ON THE STRUCTURE OF EDGE GRAPHS II

B. BOLLOBÁS, P. ERDŐS and M. SIMONOVITS

This note is a sequel to [1]. First let us recall some of the notations. Denote by $G(n, m)$ a graph with n vertices and m edges. Let $K_{d}\left(r_{1}, \ldots, r_{d}\right)$ be the complete d partite graph with r_{i} vertices in its i-th class and put $K_{d}(t)=K_{d}(t, \ldots, t), K_{d}=K_{d}(1)$.

Given integers $n \geqslant d(\geqslant 2)$, let $m_{d}(n)$ be the minimal integer with the property that every $G(n, m)$, where $m \geqslant m_{d}(n)$, contains a K_{d}. The function $m_{d}(n)$ was determined by Turán [5]. It is easily seen that

$$
m_{d}(n)=\frac{d-2}{2(d-1)} n^{2}+o(n) .
$$

In this note we are interested in the maximal value of t, depending on the integers $n, d(2 \leqslant d \leqslant n)$ and on a positive number c, such that every $G(n, m)$ contains a $K_{d}(t)$ provided

$$
m \geqslant\left(\frac{d-2}{2(d-1)}+c\right) n^{2}
$$

We denote this maximal value by $g(n, d, c)$. Naturally, we may and will always suppose that $c<1 /(2(d-1))$. Erdös and Stone [3] proved the rather surprising fact that if n is large enough then $g(n, d, c) \geqslant\left(l_{d-1}(n)\right)^{\frac{1}{2}}$, where l_{s} denotes the s times iterated logarithm. However, this estimate turns out to be rather far from best possible. For fixed d and $c(c \leqslant 1 /(2(d-1)))$ the correct order of $g(n, d, c)$ was determined by Bollobás and Erdős [1], who proved that there are constants $c_{2}>c_{1}>0$ such that

$$
c_{1} \log n \leqslant g(n, d, c) \leqslant c_{2} \log n
$$

More precisely, they showed that there are positive constants $\gamma_{d}, \gamma_{d}{ }^{*}$, depending on d, such that

$$
\begin{equation*}
\gamma_{d} c \log n \leqslant g(n, d, c) \leqslant \gamma_{d} * \frac{\log n}{-\log c} . \tag{1}
\end{equation*}
$$

The main aim of the paper is to show that, for a fixed value of d, the upper bound in (1) gives the correct order of $g(n, d, c)$ for all $c<1 /(2(d-1))$ and sufficiently large values of n.

Denote by $[x]$ the integer part of x.
Theorem. (a) There is an absolute constant $\alpha>0$ such that if $0<c<1 / d$ and

$$
m>\left(1-\frac{1}{d}+c\right) \frac{n^{2}}{2}
$$

then every $G(n, m)$ contains $a K_{d+1}(t)$, where

$$
\begin{equation*}
t=\left[\frac{\alpha \log n}{d \log (1 / c)}\right] \tag{2}
\end{equation*}
$$

(b) Given an integer $d \geqslant 1$ there exists a constant $\varepsilon_{d}>0$ such that if $0<c<\varepsilon_{d}$ and $n \geqslant n(d, c)$ is an integer then there exists a graph $G(n, m)$ satisfying (2) which does not contain a $K_{d+1}(t)$ with

$$
t=\left[5 \frac{\log n}{\log (1 / c)}\right]
$$

Remarks. 1. The ratio of the upper and lower bounds of $g(n, d+1, c)$ given by the theorem does not depend on c. However, it does depend on d. We conjecture that the upper bound gives the correct order, i.e. $[-\log n / 4 d \log c]$ can be replaced by [$\gamma \log n / \log c$], where $\gamma(<0)$ is an absolute constant.
2. The following result can be proved analogously to the theorem.

There exist constants $\delta=\delta(d)>0$ and $\varepsilon=\varepsilon(d)>0$ such that if (2) holds and $n>n(d, c)$ then every $G(n, m)$ contains a $K_{d+1}(a, \ldots, a, b)$ for every $a<\varepsilon \log n$ and $b \leqslant n 2^{-\delta \alpha}$. This is sharp in the sense that it fails if δ is sufficiently small.
3. Our final remark concerns r-graphs for $r>2$. Denote by $G^{r}(n, m)$ an r-graph with n vertices and $m r$-tuples. Let $K_{p}{ }^{r}(t)$ be the complete p-partite r-graph whose classes consist of t vertices. (An r-tuple is in this graph if and only if its elements belong to different classes.) Put $K_{p}{ }^{r}=K_{p}^{r}(1)$.

