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PROBI-EMS AND RESULTS IN COMBINATORIAL NUMBER THEOR Y

hy

Paul ERDOS

I discuss a few prohlerns and results, mostly connected with van der

Waerden's theorem, which have occupied me and many of rny co-wcrkers e gre.a t

deal over the last few years . I will try to give as complote references as poeesible,

but of course I do not demi completeriess and I apologise in advance for Lny omis -

sions . In general I shali give references at the end of each chapter, but first l

wouid like to call the readers attention to the interesting paper of van der Waerden

I'ow the proof of Baudet's conjecture was found" , Studies in pure mathematics,

papers in combinatori .a l theorv, analysis . . . presented to Richard Rado, p . 251.-260 .

London and New-York . Academic Press, 1971 . A Brauer, by the way, states that .

the conjecture was really stated first by I . Schur. Recently a very short proof of

vari der Waerden's theorem was published hy R . L . Graham and Bruce Rothschild

( Proc . Arner Math. Soc . 42 (1974), 385-386) .

i

	

rr.duce the follo,,ving notations . A sequence of integers is saià to have

the proper1y A(k) if it contains an arithmetic_ progression of k ternis . It has the
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property A(m) if it has the property A(k) for every k . Van der Waerden's theo-

rem can thus be expressed a follows : if we split the integers into t classes, then

at least one class has the property A(m) . A set of real numbers is said to have the

property A( ~l o ) if it contains an infinite arithmetic progression .

I have published several papers in number theory, Here, 1 only quote two

recens ones, both of which contain many referenses

	

"Résultats et problèmes en

théorie des nombres", Sém. Delange-Pisot-Poitou, 197Z/73, n ° 24 and "Problems

and results in combinatorial number theory", A survey of combinatorial theory,

1973, North Holland, p. 117-138 .

1 .-The finise form of van der Waerden's theorem states : to every k

and L there is an f(k,t) so tha t if we split the tntegers not exceeding f(k, t)

into t classes, then at least one class has the property A(k) .

Van der Waerden's proof gives a vert' bad estimate for f(k, t) , (even for

L = Z) and this was one of the reasons which led Turán and myself to propose,

more than fort years ago, the following problem, the positive solution of which of

course implies van der Waerden's theorem :

Is it. true thai for every e > 0 and integer k there is art n = n (e. , k)
0

	

0

sa thai every sequence 1 <a 1 < . . . < a s 5 rt , n-nt ,

	

s> e n has the property

A(k) ? More precisely, denote bt' rk(n) the smallest integer s for which every

sequence 1 <_ a l < . . . < a a ~ n , s = r k (n) has the property A(k) . We conjectured

thai for every k

(1) r k (n) = o(n) .

It is Imost irrrnediate thai r k(a+b)- r k(a) - rk (b) and this sub .idditiv ; tv

implies tltat lim r k (n) j n = ck exists, but the proof of il) seemed to present
n+ m
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great difficulties .

Originally we thought thai in fact r3 (n)< n l-c

Salem and Spencer who showed in 1942 thai

In 1946, F . Behrend showed :

(2)

1 -c/log log nr 3 (n) > n

r3 (n)> n exp(-c ,îlog n)

and this is still the bent known louver bound for r3 (n) .

In 1951, K . F . Roth proved thai r3 (n) = o(n) . More precisely he showed

(3) r 3 (n) < c n / log log n

but this was disproved by

and this upper bound has never been improved . The gap between (2) and (3) is

vert' large and it would be desirable to obtain better bounds for r3 (n) .

In 1967, Szemerédi proved thai r4 (n) = o(n) , his proof, which is a mas -

terpiece of combinatorial reasoning, is completely elementary but very complíca-

ted and utilises van der Waerden's theorem . K . F . Roth using his method succeeded

in eliminating the use of van der Waerden's theorem .

Vert' recently Szemerédi proved (1) in full generality. His proof, which

will appear vert' soon in Acta Arithmetica is, needless to say, agaín a masterpiece

of combinatorial ingenuity . Unfortunately he agaín used van der Waerden's theorem .

but he believes thai bt' the method of Roth it will be possible to eliminate the use of

van der Waerden's theorem and thus perhaps obtain a weak, but not entirely ridi-

culons, upper bound for f(k,L) .

The bent known louver bounds for f(2, ti ) are due to Berlekamp who, im-

proving previous results of Rado and myself and Schmidt, proved thai

f(2, t.) > Z 2t
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if t is a prime number . It would be interesting to decide if

(4)

	

lira f(2,d,) 1/t = m
L~

is true . My guess would be thafi (-I) is true .

