Some additive and multiplicative problems in number theory

by

S. L. G. Chor (Vancouver, B. C.), P. Erdös and E. Szemerédi (Budapest)

Introduction. In this paper we consider various additive and multiplicative problems concerning sets of integers. The major aim of our investigation is in exhibiting the relationship between the number of elements in a given set of positive integers not exceeding n and the number of integers that can always be chosen (with or without the restriction that these should lie in the given set) so that their sums (or products), taken two at a time, should all lie in the given set. We shall only once consider the analogous question relating to sums formed with a variable number of summands.

Notation. The letters c_{1}, c_{2}, \ldots denote positive absolute constants, unless otherwise indicated. A sum or product in this paper will mean, unless otherwise indicated, one formed with distinct integers. A sequence will always mean a strictly increasing sequence of positive integers.

1. Let A denote a set of $n+t$ integers not exceeding $2 n$. It is clear that if $t=1$ then in general one cannot choose three integers from $1,2, \ldots, 2 n$ whose sums, taken two at a time, all appear in A; for instance we may let A consist of 2 and all the odd integers not exceeding $2 n$. It turns out, however (as Theorems 1-4 below show), that corresponding to $t=2$, $c_{1}, c_{2} \log n, c_{3} n^{1 / 2}$ respectively, we can always choose three, four, five, or six integers respectively so that in each case all sums, taken two at a time, will appear in the given sequence A; further, these results are essentially best possible. Theorems 5 and 6 below give us some idea of the rate of growth of the smallest integer $t_{k}(k \geqslant 3)$ such that for any sequence of $n+t_{k}$ integers not exceeding $2 n$, we can always choose k integers all whose sums, taken two at a time, appear in the sequence.

Theorem 1. Suppose $n \geqslant 4$ and let A denote a sequence of $n+2$ positive integers not exceeding $2 n$. Then there are integers b_{1}, b_{2}, b_{3} such that $b_{i}+b_{j}$ $(1 \leqslant i<j \leqslant 3)$ are all in A.

Proof. We assume the theorem false and proceed to deduce a contradiction. Accordingly, suppose there exists $n \geqslant 4$ and a sequence A of $n+2$ integers not exceeding $2 n$ such that one can never choose b_{1}, b_{2}, b_{3} with $b_{i}+b_{j}(1 \leqslant i<j \leqslant 3)$ in A.

Let $2 m+1$ be the smallest odd integer $\geqslant 3$ in A. Then $3 \leqslant 2 m+1<2 n$. Since the sum of $m+1$ and m is $2 m+1$, for each integer $j=m+2, \ldots, 2 n-$ $-(m+1)$, at most one of the sums $m+j, m+1+j$ belongs to A. In other words, no two consecutive integers from $2 m+2, \ldots, 2 n$ can belong to A. In view of the choice of $2 m+1$, there are at most $m+1$ integers (i.e. consisting of 1 and the even integers) from $1,2, \ldots, 2 m$ belong to A, which implies that at least $n-m$ of the integers $2 m+2, \ldots, 2 n$ belong to A. As we have already shown that no two consecutive integers from $2 m+2, \ldots, 2 n$ can belong to A, the last sentence implies that there are precisely $n-m$ integers from $2 m+2, \ldots, 2 n$ belonging to A and that these are simply the even integers from $2 m+2, \ldots, 2 n$; further all the even integers from 1 , $2, \ldots, 2 n$ also belong to A. Consequently all the even integers from $1,2, \ldots$ $\ldots, 2 n$ belong to A and these include the numbers $4,6,8$ since $n \geqslant 4$. But then the number $b_{1}=1, b_{2}=3, b_{3}=5$ have all sums $b_{i} \div b_{j}$ $(1 \leqslant i<j \leqslant 3)$ belonging to A. This gives the desired contradiction.

We remark that $n \geqslant 4$ in the above theorem is best possible since we cannot choose b_{1}, b_{2}, b_{3} all whose sums $b_{i}+b_{j}(1 \leqslant i<j \leqslant 3)$ appear in $1,2,3,4,6$.

The proofs of Theorems $2-4$ below depend on the following lemma (cf. [3], Lemma $p(\delta, l)$) and its corollary.