The following problem was posed by Turán about thirty years ago. Given an integer $p>r$, determine the minimal positive number $c_{r, p}$ such that for every $\varepsilon>0$ and sufficiently large n every graph $G^{r}(n, m)$ contains a K_{p}^{r} provided

$$
m \geqslant\left(c_{r, p}+\varepsilon\right)\binom{n}{r}
$$

None of these values $c_{r, p}$ is known and the problem seems to be very difficult. However, it is possible that without actually determining $c_{r, p}$ one can prove a result analogous to the theorem.

Conjecture. Let $2<r<p$ and $\varepsilon>0$. Then there exists a constant $\gamma>0$ such that if

$$
m \geqslant\left(c_{r, p}\right)+\varepsilon\binom{n}{r}
$$

and n is sufficiently large then every $G^{r}(n, m)$ contains a $K_{p}^{r}(t)$ where

$$
t=\left[(\gamma \log n)^{1 /(r-1)}\right]
$$

It can be deduced from the results in [2] that this assertion holds with

$$
t=\left[(\gamma \log n)^{1 /(p-1)}\right]
$$

Proof of the Theorem. As (b) can be proved as Theorem 2 in [1], we prove only (a). The cardinality of a set X is denoted by $|X|$. In the proof we shall make use of the following relations that follow from Stirling's formula:

$$
\begin{equation*}
\binom{n}{k} \leqslant \frac{n^{k}}{k!} \approx\left(\frac{e n}{k}\right)^{k} \frac{1}{\sqrt{ }(2 \pi k)}<\left(\frac{e n}{k}\right)^{k} \tag{3}
\end{equation*}
$$

To simplify the calculations we shall not choose $\alpha>0$ immediately but we shall show that if $\alpha>0$ is a sufficiently small absolute constant then the result holds.

Let $G=G(n, m)$ be a graph satisfying (2). As in the proof of Theorem 1 of [1], it is easily seen that G contains a subgraph H with $n^{\prime} \geqslant(d c / 4)^{\frac{1}{2}} n$ vertices whose every vertex has degree at least $(1-1 / d+c / 2) n^{\prime}$ in H. So with a slight change of notation it suffices to prove the following proposition.

Proposition. If $0<\beta<1$ is a sufficiently small absolute constant and every vertex of a graph G with n vertices has degree at least

$$
\begin{equation*}
(1-1 / d+c) n \quad(0<c<1 / d) \tag{4}
\end{equation*}
$$

then G contains a $K_{d+1}(M)$ where

$$
M=\left[\beta \frac{\log n}{d \log (1 / c)}\right]
$$

Proof of the proposition. The proposition is obvious if $M<1$; so we can assume without loss of generality that $M \geqslant 1$, i.e.

$$
\begin{equation*}
n \geqslant(1 / c)^{d / \beta} \tag{5}
\end{equation*}
$$

To prove the result we use induction on d. For $d=1$ a stronger result is proved in [1] (and it also follows from [4]). Suppose now that $d \geqslant 2$ and the proposition is already proved for smaller values of d.

Put

$$
c^{\prime}=\frac{1}{d-1}-\frac{1}{d}+c \quad \text { and } \quad p_{0}=\left[\beta \frac{\log n}{(c-1) \log \left(1 / c^{\prime}\right)}\right]
$$

As the minimal degree in H is greater than $\left(1-1 /(d-1)+c^{\prime}\right) n$, by the induction hypothesis G contains a $K_{d}\left(p_{0}\right)$.

In the sequel we shall make use of the following simple lemma.