In connection with (4) the following might be of use and interest . Denote

by f(t , 2 , t) the smallest integer so tha t if one splits the integers not exceeding

î(e, 2 . L) into two classes there is always an arithmetic progression of t terms

which contains at least Z(1+e) ternis of the same class . Clearly f(1,2, L)=f(2,L) .

It is possible thai

(5)

	

f(e , 2 , t) < cé

holds for sonie e >0 , but I never succeeded in making any progress with (5) . By

the probalistic method fit is quite casv to show thai f(e, 2, t) > (1+c~L , (P . Erdős,

Math . Lapok 14, 29-37, in Hungarian) .

Szemerédi proof of (1) fis vert' ingenious, but rather complicated . One

of its basicc tools fis a lemma on the structure of bipartite graphs which I state here

without: proof. First i need sonie notation . Let A and B be disjoint sets,

i

E

I

	

ni> M ,

i B j = m . Let G be a bipartite graph whose white vertices are A and

black vertices B If X C A , Y fi , then ',X, Y j denotes tle set of edges (x, y)

ot G with xr- X

	

y E Y . Put ~!X, Y)

	

Y .1 i ~X 1 i . i Y ;

	

(i. e . ~(X, Y) is the

density of edges of our bipartite g ;•anh) . G(u) denotes'the set of vertices joined

to the vertex u

Now ve are ready to state the iemma of Szemerédi : tc every

2 , b , 0 , a there are n: , , riU , M and N so ihat for every G for which

= n> N , there. are disjoint sets CC i C A , 1 =i!5 ni ') and

B

	

i == j 5 n which satisfv for every 15i <_mc

	

o
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ma
(6)

	

~A- U C . < p and
i=1

	

1

Further we have for every 15i5 m
o

	

15 j5n
0

and S< C
1
.

	

T C Ci, . j
satisfying

ISI > e l JC, j , 1TI >e? Ci j l

(S . T) ? ~(Cî
C

Finally for every 15 i Smo , 1 j = no , Xc C i

lest integer so thai every

(7)

I G(X) (1C i j1 5 (e (Ci , C i j ) + b) C i j I

Szemerédi believes thai the lemma is not best possible but can be shar-

pened in various ways . So far, however, there has been no success in this direc-

tion . The proof of the lemma is not as complicated as one could have expected .

There is no doubt thai this deep lemma will have many applications . Here

I only state a vert' recept theorem of Szemerédi. Denote bt' G (r) (n ; m) a hyper-

graph of n vertices and m eges (i . e . r-tuples) . Let f r(n ; k, t) be the smal-

G(r) (n ; f r (n ; k, L»

(i . e . every hypergraph of n vertices and fr (n ; k, !) r-tuples) contains a

G(r)(k ; f.) as a subgraph . V . T . Sos, W . Brown and 1 conjectured

f3 (n ; 6 , 3) = o(n 2 )

	

.

Szemerédi recently proved (7) using his lemma . We in fact thought thait

f 3 (n ; 6, 3) < n2 -c also holds, but Ruzsa disproved this bt' showing

f3 (n ; 6,3) > c n r 3 (n) .

More generally it is probable thai

f 3 (n ; k, k-3) = o(n 2 )



holds for everv k , but Szemerédi's me thod does not seem ta work for k> 6 .

Perhaps

(8)

	

c l n rk-3 (n) G f 3 (n ; k, k-3) C c 2 n rk 3 (n)

holds for everv k-6 Ruzsa proved the lower bound in (8) for k = 6, 7 and 8 ,

but the proof seems to run into difficulties for larger k . The work of Szemerédi

and Ruzsa is not vet published .

It seems certain thai Szemerédi's lemma will lead to further suurising

insights .
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II . - A well known conjecture states thai the primes have the property

A(-) . If I remember correctly it is known thai they have the property A(16) and

no doubt one could improve this, but as far as I can see the only way of proving

the general conjecture would be to show thai for n> n k rk(n) <r(n)

	

In fact, per-

haps for every k and t it is truc ihat

(1) lim rk(n) (	 nt	 1 = 0 .
n y m

	

log n

The following conjecture seems attractive to me : every sequence

satisfying E a- 1 - m has the property A(-) . I offer Z500 dollars
i=1

	

1
for the proof or disproof of this conjecture . At the moment 1 see no hope for a

proof but perhaps a counterexample can be constructed and this might be a relati-

vely easy way of earning 2500 dollars, but I hope thai the conjecture and (1) are

both truc .

