suppose x, y, x ' , y ' E V(R, r), {x, y}

	

(x', y' l and {x, y, z},
{x', y', z'} E Y . Then z E V(a, ri), z' E V(a, ~) for some a < 0, n ~ .

(4) If s = {x, y, z} E s where x, y E V((, ~), z E V(a, rl) let
e, (s) _ {a, 0}, e2 (s) _ {x, y} ;

4 1 = {e 1 (s) : s E f }, `! 2 = {e 2 (s) : s E .1' } .

Then the graphs n 1 ,

	

do not contain C2i+ 1 for 1 < i < n .

Proof. We apply Lemma 13 .1 /A . By 8 .3 we can choose

	

on X

with Chr (~;) _ X and not containing C21+ 1
for 1 < i < n . We apply

13/l/A with S = K+ . For all / T (r < S) we can choose a graph

	

on

2" not containing C
2i+ 1

for 1 < i < n and satisfying P(y, K, K + ) . By

our theorems 8.3 and 9.7 GSn (2" ) is such a graph . It is easy to see that

the construction described in 13 .1/A gives a triple-system satisfying the

requirements .

H
Theorem 14.2 . Let n < N o . Put X = 2cf(2 0) Let Ra and

V(O, t) have the same meaning as in 13 .6 . Then there exists a 3-circuitless
triple-system y on X X X such that

KP*(,~1,, 2'f(2 0), 8

	

1 )

and Y satisfies the requirements (2)-(4) of 13 .6 .

Proof. We do the same as in the previous proof except for that we

choose '~ to be graph on cf (280 ) not containing C2i+ 1 for 1 < i ,< n

and satisfying P(S, N o , 8 1 ) . By Theorems 3 .8 and 9 .6 GSn (cf (2 t ` 0 ))
is such a graph. Theorems 14 .1 and 14.2 give the "smallest" triple systems

of chromatic number > K and > 80 we can construct . Note also that

these triple systems do not contain J o	i 7 and J- 9 . Let gn (t, a)
be the function defined in the introduction .



2
As we have already mentioned g 2 (t, a) _ 4 for all a and t < w .

Our next theorem collects the information we have about 93 (t, a) .
This is one of the main results of our paper . First we give

Definition 14.3 . For t < w, let
k

	

ti
g3 (t) =

	

coax

	

2 min (to, 4k, to , . . ., tk

	

i= 1
to + . . .+t k =t

Theorem 14 .4 .

(1) If 9- is a triple system with Chr ( Y) > 80 then, for each
t < w, there is X E [U Y] t suct that I y n [X] 3 I > g3 (t) .

(2) For any infinite cardinal K there is a triple system `' such that:

(a) Chr ( Y) > K,

(b) I Y = 2 28 if K > 8 0 , I

	

I = 21f (2
x
of if K = N o ,

(c) for each t < w if X E [ U w I t , then I Y, n [X] 3 1 5 g3 (t),

3

	

3

(3) ( 3 ) ~ - t ~ g3 (t) ~ ( t

	

for all t < w,

(4) g(3í 2 ) = t3 for all t < w,

(5) The first few valises of g3 (t) are given by the following table :

0 1 2 3 4 5 6 7 8 9 10 11 1 11L 13

0 0 0 1 1 2 2 3 4 4 5 6 8 8

14 15 16 17 18 19 20 21 22 23 24 25 26 27

9 10 12 12 13 14 16 18 18 19 20 22 24 27



Proof . (1) follows from Theorem 3.8, since by this theorem if
Chr (<v ) > No and k, s < w we can choose k "vertex disjoint" K(s, s)
and an s 2 -subset F of the vertices such that every edge of a K(s, s) is
joined from a point of F by a triple of <,/ . If s > t and to + . . . + t k = t
we can then easily choose a t-subset containing > g3 (t) triples of w .

(2) follows from Theorems 14 .1 and 14 .2 respectively .

These theorems give us triple systems satisfying the requirements (a)
and (b) of (2) . We only have to show that (2) (c) holds for triple-systems
satisfying requirements (2)-(4) of Theorem 14.1 .

From (4) we only need that

	

2 does not contain triangles. Put
m

	

t 2
J(to , . . . ,

		

min ( to , [ 4-

	

We need the following
i-= 1

Sublemma . Assunue XO , . . . , 1, > 1 . Then there arc n1, y o , . . .