Lemma. Let X be a set of vertices of G. Put $x=|X| / d$. Denote by Y the set of those vertices of $G-X$ that are joined to at least $(-1 / d+c / 2) d x$ vertices of X. Then

$$
\begin{equation*}
d(c n-2 x) \leqslant 2|Y| . \tag{6}
\end{equation*}
$$

Proof. Denote by S the number of edges connecting $G-X$ to X. S clearly satisfies the following inequalities:

$$
d x\{(1-1 / d+c) n-d x\} \leqslant|S| \leqslant|Y| d x+(n-d x-|Y|)(1-1 / d+c / 2) d x
$$

Consequently

$$
\frac{1}{2} c d x n-d x^{2}+\frac{1}{2} c d^{2} x^{2} \leqslant|Y|\left(1 / d-\frac{1}{2} c\right) d x,
$$

and this implies (6).
Let us go on with the proof of the proposition. Put $P=(2 / c) M$.
(a) Let us assume that G contains a $K=K_{d}\left(p_{1}, \ldots, p_{d}\right)$ such that

$$
\begin{equation*}
p_{i} \leqslant p+M, \quad 1 \leqslant i \leqslant d, \tag{7}
\end{equation*}
$$

where

$$
p=\frac{1}{d} \sum_{i}^{d} p_{i}
$$

and

$$
\begin{equation*}
P \leqslant p \leqslant P+1 \tag{8}
\end{equation*}
$$

If β is sufficiently small then

$$
\begin{equation*}
c n>4(P+1) \tag{9}
\end{equation*}
$$

so by the lemma we can suppose that if Z is the set of vertices of $G-K$ that are joined to at least $p(d-1)+c p d / 2$ vertices of K, then $|Z| \geqslant d c n / 4$. A vertex of Z is joined to at least

$$
p(d-1)+(c p d / 2)-(d-1)(p+M) \geqslant(c P d / 2)-(d-1) M=M
$$

vertices of each class of K, so it is joined to a subgraph $K_{\alpha}(M)$ of K. By (3) the number of $K_{d}(M)$ subgraphs of K is at most

$$
\begin{align*}
\binom{P+1+M}{M}^{d}<\binom{2 P}{M}^{d} & <\left(\frac{4 e}{c}\right)^{M d} \\
& =\left(\frac{1}{c}\right)^{\beta(\log n / \log (1 / c))}(4 e)^{\beta(\log n / \log (1 / c))}<n^{\beta} n^{2 \beta}=n^{3 \beta} \tag{10}
\end{align*}
$$

If β is sufficiently small then

$$
n^{3 \beta}<\frac{c n}{\beta \log n}<\frac{c n d^{2} \log (1 / c)}{4 \beta \log n}=\frac{d c n}{4 M} \leqslant \frac{|Z|}{M} .
$$

Thus Z contains a set Z^{\prime} of M vertices and K contains a $K_{d}(M)$ subgraph K^{\prime} such that every vertex of Z^{\prime} is joined to every vertex of K^{\prime}. Consequently G contains a $K_{d+1}(M)$.
(b) By (a) we can assume without loss of generality that whenever a subgraph $K_{d}\left(p_{1}, \ldots, p_{d}\right)$ of G satisfies (7) then $p=(1 / d) \sum_{1}^{d} p_{i}<P$.

Let $K=K_{d}\left(p_{1}, \ldots, p_{d}\right)$ be a subgraph for which p attains its maximum under the conditions (7). As G contains a $K_{d}\left(p_{0}\right), M<p_{0} \leqslant p<P$. Let U be the set of those vertices that are joined to at least M vertices of each class of K. If U is large, say $|U| \geqslant n^{\frac{1}{2}}$, then G contains a $K_{d+1}(M)$, just as in case (a). For by (10) the number of $K_{d}(M)$ subgraphs of K is at most

$$
\binom{p+M}{M}^{d}<\binom{P+1+M}{M}^{d}<n^{3 \beta}<\frac{n^{\frac{1}{2}}}{M} \leqslant \frac{|U|}{M}
$$

provided β is sufficiently small.

