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On the Prime Factors of ( 2n )

By P . Erdős, R. L. Graham, l. Z . Ruzsa and E . G . Straus

Abstract . Several quantitative results are given expressing the fact that (2n ) is
usually divisible by a high power of the small primes . On the other hand, it is
shown that for any two primes p and q, there exist infinitely many n for which

(( nn), Pq) = 1 .

l . Introduction . In the present paper we study the prime factors of (nn) . It is
a well-known phenomenon that ( 2n) is divisible by a high power of the small primes .
We shall try to put this observation into a quantitative form . First of all, note that it
is not known whether the smallest odd prime factor g(n) of (nn ) is bounded . A
computer check shows that g(k) < 11 for k < 3160, g(3160) = 13 and g(k)
13 for k < 10 7 . Of course, it is clear that 2 always divides (nn) . We shall show
that for any two primes p and q there are infinitely many integers n such that
((2n ), pq) = 1 . (In fact, we shall prove a considerably sharper result .)
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where p denotes a prime . The most striking fact is that we cannot decide if f (n) is
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From these two results we immediately obtain that for all but o(n) integers m < n,
f(ni) = c o + o(l), and it is not hard to deduce that for all but o(n) integers m < n
the number of t < m with t t ( 2m ), is C Im + o(m) for a certain absolute constant
c I . Finally, we shall study some special questions about the divisors and prime factors
of (2n ) .

2. The Main Results . An elementary fact which we shall frequently use is the
following :
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Fact. For a prime p,

(1)

	

(2n) 0 (mod p) if and only if every coefficient (or "digit") a k in the
base p expansion n = Ek, 0 ak pk , 0 < ak < p, satisfies ak < p/2 .

Thus the result that for any two primes p, q there are infinitely many integers
n with ((nn ), pq) = I is a special case of the following :

THEOREM 1 . Let A and B be positive integers satisfying A/(p - 1) +
Bjq - 1) > 1 where p and q are integers exceeding 1 . Then there exist infinitely
many integers whose base p expansion has all digits < A and whose base q expan-
sion has all digits < B.

Proof. If log p and log q are commensurable, then p and q are powers of
the same integer r say

	

n-kl
, p = rk , q = rr . Hence, any sum Ei r

	

has all digits either
0 or 1 to both bases p and q .

If log p and log q are incommensurable, then there are infinitely many expo-
nents a and 0 so that

(2)
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Ia
B qQ -1I B q~-1p
2 q-1 < 2 q-1'

i .e ., so that the base q expansion of pa either has all digits < B or has a digit < B
preceding any digit > B. For brevity we call a number (p, A)-good and (q, B)-good
if their base p digits are all < A, respectively, if their base q digits are all < B .
We consider the following assertion .

LEMMA . Given a number N which is (p, A)-good, say N = an pn +

	

+
a,n p'n , n> . . . >m>0, a< <A,with N=brq'+ • • • + bigi+ • • • + bjgl+ • • '
where j is the largest index so that bi > B, i is the least index > j so that b i < B
(and so bk = B for i > k > j), then there exists a number N * which is (p, A)-good

satisfying N * > brq' +

	

+ biq` and so that

N* = b rq' + . . . + bi+ 1 qi+
1 + b* qj +

where

either b* = b i and N* < N, or B > b* > b i, or B = b* and
the first digit with index less than i which is not equal to B is < B.

It is clear that Theorem 1 follows from this lemma, since after a finite number of

modifications we must obtain an N * which is also (q, B)-good .
Proof of Lemma. Let T = b i_ Iq1-1 + • • • + ba be the "tail" of N. If we

can subtract any number < T from N and get a (p, A)-good number, we have a
modification of the first kind to an N * < N. The smallest number which has to be

subtracted from N in order to obtain a smaller (p, A)-good number is

pin-A(pp_11)_
(p

P AI

	 l
(prn-1)+1=S.