. . . , 1. > 1 s11Ci1 that

(i)

	

JO,O, . . . , Y'M ) > J( .v o , . . . , x, ) and

(ü) 0
+ . . . +

	

= x o + . . . + .V,,

(111) y0 > 11, 111111 (11, xO ) < 111 < 11,

	

> x i JOr l < ni .

Proof. We may assume x I > . . . > v et . The claim is ohviously true
with -vi =_ _v i if 11 < xo . Assume N o < 11 and that the claim is true for 11 -- 1 .
By the induction hypothesis we can choose zo, . . . , z k with /( ::0, . . . , z k ) >

J( .x

	

x

	

), z

	

+ . . . -~I

	

0

	

z h. - x 0 t- . . . +- xn

	

I'

	

i ' vi , U < k),

z o

	

11 — 1, x o < k < n --- 1 . We may assume x tt > 2 n z o -- 11 -- 1, other-
wise n1 = k + 1, ii i - z i , (i < k), 1'k 1 = x tt satisfies the requirements .

Now we choose m - k, y0 = zo 4- x tt

	

We can define i . ,,L
k

	

k
V'

	

~n
1 < i < k in such a way that

	

1 • i =

	

zi -}

	

I and if
i= I

	

i - = 1

l = {
v
21 < i < k : yi > z i } then 111

	

min ( .vo, 1 ~'

	

It i-> racy to check

that (ü) and (iii) hold. To see that (i) holds it is sufficientt to sec t h .t t



z

Í(yo , . . . , " k )

	

j(zo , . . . , 'k ) > min (xo , [ -4- ~ ~ . Let i E; I .

	

Then

)'2

	

z~

	

z .

	

x
4 - ~ -- 4

	

Considering that2

	

2

) o

	

zo

	

it follows that f(yo, . . . , y,f )

	

1(zo , . . - , z k )
z

	

z
> Z min ( .1' ., 1 - I ) -- min (zo, [-4 ] ) > ( x - [

'2?iF-1
X

	

.2

•

	

min (_s o , ~' > min ( .Vo , ( 4?-~ and this proves the sublemma.

Let now X c- (X X X1~ L" . Let ao < . . . < a t be an enumeration of
all ordinals a < X for which X n R« 0. Put t = t(X) .

For 1 < j < t let Xs, 1 < s < nj be an enumeration of all now
empty sets X n t'(a, ~) . Put w(X) = max jn~ : 1 j t(X)} . We are
going to prove by induction on t(X) that there is a sequence ), o	) n

such that I [X1 3 n .v I < j(I' o	)' n ), )'o + . . . + yn = I XI and ro
> max (w(X), x O ) . This is trivial for t = 0. Let X be as above with
t = t(X) > 0 and assume that the statement is true for t

	

1 .

Put e( Y) - 1( Y1 3 n `i I for Yc- X X Xj`" . Put X' = U jX n

	

< t} .

By the assumption there are

	

z01 . . . , zm so that z o > .v o , z o

	

. . . + zn~

= X' I, e(X') < Azo , . . . , z ni ) and zo > w(X') = max jn~ . 1 <j< t} .

Now the arrangement of the triples in v described in (?) (3) and (4) im-
plies that

n,

	

(xY

e(X) < e(X') -+

	

min (max (xo , w(X' », [- 4
s= 1

where xs = I XS I for 1 < s < n I . Considering that max (.v(), w(X')) --=
we have e(X) < j(z o , . . . , z nt > xi , . . . > x 1 ) . By the sublemma there are

yo , . . . , y t such that y o > in + n, > ti t , yo > z o and e(X) < fly () . . . .

. . . 'Yk ) . Then yo > x o and yo > w(X) and this proves the claim . We
omit the easy finite computations showing (3), (4) and (5) .



Definition 14 .5 . We define functions in(t) by induction on n for
n > 3 . g3 is defined in 14.3 . Assume gn (t) is defined for some n >, 3 .
Put

Theorem 14 .6 .