In sonie cases in the pasi I proved theorems on primes where I used rela-

tively few special properties of the primes and the fact ihat n(x) is large . In fact

I proved more than 35 years ago thai for every r there are íntegers

n (r) , n (r)

	

n(r) so thai the e uations n(r)

	

2

	

2 , n(r)

	

2

	

2 , n(r) 1

	

11

	

2

	

3

	

q

	

1

	

= P

	

q

	

2 = P - q

	

3 = p- Xq-I

have at least r solutions in primes p and q . There seems little doubt though

thai the problem of k-tuples of primes in an arithmetic progression is much deeper .
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Is it truc thai for every k there are k consecutive primes in an arith-

metíc progression ? This problem seems completely unattackable to me, even for

k = 3 , though Renyi and I have sonie preliminary results for this case .

Before ending this chapter 1 state a few related problems and results .

Let a l < . . . be an infinite sequence of integers and assume thai no a is the dis-

-1
tinct surc of other a's, I proved thai E a . < 163 (math . Lapok 13 (1962), 28-38,

i

	

1
in Hungarian. An English version will appear in our joint paper with Benkoski in

Math. of Computation) . I heard at the last meeting of the Amer . Soc . (april 1974)

thai 103 can in fact be replaced by 5 , but thai the result does not hold with 2 .

Unfortunately I do not remember who proved these results . It was also seggested

thai the maximum of E a- 1 is probably not much greater than 2 . In February
i

	

1
1973, 1 conjectured thai if a l < a 2 < . . . < a n is such thai all the suros

E s, a , e. = 0 or 1 are all distinct, then
i=1

	

1

	

1

1-n
max E a, = 2 -2

i=1 '

and the maximum is attained if and only . 1 , Ryavec found a simple analy-

tic proof and recently E, and G . Szekeres found an elementary proof. Here I may

mention one of my oldest conjectures

	

Let i,< . . . < a n 5 X be such thai all the
n

suros

	

E c.a . are distinct ; is it truc thai
i=1 1 1

logX Cn < log 2

Moser and I proved thai

	

n < fogX ` 'off log X
log

	

2 iog 2

n

	

-1

L.et a l < a 7 < .

	

be an infinite sequence of integers

	

assume thai for

i<j<k a .+a

	

0 (mod a .)

	

Fut AC,I :: E 1

	

Sarköni and i proved A(X) -=o(X),
J

	

k
we conjecture thai E a 1. l <

	

and thai :gyí,_{) < X 1 -E for in . .niteiv many X . There

is an interesting finite problem here which causes unexpected difficuities



Let a l < . . . < an< X and assume ihat for i< j< r

	

aj+a r g o (mod a i) , then

n< [3]+l . The n+l integers Zn , Zn+l

	

, , . , 3n show thai our conjecture, if

true, is best possible . The proof presents difficulites which we have not been able

to overcome . If we assume ar +a s

	

0 (mod ak ) (i . e . without k<r< s), then

n = o(X) follows from r 3 (X) = o(X) since the a's cannot contain a three term

arithmetic progression . Szemerédi proved thai n< [3]+1 if (a r+as)/ak can

never be an integer different from 2 .
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III . - Some infinite problems . It is clear ihat one can give a sequence of

integers which tends to infinity as fast as one likes and whose tomplement does

not have the property A( tt ) . This follows from the fact ihat the number of arith-
0



metic progressions is denumerable . I then asked : "Can one decompose the reals

into iwo sets S, and S 2 so thai S 1 does not have the .property A(3) and S2

does not have the property A( K ) ? " Davies proved the existence of such a de -
~

	

o

composition using 2 0 = K 1 but recently Baumgartner gave an example of such

a decomposition without using any hypothesis . Baumgartner's paper on the subject

will be published soon .

The £ollowing more general question can now be asked. Let k be a given

integer . Can one decompose the set of real numbers into countably many sets

St , t = 1, 2, . . . . such thai every S t intersects every k - terni arithmetic pro-

gression in at most two terras but the tomplemert S t of St never lias the pro-

perty A(tt n
) ?

It seems thai Baumgartner's method will give the existence of these sets .

(Added in proof : Baumgartner has shown the existence of these sets) .

1 hope ihat one can ask more general and non-trivial questions of the fol-

lowing type . Consider a £amily F of denumerable sets [Aa ] = a (a) < . .