Lemma A. Suppose B denotes a sequence of positive integers not exceeding $2 n$

$$
y_{1}<\ldots<y_{t}
$$

then, provided $t \geqslant 2^{k} n^{1-2-k}$, there exist positive integer x_{0} and distinct positive integers x_{1}, \ldots, x_{k} such that B contains the subset:

$$
\begin{equation*}
\left\{x_{0}\right\}+\left\{0, x_{1}\right\}+\ldots+\left\{0, x_{k}\right\} . \tag{1}
\end{equation*}
$$

Proof. The proof is by induction on k. Clearly the theorem is true for $k=1$ or 2 . Let now $k \geqslant 2$ and assume theorem holds for k. We proceed to prove that the theorem holds also for $k+1$. Accordingly let B denote a sequence (1) of integers not exceeding $2 n$, where $t \geqslant 2^{k+1} n^{1-2^{-(k+1)}}$. Since there are $\frac{1}{2}(t-1) t$ differences $y_{i}-y_{j}(1 \leqslant j<i \leqslant t)$ there exists some integer m such that there are $t_{1}>\left\{t(t-1)^{\}} /(8 n)>t^{2} /(16 n)\right.$ distinct pairs $y_{i}^{*}<y_{i}^{* *}$ ($i=1, \ldots, t_{1}$) such that

$$
y_{i}^{* *}-y_{i}^{*}=m \quad\left(i=1,2, \ldots, t_{1}\right) .
$$

It is clear that $y_{i}^{*}\left(i=1, \ldots, t_{1}\right)$ are distinct and

$$
t_{1} \geqslant 2^{2 k+2} n^{2-2^{-k}}(16 n)^{-1} \geqslant 2^{k} n^{1-2^{-k}} .
$$

But then by the induction hypothesis there exists a subset of form

$$
\left\{x_{0}\right\}+\ldots+\left\{0, x_{k}\right\}
$$

in the set $\left\{y_{i}^{*} ; i=1, \ldots, t_{1}\right\}$. Since for each $y_{i}^{*}, y_{i}^{*}+m=y_{i}^{* *}$ is also in B we conclude, by taking $x_{k+1}=m$, that the set

$$
\left\{x_{0}\right\}+\left\{0, x_{1}\right\}+\ldots \div\left\{0, x_{k+1}\right\}
$$

is also a subset of B.
As a consequence of Lemma A, we prove the following
Corollary. Suppose $n \geqslant n_{0}(k)$ and let A denote a sequence of t even integers not exceeding $2 n$, where $t \geqslant 2^{k} n^{1-2^{-k}}$. Then there exist integers b_{0}, \ldots \ldots, b_{k} such that all $b_{i}+b_{j}(0 \leqslant i<j \leqslant k)$ appear in A.

Proof. By the lemria, A possesses a subset of type

$$
\left\{x_{0}\right\}+\left\{0, x_{1}\right\}+\ldots+\left\{\theta, x_{k}\right\}
$$

We take $b_{0}=\frac{1}{2} x_{0}, b_{1}=\frac{1}{2} x_{0}+x_{1}, \ldots, b_{k}=\frac{1}{2} x_{0}+x_{k}$. Since x_{0} is an even integer, $b_{0}, b_{1}, \ldots, b_{k}$ are integers whose sums $b_{i}+b_{j}(0 \leqslant i<j \leqslant k)$ are all in A.

Theorem 2. There exists a positive integer c_{1} such that if $n \geqslant n_{0}\left(c_{1}\right)$ and A denotes a sequence of $n+c_{1}$ positive integers not exceeding $2 n$, then there are $b_{1}, b_{2}, b_{3}, b_{4}$ so that all sums $b_{i}+b_{j}(1 \leqslant i<j \leqslant 4)$ are in A.

Proof. Let c_{1} be a sufficiently large integer. Let t denote the number of even integers in A. Then

$$
c_{1} \leqslant t \leqslant 10^{-2} n
$$

the latter inequality holding in view of the corollary to Lemma A, if n is chosen large enough. By the same corollary, provided c_{1} is chosen large enough, we may assert that there exists an even integer $2 m$ in [20t, $2 n-$ $-20 t]$. Let b_{1} and b_{2} be even integers defined by.

$$
\begin{aligned}
& b_{1}+b_{2}=2 m \\
& b_{2}-b_{1}= \begin{cases}2 & \text { if } m \text { is odd } \\
4 & \text { if } m \text { is even }\end{cases}
\end{aligned}
$$

If a is any integer in $[m-10 t, m+10 t]$ then certainly

$$
\begin{aligned}
& 0<a+b_{1} \leqslant 2 n \\
& 0<a+b_{2} \leqslant 2 n
\end{aligned}
$$

Now there are $5 t$ pairs of odd integers x, y in $[m-10 t, m+10 t]$ such that $x+y=2 m$. For each $i=1,2$, there are at most t odd integers a in [$m-$ $-10 t, m+10 t]$ such that $b_{i}+a$ is not an integer in A. Thus there exist at least $3 t$ pairs of odd integers x, y in $[m-10 t, m+10 t]$ with $x+y=2 m$ and such that $b_{1}+x, b_{2}+x, b_{1}+y, b_{2}+y$ are all in A. Let b_{3}, b_{4} be one such pair.