(I) If Y is an n-tuple system, n > 3, with Chr (y') > 80 , then,
for each t < w there is X E [ U Y ]t such that

fl [X]n I < gn (t)

(2) For each infinite cardinal K there is an n-tuple system J' such
that

k
ín + i ( t) = k

tumax
tk

t2i min (to , ún (t i ))

t= t0 + . . .+ t k

(a) Chr (Y) > K,

(b) I Y I= n- i (K) if K> 8 0 ,

I ,y I = - n 2(cf (2 0 )) if K = 8 0 ,

(c) for each t < w if X E [ U Y ]t then

I -,oq n [X]n I < gn (t),

n

(3) 8n (t) < (-
n

)
n 1

,

(4) in (ntn 1 ) = to .

Proof in outline. By induction on n . We proved this for n = 3 in

Theorem 14.4. To carry out the induction one uses the construction de-
scribed in Lemma 13.1 and the ideas of the previous proof . (4) follows
using corollary 3 .10 .

To conclude this chapter we state

Problem 10 . Characterize the finite triple systems that occur in every
triple system with chromatic number > 8 0 .



A positive result is given by Theorem 3 .8 . Negative results are given

in Theorem 14 .2 and in the results listed at the end of § 11 . We now state

the simplest unsolved instances and some related problems .

10.A . Does either J-0 or J_8 occur in all triple systems of chro-

matic number > 80 ?

10.B . Let Y 1 , Y 2 be finite triple systems . Suppose there are

> 8 0 -chromatic triple systems v`j , J z not containing Y, and w'2 ,
respectively . Does it follow that there is a > 8 0 -chromatic triple system
not containing either of Y, and '5"2 ?

IO .C . Let J be a finite triple system . If every triple system with
chromatic number > 81 contains J , does it follow that every triple

system with chromatic number > 80 contains Y?

10.D . Given a triple system ,, with Chr (<Y) > 80 does there ex-

ists a triple system /'0 on 22 NO such that Chr ( V` 0 ) > No and every
finite subsystem of << 0 is embeddable in (/'?

§ 15 . SPECIAL CONSTRUCTIONS

The construction described in this § give (n, i)-systems of large chro-

matic number and sometimes of smaller size than the general constructions
described previously . Most constructions use ideas which can be found in
[ 14 We need some preliminaries .

Definition 15.1 . If I < r < cc, we put Fr (K) _ _ r 1 (K)+ for all

infinite cardinals K .

Lemma 15 .2 . Let n, r,, . . . , rn be positive integers alul let K be
all infinite cardinal . Then

F (K) `

Fr ~ Fr (K)l

F
rrt

. . . F

	

l''rl (K)
r2



for all in < w .

This is a corollary of the results of E r d ő s and R a d o for polarized
relations, see e .g . [ 1 1 ] .

Definition 15 .3. Let n, r i , . . . , rn be positive integers . An (r i , .
rn )-hypergraph is an r i + . . . + r n -tuple system

	

,~ whose vertices
are partitioned into disjoint classes V t , . . . , I', so that 111 n I'i I = ri
for all HE .I/, 1 <i<n .

Y

Theorem 15 .4 . Suppose there is finite (r, , . . . . rn )-Ii. i•pergraph .#'
x E U H' - 1 {H E .#' : x E H}I > v. Assume thatsuch that I - 1 = li and

m

	

rl, • .,rn
~ .

	

M.
K

(h, li

	

v)-system

Proof . Let V

for every in < w, for sonic X, K > e . There is an

such that Chi- ( .</' ) > K and

denote the set of vertices of X and assume V =
= Vi u . . . U Vn is a disjoint partition of the vertices establishing the fact
that A is an (r, , . . . , rn )-hypergraph. Assume that ; I I = s' i , 1 1) = s
for 1 ,< i <, n . Fix a well-ordering

	

of I' such that Vi -< i Ii for
i < j. We now choose disjoint sets

	

Vi - X . We fix a well-ordering
of V =

	

U

	

1' . such that I . -

	

I' . for 1 < i < j < n .
2

	

l<i<rr

	

i

	

r

Define it) _ ( V, , . . . , 11 ] r i' " r " . It' will be the set of vertices of

Put ,v' _ { X E

	

There is a set 1 E 'I, . . . ,

	

such
that the unique monotone map of 1',

	

onto L,

	

maps -Y( onto
X} .