	

of real

numbers . We say thai F has the property P3 if there is a set which intersects

each A E F but never contains three consecutive elements la, , a (0.)

	

(a)
CL

	

1

	

i+ 1

	

ai+2 }

of any
A a

. Baumgartner's theorem states thai the £ .amily of all infinite arithmetic

progressions has the property P3 . AssurrL thai the £amily F is such thai if
Í~ 1 )

a

	

a
(a2)

and a
(al)

= a
(a2)

	

thon for eve

	

(~)
a
ía, )

	

( the infinite.

	

=

	

,

	

r

	

.

	

=

	

,i1

	

+l

	

j+l

	

y t> 0 ,
a 1+t

	

1+t

arithmetical progressions certainly have this property) . Is it true thai F has the

property P3 ? Assume now thai every countable sub- £amily of F has the proper-

ty P 3 Does it follow thai F has the property P 3 ? I would guess thai the ans-

wer is no . I apologise if one (or bote) o£ these questions has a trivial negatíve ans -

wer, they were only formulated recently .
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agaín a's .

Hindman recently proved the following conjecture of Graham and

Rothschild : Split the integers into two classes in an arbitrary way . Then ihere is

always an infinite subsequence a 1 <a2 < . .

	

so thatail the su ms £ e i a

	

e i=0
i

or 1 are in the same class . Recently Baumgartner found a simple proof o£

Hindman's theorem . The results stated in this chapter are not yet published .

1 have tried to formulate a conjecture which wr>uld be in the saine relation

to Hindman's theorem as Szemerédi's theorem is to van der Waerdens . 1 have not

been vert' successful so far . Perhaps the following result holds . Let a l <a2 < .

be a sequence of integers with positive upper density . Then ihere is an integer t

and an infinite subsequence a < a, < . . so ihat all the sums a . +a . + t arei 1

	

12

	

1r

	

ls -

In a previous paper I stated the following problem : Split the real num-

bers into iwo classes . Does ihere exist a set ( aa }

	

1<q, < W 1 of power :1 1

so that all the sums

aa +aa

	

15a1 <a 2 <w 1
1

	

2

A, B with A

	

t 1 IB1 = e
0

belong to the saure class ? I stated thai I cannot settle this question even if the

continuum hypothesis is assumed. Some time ago I notíced thai using the methods

of our paper with Hajnal and Rado I can proue -assuming the continuum hypothesis-

thai the set o£ recels can be split into two disjoint classes S 1 and SZ so thai if

are any two sets of recels ihere always are

real numbers

	

Y 1 ,Y~ES 2 , X ZE SZ so X 1 - Y 1ES 1 , X2+Y2E S2 .
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IV . - In the last chapter we discuss miscellaneous problems on arithme-

tic progressions and related topics .

(i) Is it true thai for every k and r there is a sequence witlu>ut the

property A(k+l) , but is such thai if we split it into r subsequences at least one

of them has the property A(k) ? (added in proof : Spencer has recently shown thai

such a sequence exists) .

The conjecture was motivated by the following older conjecture of flajnal

and myself : Is it true thai for every f, and r there is a graph not conta.ining a

K(f,+1) (i, e, a complete graph of f, +1 vertices) but i£ one colours its vertices by

r cc-,!ours . then at least one colour contains a K(t) ? J . Folkman proved the exis-

tence of such a graph for r = 2 and every ?, :'he probably had ;i proo4 fcr r- 5 1) .

Recently the problem vaci settled in fuil generality bv Nesetra an Rödl (their paper

is not yet published) .

(ii) Riddell defines gk(n) as the largest integer so that every ssquerc :

a 1 <

	

. < an contains a subsequence of gk(n) terms net üàvir)i, the propert

One uoulds guess at first that g k(nl = r,','= ; - 1 , but R :ddeli shows ihat this is not

always true . He also obtained some lower jounds for gk
/

	

i ; hidrirll anci I

, ?b



slightly impro-d . This was supeceeded by a general re-it of Kon,los , Sub,tok and

Szemerédi (their paper will be published soon) . They obtain gkn) > c rk(n) as a

special case of their theorem . If is unknown if gk(n) < rk (n) - 1 holds for infini-

telt' many values of n , or if for every k

obtains for every k>2

unless

J . Riddel, on sets of numbers containing no 1 terms in arithmetic pro-

gressio :, vieuw Archie£ voor Wiskunde 17 , 204-209 .