So, if T > S, we set N * = N - S. Thus, from now on we may assume T < S. Since
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T > B((q' - 1)/(q - 1)) + 1, then we have

(3)

so that

q'-1<~ B
l 1

l p p	Al
1 1

(p'n

Now, we can add any number U to N with

q'-T<U<q'-T+B((q -1)I(q-1)),

q'-1

	

q-B-1
x<q'-1-B

		

(q'-1)q-1 -~ q-1

A(q' - 1)1(p - 1),

q'-T+B(-1 ) ~ (1+ p A 1 q - 1 ) (q'-T)

p-1 A + B
~ (q'-T)A ~p-1 q-1

>pA 1(q'-T)=jpA
1\

( pA
1 1
x<q'-1<(

g
B

1
~1- p- (p- -1)

C (qB 1) /q B 1\ (pm
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so that N * = N + U satisfies

Fact. For every positive integer x, the half-open interval [x, (p - 1)x/A) con-
tains a (p, A)-good integer .

Proof ofFact. The ratio between a (p, A)-good number M and the predecessor
of the next (p, A)-good number N is maximal when M = Ap'- I + • - - + Ap + A
= A((p' - 1)/(p - 1)) and N = pr . In this case the ratio is (p - 1)IA and the fact
follows . F1

Now, for x = q' - T, we have

Hence, there exists a (p, A)-good number U in this interval . Finally, by (3) we have
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so that the interval [.x, ((p - 1)/A)x) lies below p' . This proves the Lemma and
Theorem 1 follows . ll

One could ask whether the hypotheses of Theorem 1 can be weakened and whether
similar results can be obtained for three or more bases instead of just two . At the
moment we cannot decide either of these questions and perhaps a new idea will be
needed .

THEOREM 2 .

Thus,

Thus,

Proof. We have by definition

X

lim 1 Z f (n) = co .
x x n=1

Z f(n) _ Z

	

z

	

1 = z A(P ;x)
,

	

Pn=1

	

n=1 P4, ( 2n) ;P~n
p P x

where A(p; x) denotes I {k: p < k < x, p - (k )}I . Let -7 = 1 Is > 0 be small .
first show that the contribution from the primes p < xn �s negligible

A(P ; X) < A(P; (t + 1)P r)

< (t + 1)
p21 r < ( + )

	

+ttl

(p2
	 l) r x < 2( 3) " x.

PP

1 E �(P ;X) 1

	

A(P;x)
X
P<xn

	

p

	

x r,s x 1 /(r+1) <p<x 1 Ir

	

p

X E 2
3

r x log ~I +
r = o(c3 s)

r>S \

for some c 3 > 1, which is negligible for s sufficiently large .
Therefore, it suffices to consider only those p exceeding x 1 ls . Note that for

any O<e<cx< I -e,

(4)

	

F

	

A(P ;X)
C X

	

E

	

1< C4 Ex

XaSP<xa+e

	

P

	

x~5p<x a+ep

where c4 = C4 (a) . But for each p with x 1I(r+1)+e < p < x llr-E

A(p; x) = x/2r + o(x) .

We
for
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A(p ;x)

X E f(n) x

	

Pn=1

	

p6x

1
~x
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n

__ 1

	

A(p ; x)	A(p ;x)
X

p<xjls

	

p

	

>X1

Is

	

p

_ I

	

1

	

A(P ;x)
+0(1)X r=1 xll(r+l)<p<xllr

	

p

s- 1

r=1 x 1/(r+1)<p<\x llr+E

	

x i/r+E<p<x 1 /r-E

+

	

+0(1)
x lIr-El/r

s- 1 1

	

/
log 1

_ r= 1 2"
+ 1 1 +E,+0(1)lr

where Es ---* 0 ass--. Hence

lim 1

	

f (n) _

	

1 log (1 + 1 _

	

log r = cp . 0
~_ x

	

r

	

r

	

rx

	

n=2

	

r=1 2

	

r=2 2

where

that

THEOREM 3 .

Proof. We can write

x
lim x

	

f 2(n) = c� .
X-- n=1

1

	

f2(n) = 1

	

1

	

1

	

A(p,q; x)X
n=I

	

x n=1 P,q~(2n) ;p,q~n Pq x p q~x

	

Pq

A(p, q; x) _ l ~k : p, q < k < x, ( ~
k)

,
pq

As before we first choose a large s and then a small e depending on s. The
exact dependence will be clear shortly . We partition the pairs of primes (p, q) into
three classes :

I . p, q < x 11 ' ;
II . p<x 1 Is <q or q<x 1 / s <p;

III . p,q>xlls

For class I it can be seen by the same argument as in the proof of Theorem 2
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as s
Finally, we consider class III . Suppose x 1 J(r+ i ) < p

	

x 1 /r x i J(r+ i ) < q

x ' J t , 1 < r, t < s . Let w i <w2 < . . . < wr+t be the sequence of numbers p` and
q , , 1 < i < r, 1 < j < t, arranged in increasing order . The numbers k which con-
tribute to A(p, q ; x) satisfy the condition

k =-Zk (mod Wk),

	

0<Zk <wk12, k=1,2, • - •, r+t.