Y is obviously an h-tuple system, I ,/' I - X. Assume Xi , X, E ./ ,

IX, n X21 > lr v . Let L i , /,, be the unique sets which make X i and
X 2 belong to

	

, respectively . If /, i

	

/,, then either X i

	

X, or
X, - X 1 has > v dements. Hence /_ I - %, and thus .\, = .V, . This
shows that / is an (h, h

	

r)-system .

Assume that IV = U P, is a partition of` Its into K classes. Then,



by the assumption, there is a set Z E [ V t , . . . , Vn ] S t' S n homogeneous
for this partition i .e. there is a v < K such that

[Zn v

	

Zn vn]rl, . . .,rn c P~ .

Hence for the X C Y determined by this Z we have X C PV . It fol-
lows that Chr ( J) > K .

Corollary 15 .5 . Assume G.C.H. Suppose there is a finite (r t , . . . , rn )-
hypergraph /~ such that I /e I = It and I {H C -/K : x C /III > u . Then
for any ordinal a, there is an (h, h -- u)-system Y such that Chr ( 9') >
> 8« and 1 ~V' 1 = 8a+rI+ . . .+rn •

Proof. By Theorem 15 .4 and Lemma 15 .2 .

Theorem 15 .6 . Let n, i, r be positive integers, i < n and let K be
an infinite cardinal. If'

nr
([n

	

i
I >n

r

then there is att (a, i)-s.vstem v' such that Chr ( J') > K and 1 V' 1 =
_ ,_ r 1 (K)á

Proof. Let k =_ [ 11nri ] . To prove the theorem, by Theorem 15 .4,

we only have to define an (r)-hypergraph i .e . an r-tuple system on k
vertices such that h, has ti-elements and every vertex is contained in at

least n - i elements of /i . To do this let us first remark that by i
k l >

nJr
there exists an r-tuple system // 0 on k with 1 /i o 1 = tz . If X C X/ 0 ,

u(=-X, vqX and *io

	

& 0 -{X}ufX fu) u{v}}, then ~~ó=n .
The valency of it in -ii o is one less, the valency of v in >r ó is one
more than in n o the other valencies remain unchanged . Repeating this
procedure a finite number of time, applying it for u with maximal valen-
cy and v with the minimal one we obtain an # , 1 - I = it such that
I {fl C -& : u E //} I -- I f// C /( : v E /1) 1, u, v e k has absolute value at
most one. This /~ obviously satisfies the requirements .



The following two corollaries are Theorems 2 and 3 of [ 12] respectively .

Corollary 15.7 . Let 1 < i < n < 80 < K, then there is an (n, i)-sys-
tern Y such that Chr (J') > K and 1 Y I = yn - i I (K)+

Proof . Choose r = n --- i in the previous theorem .

Corollary 15 .8 . If 0 < r < t < 80 < K then there is a

	

r~, t

	

1

system Y such that Chr (Y) > K and 1 Y I = _ r i (K) .

Proof . Choose n = t , i = t

	

I

	

in the previous theorem . It is
r

	

r
easy to check that the requirements of the theorem hold .

Lemma 15.9 . Let I < i < n < 80 < S < K, X >, I , t < 8 0 . If there
is an (n, i)-system J' such that I Y I = K and P( ./', A, S), then there
is an (n + t, i + t)-system j' such that J' = K and P(~;' , X, 5) .

Proof. We may assume that the set of vertices is K. Let f: J' - A
establish P( J , X, 5) . Define

J ={XUY : XCYAYC[K]'AX<Y} .

Let J(X U Y) = J(X) for X U Y E

	

We claim that f establishes
P( .~, , X, 5) .

First let X i u Y 1 , X 2 U Y 2 be two elements of y . We may as-
sume nlax X, < max X, . Then X, n x 2 = 0 and (X l u Y i ) n
n (X2 U Y 2 ) C (X 1 n X2) U Y,, hence J is an (n + t, i + t)-system .
Assume now that f fails to establish P(y' , X, S) . Then there is a parti-
tion K = U P" for r < S such that for each v < A there is a p(v) < X

v< r

for which X U Y E A X U Y C P, implies AX U Y) t- p(v) .