Thus we can suppose that $|U| \leqslant n^{\frac{1}{2}}$. Let W be the set of vertices of $G-K$ that are joined to at least $(1-1 / d+c / 2) d p$ vertices of K. Put $V=W-U$. By the lemma, (9) and (5), for sufficiently small β we have

$$
|V| \geqslant \frac{1}{4} c n d-n^{\frac{1}{2}} \geqslant \frac{1}{8} c n d .
$$

Let us define an equivalence relation on V by putting $x \sim y(x, y \in V)$ if x and y are joined to exactly the same vertices of K. Let C_{i} denote the i-th class of K. If $x \in V$ there exists an $i_{0}, 1 \leqslant i_{0} \leqslant d$, such that x is joined to less than M vertices of $C_{i_{0}}$. As x is joined to more than $(d-1) p$ vertices of K, the number of vertices of $\bigcup_{j \neq i_{0}} C_{j}$
not joined to x is less than

$$
(d-1)(p+m)-\{(d-1) p-M\}=d M
$$

Hence the number of equivalence classes in V is less than
$\sum_{i=1}^{d}\left\{\sum_{i \leqslant M}\binom{p_{i}}{2}\right\}\left\{\sum_{\mu \leqslant d M}\binom{p d-p_{i}}{\mu}\right\}$

$$
\begin{aligned}
& \leqslant d^{2} M^{2}\binom{2 p}{M}\binom{p d}{d M} \leqslant d^{2} M^{2}\left(\frac{2 p}{M}\right)^{M}\left(\frac{p}{M}\right)^{d M} e M^{(d+1)} \\
& \leqslant d^{2} M^{2}(2 e)^{(d+1) M}\left(\frac{1}{c}\right)^{d M}<\beta^{2}(\log n)^{2} n^{4 \beta / \log (1 / c)} n^{\beta} .
\end{aligned}
$$

Thus (5) implies that if β is sufficiently small, the number of equivalence classes is less than $c n d /(8 p+8 M)$, so there exists a set V_{1} of $[p+M]$ equivalent vertices.

We shall show that there is a $K^{\prime}=K_{d}\left(q_{1}, \ldots, q_{d}\right)$ subgraph in G that contradicts the maximality of $K=K_{d}\left(p_{1}, \ldots, p_{d}\right)$. Let $x \in V_{1}$ and let \bar{C}_{i} denote the set of those vertices of C_{i} which are joined to x. We may suppose without loss of generality that x is joined to less than M vertices of C_{1}, i.e. $\left|\bar{C}_{1}\right| \leqslant M$. Assume furthermore that $\left|\bar{C}_{2}\right| \leqslant\left|\bar{C}_{j}\right|, j=3, \ldots, d$. We shall give different constructions for K^{\prime} according as $\left|\bar{C}_{2}\right| \leqslant p$ or $\left|\bar{C}_{2}\right|>p$.

If $\left|\bar{C}_{2}\right| \leqslant p$ let the classes $C_{i}{ }^{*}$ of a $K_{d}\left(q_{1}, \ldots, q_{d}\right)$ be defined as follows:

$$
C_{1}^{*}=V_{1}, \quad C_{2}^{*}=C_{1} \cup C_{2} \quad \text { and } \quad C_{j}^{*}=\bar{C}_{j}, \quad j=3, \ldots, n .
$$

Since

$$
\left|\bigcup_{1}^{d} \bar{C}_{i}\right|>(d-1) p, \quad\left|\bigcup_{1}^{d} C_{i}^{*}\right|>d p
$$

Furthermore, $\left|C_{i}\right| \leqslant p+M$. Thus this subgraph $K_{d}\left(q_{1}, \ldots, q_{d}\right)$ satisfies (7) and contradicts the maximality of K.

If $\left|C_{2}\right|>p$, select $q=[p+1]$ vertices from each $\bar{C}_{j}, j=2, \ldots, d$ and from V_{1}. These vertices determine a $K_{d}(q)$ in G, contradicting the maximality of K.

This completes the proof of the proposition and so the proof of the theorem is also complete.

References

1. B. Bollobás and P. Erdős, " On the structure of edge graphs ", Bull. London Math. Soc., 5 (1973), 317-321.
2. P. Erdôs, " On some extremal problems on r-graphs ", Discrete Math., 1 (1971), 1-6.
3. and A. H. Stone, "On the structure of linear graphs ", Bull. Amer. Math. Soc., 52 (1946), 1089-1091.
4. T. Kővári, V. T. Sós and P. Turán, " On a problem of Zarankiewicz ", Coll. Math., 3 (1954), 50-57.
5. P. Turán, "On an extremal problem in graph theory" (in Hungarian), Mat. és Fiz. Lapok, 48 (1941), 436-452.

University of Cambridge, Cambridge, Hungarian Academy of Sciences, Budapest, and R. Eőtvős University, Budapest.