Hence, if we now assume

(5)

then we see by (1) that

A(p, q ; x) = 2+r +
o(x) .

Summing this over p and q, we get the main contribution of c x + o(x) . It is
easily seen that the contributions of the pairs (p, q) not satisfying (5) is negligible .
For if (5) does not hold,then either

pr > x 1 -, i.e ., x(1- ' ) I" < p < x r / r

1	 A(P,q ; x)
x

	

~

	

= o(cs S), C s > 1 .
P,q<xl/s

	

p4

For class 11 we observe that

1

	

A(p,	 q; x)

x P < x~ I /S X I /S<~q <S

	

pq

< 1 A(P; x)
x

	

p
p<x l / s

	

x l / s<q<x
1 <C ' logs=o(1)
q

Wk +i/wk>xE

	

k=1, . . . ,r+t-1, x/wr+t >xE

or
q t > x", i.e ., P')/t < q < x i Jt

or
x_E C puq' < xE for some 1 < u < r, 1 < v < t.

Summing 1 /pq in these cases, we get o (l) as a -> 0 . Strictly speaking, we only
proved

f 2(n) < c x + o(x) .
n<x

However, Theorem 3 follows at once by Theorem 2 and the arithmetic-quadratic mean
inequality . 0
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COROLLARY . For all c > 0,

lim 1 I n<x : If(n)- col >e I=O .x

Observe that, in fact, the proofs of Theorems 2 and 3 show that for 0 < a, R < 1
with Q - a > I7 > 0 we have for almost all n,

(6)

	

1 = F -!log (I + 1)+o(I)
p -~(2n) ;na<p<na

P

	

Il0sk<Ila 2k

	

k

uniformly in 17 . From this it now follows by the sieve method that :
THEOREM 4. For a < 1,

m : 1 m na , m r (n) I - c(a)n' + o(na),

where c(a) --~ 1 as
�

a - 0 . (In fact, c(a) can be explicitly calculated .)
A well-known averaging argument gives : If e > 0 and r > r(e), then for any

p satisfying x 1 I r < p < x I

	

then with the exception of at most x/c. n's < x,
we have pall (nn ) with n4 _E < pa < n l/z + E , where cE > 1 . This leads to the follow-
ing :

THEOREM 5 . Suppose for some e > 0 and m < x, pa i m - pa < xE . Then

n <x : m ~(nn)~ < Ixle'l

	

c7

where c. > 1 .
PROOF . Suppose x l/r+ I <

pa < xI /r . By the above remark, it is certainly true
that at most x/c. n's < x have pall ( 2n with pR < n'l2-E . Since at most r dif-
ferent prime powers dividing m can lie between x r /r+ I and x' l , then these prime
powers can knock out at most rx/c" n's less than x . On the other hand, if poll( nn)
with pR > n 1l", then the prime p can cause no trouble provided n1'

-E
> xE , i .e .,

n >, x2El(I-2e)_ Therefore

89

(n <x : m -~ ( nn)~j < r f cc1

	

>1/
+ 2el(I-2e)

< i for some c 7 > 1- o
E1 7

By the preceding methods, we can prove the following result .
THEOREM. Let p be fixed. Then

~n <x : pa ll (n ), pa q (n'/'-E lie+E) d - o(x)

In fact, as we have already observed, this result holds for p = o(xn) .
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We would like to be able to turn this result around, i .e ., to show that for fixed n,

f p < n : PC,11 ~2n1, Pa

	

(n '/2- E , n /Z+e)

J

	

111 In

is in some sense small . For example, put f,(n) = s' llp, where the dash in the sum-
mation indicates that the sum is extended over all primes p < n for which
p"11(2") and p' (ny' -E , n'/2+E ) . It seems possible that for every e > 0, fjn) <
c(e) . By the methods of Theorems 2 and 3, we can prove that the limits

(im x

	

fjn) = c E and lim x

	

f,2 (n) = c�
xn<x

	

X__ n < x
exist .