We now choose P' C P

V

such that I PV -- P' I < 80 and either
cf (tp P,) >, w or Pv' _ 0 . We can choose a < S in such a way that
K = U P' U U P" where the P" are one element sets . This is a parti-

v<r v

	

"C0 v

	

v

tion of length < ~ of K . By the definition of y and .J(X) E

	

A

A X C PV implies J(X) p(v) . This contradicts the fact that J' establishes



Theorem 15 .10 . If I
< l ye J <

i < 80 < K, then there is an

(i + m, iYsystem J such that

(1) 1 J' I = (2" )+ and Chr (J') > K,

(2) 2' = K+ - P( J , K++ , K+ ) .

Proof . For the proof of (1) first apply Corollary 15 .8 with t = m + 1,

r= 2 . We get that there is an (m 2

	

2 JJ_system Y of cardinal-
[

ity (2 1 ) + with Chr ( J'o ) > K . Now apply Lemma 15 .9 with t == i - 2 1 . Considering l in 2 I 1 = l 2 ) + m we get (1) .

To prove (2) note first that the
l m

2 1 J , l 2 ) -system given by Cor-

ollary 15 .8 can actually be chosen so that the set of vertices of Y 0 is
[(2" )+ 1 2 and / _ {[X] 2 : X C (2" )+ n I X I = in + 1 } . Now it can be
seen just as in the proof of Theorem 9 .20 (c) that 2" = K+ implies
A Y,0 K+ + K+ ) . We omit the details of this proof . (2) now follows from
Lemma 15 .9 .

Theorem 15 .11 . Let 1 < r~t I < i < n < ri + in < 8 0 < K, r > 2. If

2" = K + , then there is an (n, i)-system 1' such that I J' I = _ r I (K ++ )

and P* ( J' > - r I (K+ } ), K+ , i) .

Proof. By induction on r . For r = 2 the result follows from The-
orem 15 .10 and from Lenuna 12 .1 . For r > 2 the result follows from
the induction hypothesis, and from Lemma 12 .1 .

Note that Theorem 15 .1 1 is of interest only if 2" = K + and 2"+ >
> K + + , otherwise it gives a weaker result than Corollary 12 .3 .

Lemma 15 .12 . Let V - V I u . . . u Vt , Vi n V,. _

	

for i i .
Suppose V' C [ VJ 3 satisfies the following conditiolIS .

(1) If X E Y, then 1 X n Vi 1= 2 and 1,V n V1..1 = 1 for some
i, i with i < i,

(2) each elcment of [ Vá ] 2 is contained in at most one element of Y .
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(3) if {a, b, c}, {a ' , b ' , c ' } are distinct elements of v with a, b,
a', b' E V- then c

	

c' .

If' I VI
= l 2

J + k where k < nt < 8 0 , then

Proof. We may assume that the J~~ are non-empty . For nonnegative
1

	

(

	

(

integers define

	

r

	

r`f( t , . . . , rt )

	

min I rt + . . . + r~ t , l 2 ~ . Then

`I Vt I ) . We prove that if r t + . . . +rt = [ 171 1 + k

I

	

~n
=max{In :

2)<r
,

III

	

1

+ . . .+rt

i~/ 1<f(1 V

then f(r t , . . . , rd <
(
n ) + 1 2

J
.

= r

	

('2r < mr . It is sufficient

f(rl, . . .,rt)<[2r,+[Zrl

We prove this by induction r . Let rt+ . . .+rt t=r2I+k, k<in .

By the induction hypothesis, f(r t	rt i ) < f(1, 2, . . . , m -- 1, k) so

(3t) + ~ 2

j

+
](r,, . . . . rt)<f(1,2, . . .,m -- 1,k,r,)=

•

	

minl 2l+k,~2~1 .

•

	

M
Case 1, m r = m ; then kr = k + rt

~k+
2

Case 2 . Mr '>m+2 ; then f(r,, . . .,rt)<13t1+-IkI+ I'2'I+k<

•

	

I3 I+2[m j
+m=ín13

2I< I"'
3 2
rj <~'3r1 + l

kr )

Case 3t. M = m + 1 and
/
k

Il>

k + 1

	

111
1

.r

	

r

Then f(rt, . . .,rt)<I3,+121+~2j+k=1m3 ll
+ {k311 <

<

rt < c, i

Let nrn

to see that if r = r t

Le . f(r t , . . . , r t ) < f(1, 2, . . . , mr - 1 , k r ) .