(1);iii) Let rk (n) (k<_ G) be the smallest integer so that every seçuence

a } < . . . < a s < n

	

s = rkl) (ri) contains at least k terms of an arithmetic pro-

g,ess on of length f

	

Ciearly r kk ) (n) = rk (n)

	

Using Be}trend's idea one easil ;

Szemerédi and 1 conjectured thai for 3 :~ k i~ k2

	

?2 ; kZ? 1 1' /k l
(1,)

r k ` (n)

(1)

and

what is the value of

g k (n)
lim rk(n) = 1 .
n~

rkl) (ri) < c n expí-(log n)2(k, 1) l

lira
n-, m

Even if (1) is proved open problerns remain, e- g,

r 3 (n)
lira r

(5) (n)4

(iv) Denote bt' f(n ; k, 1) k <1 the smallest integer with the propert%

thai if the sequence a contains f(n : n, ?) k terni arithmetic progres-

sions thon it contains an ?-terra arithmeticc progression, i conjecture thai

t 0 7



f(n ; k, ti) = o(n ? ) and perhaps f(n ; k, ti) < nZ
e(k, ~_)

	

I have not even bee. able

to proue thai f(n ; 3, 4) = o(n 2 ) .

More generally let f(rr ; k i , t i , k2 , L 2 ) be the smallest integer with the

following property : Let An
be any sequence of n distinct real numbers . As-

sume thai there are f(n ; k l , ,I l , k2 , L 2 ) arithmetic progressions of L 1 ternis

which intersect A n in at least k l ternis, then there is an arithmetic progression

of L terras which interesects A n in at least k 2 ternis . I hope thai sonie inter-

esting results can be found about f(n ; k l L 1 , k2 t 2 )

Perhaps if A n contains c l n2 arithmetic progressions of three terras,

then lt must contain an arithmetic progression of c 2 log n ternis (c 2 =c i (c 1 »,

$y probabilistic methods it is easy to see thai, if true, this is bent possible, apait

from the value of c 2 .

Denote by g(n, k, c) the largest integer so that every sequence

ISa l < . .< a, -'i n , s? cn , contains at least g(n,k, c) arithmetic progressions

of k terms . Varnavides proved g(n, k, c) > ak(c) n 2 for k = 3 and this was ex-

tented to all k by Szemerédi . A good estimation of ak(c) as c + m does not

seem easy and I cannot proue thai

(1)

g(n, k l , a)
lira lira g(n, k c} - 0

	

for k l > k_~
c+m n +m

	

2

F . Varnavides . - On a theoreni of Rot' ; . J . London Math. Soc 30 (1955),
325-326 .

(v) Is it true thai if f(n)

	

= 1 is any function defined on the integers,

then to everv c there is a d arrd an ni so ihat

ni
E

	

f(kd)j

	

c.

308



This is one of my oldest conjectures (about 40 years old) and I offer

300 dollars for a proof or disproof . Perhaps (1) remains true if f(n) is complex

valued and ~f(n) J = 1 , or perhaps it could be true in more general vector spaces .

If f(n) = t 1 and f(n) is assumed to be multiplicative we obtain the con-
n

jecture thai
1

E f(k) 1 cannot be bounded. For a more general conjecture see
k=1

N. G . Tchudakoff, Theory of the characters of number semigroups, International

Coll . Zeta function, Bombay 1956, 11-16 .

The sharpest quantitative form of (1) which could be true states as fol-

lows. There is an absolute constant c i so that if f(n) = t 1 , n = 1, 2,

	

there

always are integers d and m so that m d < x and

m
E f(kd)1 > clog x

k=1
.l

(vi) Several years ago I asked the following question. Let a l< . . . < a n =X

be a sequence of integers . Assume thai no a dlvides the sum of the other a's .

Put max n = F(X) . I thought thai F(X) was less than a power of log X , but

E . Straus proved thai

(1)

	

F(X) > exp (1 + o(1) ) J2logXlog 2

What is more irteresting, Straus observed thai the problem is essentially equi-

valent to the following much more interesting one . Let 1 :5 a 1 < . . . < am< X be a

sequence of integers such thai no a is the arithmetic mean of any other a's . Pu-,

max m = f(X) . Determine or estimate f(X) . Straus, in fact, proved thai (1) holds
3/4for f(X) and Straus and I proved f(X) < c

	

. Szemerédi recently somew- hat irn-

proved the exponent 3%4 , but it seems probable thai f(X) = o(X E) and we are

vert' far £rom being able to proue this .
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