By methods similar to those we have employed earlier, it is not difficult to prove
the following

(7)

	

1 > c log log n .
PI(nn) ;P<-n P

There is no doubt that (7) holds for any c > I - e, and this would follow, of course,
from the boundedness of E 2n )

;P <
1/p . In this connection we would like to

PT(

	

n
state the following conjecture : n

~* 1 = (h + 0(1 ))log log n
P<n P

where the * indicates that the summation is extended over all primes p such that
n = kp + r, where p/2 < r < p and k is integral .

Before closing the paper, we make a few random remarks about divisibility prop-
erties of binomial coefficients . It is well known that (nn )/(n + 1) is always an integer .
Balakran [1] proved that (n + 1)2 1(2") for infinitely many n and by his method
one can prove that for every k there are infinitely many n, so that (n + 1)k1(2n ),
and also for every k there are infinitely many n for which (2n)!/(n + 1)!(n + k)!

is an integer. (In fact, this even holds if k < c log n if c is a sufficiently small
absolute constant .) It seems certain that for every k there are infinitely many in-
tegers n for which (2n)!/(n + k)!(n + k)! is an integer, but we cannot prove this
even for k = 2 .

An old result of P . Erdős (see [3] ) states that there is an absolute constant c
so that if n!la!b! is an integer then a + b < n + c log n, but for infinitely many
values of n and some c > 0, nllalb! is an integer with a + b = n + c log n . In
fact, it is not hard to show that for all n with the exception of a sequence of density
0, (2n)!/n! [n + c log n] ! is an integer. We do not give the details of any of these
results (the proofs are fairly simple) .

There is one curious problem here . As stated before, nllalb! cannot be an in-
teger for a + b > n + c log n. It is possible that this is due only to the small primes .
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More precisely, is the following result true : To every c there is a k so that for in-
finitely many n (all n > n o(k, c)?) there are suitable a and b such that
a + b > n + c log n and n!lalb! has no prime factor > k in its de-
nominator? Also, suppose a > en, b > en, and a + b > n + c log n . Can it happen
that n! (a + b - n)!Ia!b! is an integer?

Finally, while there is no doubt that there exist infinitely many pairs (21 ) ' (2

which have the same set of prime divisors, e.g ., ( I8 ), (8$ ) or ( Ifio 74)'(16o 8'
) '

we are not at present able to prove this .
Let us denote by A(n) the least integer which does not divide (2n ) . Of course,

A(n) is always a prime power . It is not hard to show that except for a set of density 0,

(8)

	

exp((log n)"' -E) < A(n) < exp((log n)V"') .

It would not be difficult to obtain sharper results than (8), but an asymptotic formula
seems hard . Below we tabulate the first 100 values of A(n) .

TABLE 1

We wish to thank N . J . A . Sloane for obtaining the numerical evidence we cite
at the beginning of the paper .
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n A(n) n A(n) n A(n) n A(n) n A(n)

1 3 21 7 41 13 61 5 81 3
2 22 2 7 2 13 2 5 2 3
3 3 3 7 3 13• 3 7 3 3 2
4 3 4 7 4 11 4 22 4 3
5 5 5 5 5 11 5 7 5 3
6 5 6 5 6 11 6 7 6 17
7 5 7 3 7 11 7 3 2 7 32
8 22 8 3 8 2 3 8 2 3 8 3 2
9 3 9 32 9 7 9 13 9 17
10 3 30 3 50 5 70 7 90 3

1 5 1 3 1 5 1 7 1 3
2 3 2 22 2 5 2 7 2 3 2
3 3 3 23 3 13 3 7 3 3
4 7 4 23 4 3 2 4 24 4 3
5 7 5 5 5 5 5 17 5 19
6 22 6 3 6 5 6 24 6 2 3
7 7 7 3 7 5 7 19 7 24
8 23 8 32 8 7 8 13 8 7
9 3 2 9 3 9 7 9 13 9

20 2 3 40 3 60 5 80 23 100 7
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