< m, and f(r t ,

+ ( 2 ,
4
l2,<(j3r)+~k2)

1 J, ~ <1 in] + ~ kj .

. . . . r t )<

kr =

then



kr <k<in, so

Case 4 . mr = m + 1 and kr < k . Then k + r r m + kr and

{2I +(2)á(t2)+(2, . Now f(rl, . . .,rd'

( 2 1 < ( 3t1 + ( ml + (~rl_(rn3 1 1+(~rl_al 3 1+
121 +

í i3r1
+ l 2r 1 .

Theorem 15 .13 . For any K - 80 , the triple system 'Y' _

_ {{a, 0), (a, y), {(3, y) ) : a < 0 < y < ( 2")+ - ) has the following properties :

(1) I J 1 = (2")+ ,

(2) Chr ( .v') > K,

(3) If n = l 2t 1
+ k, k < in < So then

	

max " I v n [X131 _
xelUJ'1

l 3) + l k

	

13 n2 '

(4) If 2" = K+ , then P( .v , K++ , K+ )

Proof. (1), (2) and (4) follow from Theorem 15 .10 or else from The-
orem 9.20, (3) follows from Lemma 15.12. To apply Lemma 15.12, if
XC[U,v]" put T= UX={ao, . . .,ar) and V.={{a,a.) : j<i) for
I < i < t . Note that though Theorem 15.13 gives a weaker upper estimate
for 93(t, a) then Theorem 14.4, the underlying set has "smaller" cardinal-
ity in this theorem .

Theorem 15 .14. If 2 < n < 80 < K then there is an (n, n - [I'n])-
system a such that Chr (,i ) > K and I J I = K ++

Proof . Let i~

	

K([ I n ], [1 n ]) . Then

	

is a (1, 1)-hypergraph
such that I >í I = m < n . For each x c U

I{HC .A( : xCH)i>,[In] .



K++
	

K ++ J
1 ' 1

On the other hand it is well-known that
l

+

	

holds
K

	

t

	

K

for all t < w. As a corollary of Theorem 15 .4 there exists an (m, m --
- [j,1n ])-system Y, I

	

I = K++ with Chr (Y) = K++ . The result then
follows from Lemma 15 .9 .

Theorem 15 .15 . Let 1 < n < 2r < 8 0 . For any ordinal a there is
a (2n, n)-system Y such that Chr (Y) > 8 a and 1'V 1 = N a + r+ 1

Proof. Let V1 , . . . , [7 + 1 , be disjoint sets of two elements V =
r+ 1
U V .. Let A - [ V 1 , . . . , Vr+ 11 1 ' ' 1 . Then I A' I = 2r + 1 . For
i=1

each n, 1 < n < 2r there is an i< C .)f ' such that I _i I = 2n and
H E _/i - V - H E ./i . Then I {H E .# : x E H} I = n for each x E V . On

( ~

a

a+r+ 1 ~

	

~

m
l~ • • • , 1

'l

	

+r+ 1

	

a
the other hand

the result follows from Theorem 15 .4 .

Note that, by Theorem 5 .6, this result is best possible in the sense
that for any "fixed 0 " it is consistent to assume that all (2n, n + 1)-
systems of cardinality 8 0 have chromatic number < 8 0 .

On the other hand there is no counterexample to the following

Problem 11 . Is the following statement provable in ZFC? For all
n, 3 < n < w there is a (2n, n)-system of cardinality t~ 2 and of chro-
matic number > 8 0 . (See the remarks in § 16 for more information .)

Note that 15 .15 yields a (6 .3)-system of cardinality 83 and chro-
matic number > 80 and a (12,6)-system of cardinality 84 and of chro-
matic number > ?ái 0 . In view of this last remark the following result gives
some new information .

Theorem 15 .16 . hor any K - 80, there is a (12, 6)-system Y such
that Chr (Y) > K and I J I = (2" )+ +

Proof. Let V 1 , V, be disjoint sets, V = V l U Vz , 1 V, I = 4,

1V21=2. Let 'ff - [ V I , V,,] 2,1 . Then /i is a (2, 1)-hypergraph,

holds for all m < w . Hence



12 . It is easy to see that I {H E -/K : x E H} I = 6 holds for all
(2K )+

	

m

	

2,1
x c V. On the other hand [(2 K )+ + )

	

( (2K)+ + J K

	

holds for all

m < w as an easy consequence of the fact that (2K )+ , (K+)2c holds .

Hence the theorem follows from Theorem 15 .4 .

Note, that by Corollary 12 .7, we know that there is a (12, 6)-sys-

tem Y with Chr ( .v') > K and cardinality 2K +

Another theorem of similar type is

Theorem 15.17 . For any K > N o there is a (6, 2)-system y such
that Chr ( .y) > K and

IYI=min(2'-K ,r21,Kt+1+) .

Proof. The existence of an Y
1

with Chr ( .J'
1)

> K, I J' 1 I = 22K

follows from Corollary 12 .7 if we apply it with i = 2, in = 3, K = K+ .

Let now V = V 1 U V 2 , 1 V1 1 = i 1'2 1 = 3, 1 VI = 6,

V 1 = {a 1 ,, a,2, a,311 V 2 = {a21 , a22 , a23 } . Let

	

')Kl _ QV1 , V2 1 -

- {a 1 ,, a2 1' } : i :9~ i'} '

Then I It 1=6, and I {H E -& : x E H} I ,> 4 for all x (E V . Yi' is a
(2, 2)-hypergraph. On the other hand it is easy to see that

(2(2 K )+ ) + ~

	

~
1
j2,2

(2 K)+

	

~~
%%t K

holds for w < w because of (2`)+ , (X+ )2, for a, 8o . It follows

from Theorem 15 .4 that there is a (6, 2)-system J' 2 with I y'2 1 =
- (2 ( ' K) + )+ and Chr ( << , ) > K .

Note, that, Corollary 2 .2 if K ? 8
0

and ./' is a (6, 2)-system with

Chr (Y) > K, then I J' I >, K
+ + + If G .C .H. is true, then 22 K = K+++ ,

(2(,K ) + )+ _ K++++ but it is easy to see that G .C.H. can be violated so
that the second number is smaller than the first one .



To close this chapter we prove one more general result which can

yield partial results similar to the ones obtained before .

Theorem 15 .18 . Let 1 < i t < n l < NO' 1 _< i2 < n2 ___8 0 . Suppose

there exist an (ni , i i )-system 90 , with Chr ( Y ) > K and I

	

I = a
and an (n 2 , i2)-system ~2 with Chr ( ~J,) > a and 1 J' 2 1 = ~3 . Let
n = n i , n,, i = max (n 1'2,112'1 ) . Then there is an (n, i)-system

	

with
Chr (Y) > K and I J I = Q .

Proof. Y_ {X i X X 2 : X I E

	

V11 A X 2 E a' 2 1 satisfies the require-

ments. We omit the details .

§ 16. DISCUSSION OF SOME RESULTS CONCERNING THE
SIZES OF (n, i)-SYSTEMS WITH LARGE CHROMATIC

NUMBER. PROBLEMS

Definition 16.1 . Let 1 < i < n < 8 0 and let K, X be cardinals. Let

0- (n, i, K, X) hold iff there is an (n, i)-system
,/ such that Chr ( J ) , K

and I

	

I = X .

We avoided the uses of this symbol up to now for two reasons . First

we wanted the paper to be easy to read an second most of the results con-

cerning the relation 6 contain additional information which we wanted

to state . Note that using this symbol Theorem 15 .8 says

O(n i , i i , K + , X) A O(n 2 , i 2 , X + , 7)

O(n 1 , n 2 , max fn i i 2 , n2 1 1

	

r

The simplest instance of the problems which remain unsolved is if it

is a theorem of ZFC that O(6, 3, 8 1 , 8, ) holds. This was already stated

in Problem 11 . on p. 154 .

Here is a list of informations concerning this type of problems .

(a) -iO(6, 2, 811 82 ), -iO(6, 3, 82 , 8,) and -1O(6, 3, N I , 8 1 ) fol-

low from Corollary 2 .2 .

(b) ZFC I

	

O(7, 3, 8 1, 2 ) by Theorem 5 .6 .



U(7, 4, N i , 8, ) _> O(8, 5, 8 1 , 8, ) - O(9, 6, 81, 82 ) .

Note that ZFC I 1 O(5, 2, 81, 82) by Theorem 5 .6, and O(9, 6 . 8 1 , 82 )
by Theorem 15 .14 . The following remains open :

Problem 12. Does ZFC - O(8, 5, 81, N2 )?

Or

	

ZFC ,- U(7, 4, 8 1 , 8 2 )?

Let us now recapitulate our knowledge about O(3, l , N i , X) .

(a) U(3, 1, 81, A) - A > 8, by Corollary 2 .2 .

(b) If MA holds, then -1O(3, 1, ta i , X) holds for ? < 2'~e, by The-
orem 5 .6 .

(c) U(3, l, 8 1 ,(2 80 ) + ) holds by Corollary 15 .8 .

(d) Con (ZF) - ('on (ZFC + 2 "'0 = 2~` ~ _ fit, + O(3, 1, 8 i , oho )

by Theorem 12 .3 .

Problem 13 . Is -10(3, 1,'8 1 e ) consistent with 2 N() > 8

	

or

Is -1(-)(3, 1, 8 1 , 2 1 i ) consistent with ZFC? Note that

-1O(3, 1, 8 1 , 2~ 1 )

	

2" 0

	

i n (,) I

	

stationary subset of w i
1 K o

Let us now turn to the problem of U(4, 1, 8 1 , A) .

(c) O(5, 3, 8 i , 82 ) and O(6, 4, 8 1' 82) hold by Theorem 15 .14 .

(d) U(6, 3, 8 0 , So ) holds by Theorem 12 .2 .

(e) U(6, 3, 8 1 , t~ 3 ) holds by Theorem 15 .15 .

(f) U(6 . 3, 8 1 , (2
8

° ) 4 ) holds by Corollary 15 .8 (because

~ 4 ~ 1
3,

=- 3) .

(g) U(6, 3, 8 1 , 2 ` i ) holds by Corollary 12 .7 .

(h) By Lemma 15.9 we have O(5, 2, 81, 82 )

	

O(6, 3, 8 i , 8, )



sume 2 8 2 = 83 as well .

Of course there are many problems not answered by these results .
Here is one of them .

Problem 14. Does ZFC i-- O(4, 1, 8 1 ,(2 80 )++ )9

The case of O(4, 2, N 1 , A) is completely settled since
~O(4, 2, 81, 8 1 ) by Corollary 2 .2 and by Theorem 15 .15, O(4, 2, 8 1 , 8z )
holds .

Finally we say a few words about O(5, 2, 81 , X) . It was one of the
problems of [ 12] (see p . 7) if G .C.H . - O(5, 2, 8 1 , 8, ) . We now know
this

(a) O(5, 2, 8 1 , A) - a > 8 2 by Corollary 2 .2 .

(b) MA - -1O(5, 2, 8 1 , A) for all X < 2 x o

(c) O(5, 2, 8 1 , 2 x 1 ) holds by Theorem 12 .1 1 .

Problem 15 . Does ZFC I-- O(5, 2, 8 1 , ( 2 x0 )+ )?

(a) O(4, 1, N 1 , A) - X > N3 by Corollary 2.2 .

(b) MA- --i O(4, 1, N I1 2 80 ) by Theorem 5 .7 .

(c) O(4, 1, X 1 , (2280)+ ) holds by Corollary 15 .7 .

(d) 2' = K+ O(4, 1, K+, 2K++) by Theorem 15 .11 hence C .H .

-19(4,1, 8 1 ,2 t ` 2 ) .

x0)(e) O(4, 1, t` 2~` fi ~

	

) holds by Theorem 12 .10 .

(f) Con (ZF) Con (ZFC + 2" = 2 t ` 1 = 8 1 + O(4, 1, 8 1 , 22x0 ) +

+ 2280 = 83 ) . This follows from Theorem 12.13 since there we may as-



*Added in proof. Theorem 11 . 13 can be sharpened as follows. Un-
der the assumptions of 11 . 13 there exists a K+ -chromatic triple system Y'

2

on K+ such that any n points contain at most

	

4 1 triples for all

n < w. To prove this take S to be the triple system given by Lemma
11 . 12 such that S i

	

2 ( Y) do not contain triangles . To compute
2

that n points contain at most 8 triples of Y one can use the follow-

ing lemma . Assume S' is a graph with set of vertices n and x i ; i < n are

nonnegative real numbers with Z x . = n, then

	

x . x . <
n2

i<n t

	

{X i ,Xj}EP t

	

4
See P.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a
Theorem of Turán, Canadian Journal of Math ., 17 (1965), 533-540 .
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