Then $b_{1}, b_{2}, b_{3}, b_{4}$ are integers such that all the sums $b_{i}+b_{j}(1 \leqslant i<j \leqslant 4)$ are in A.

Theorem 3. There exists an absolute constant $c_{2}>0$ such that if n $\geqslant n_{0}\left(c_{2}\right)$ and A is a sequence of $n+m$ positive integers not exceeding $2 n$, where $m \geqslant c_{2} \log n$, then there are integers $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ such that $b_{i}+b_{j}$ $(1 \leqslant i<j \leqslant 5)$ are all in A. Further, the result no longer holds if c_{2} is replaced by c_{2}^{\prime}, where c_{2}^{\prime} is sufficiently small.

Proof. Let t denote the number of even integers in A. Then, provided n is sufficiently large, we may assume

$$
c_{2} \log n \leqslant t \leqslant 10^{-2} n
$$

the right-hand side inequality holding since otherwise an application of the corollary to Lemma A (with $k=4$) gives the theorem. In view of the corollary again, provided $c_{2}>0$ is sufficiently large, and $n \geqslant n_{0}\left(c_{2}\right)$, there are at least $2 \log _{2} e \log n$ even integers from our sequence A falling into the interval [$40 t, 2 n-40 t$]. Therefore there exists a subinterval [$n_{1}, 2 n_{1}$] containing three even integers $a_{1}^{*}<a_{2}^{*}<a_{3}^{*}$ from A. Let the integers $b_{1}<b_{2}<b_{3}$ be determined by

$$
\begin{aligned}
& b_{1}+b_{2}=a_{1}^{*} \\
& b_{1}+b_{3}=a_{2}^{*} \\
& b_{2}+b_{3}=a_{3}^{*}
\end{aligned}
$$

We thus obtain

$$
\begin{aligned}
& b_{1}=\frac{1}{2}\left(a_{1}^{*}+a_{2}^{*}-a_{3}^{*}\right), \\
& b_{2}=\frac{1}{2}\left(a_{1}^{*}-a_{2}^{*}+a_{3}^{*}\right) \\
& b_{3}=\frac{1}{2}\left(a_{3}^{*}-a_{1}^{*}+a_{2}^{*}\right)
\end{aligned}
$$

It is clear that b_{1}, b_{2}, b_{3} are either all odd or all even. Suppose they are all odd (the case when b_{1}, b_{2}, b_{3} are all even can be treated similarly). There are $10 t$ pairs of even integers $b_{4}<b_{5}$ in $\left[\left(a_{1}^{*} / 2\right)-20 t,\left(a_{1}^{*} / 2\right)+20 t\right]$ such that $b_{4}+b_{5}=a_{1}^{*}$. We note that for any a in $\left[\left(a_{1}^{*} / 2\right)-20 t,\left(a_{1}^{*} / 2\right)+20 t\right]$, $a+b_{i} \leqslant 2 n(i=1,2,3)$. We choose a pair $b_{4}<b_{5}$ such that $b_{4}+b_{1}, b_{4}+b_{2}$, $b_{4}+b_{3}, b_{5}+b_{1}, b_{5}+b_{2}, b_{5}+b_{3}$, are all in A. This is possible since for each $i=1,2,3$ there are at most t even integers a in [($\left.a_{1}^{*} / 2\right)-20 t$, $\left.\left(a_{1}^{*} / 2\right)+20 t\right]$ such that $b_{i}+a$ is not in A. This proves the main part of the theorem.

Finally, if A consists of all the odd integers and the integers $2,2^{2}$, $2^{3}, \ldots$, in $[1,2 n]$ then one cannot choose b_{1}, \ldots, b_{5} such that $b_{i}+b_{j}(1$ $\leqslant i<j \leqslant 5$) are all in A. This completes the proof of Theorem 3.

Theorem 4. There exists $c_{3}>0$ such that if $n \geqslant n_{0}\left(c_{3}\right)$, and A is a sequence of $n+m$ positive integers not exceeding $2 n$, where $m \geqslant c_{3} n^{1 / 2}$, then one can find six integers b_{1}, \ldots, b_{6} whose sums $b_{i}+b_{j}(1 \leqslant i<j \leqslant 6)$ are
all in A. Further, the results becomes false if c_{3} is replaced by a sufficiently small constant c_{3}^{\prime}.

Proof. Let t denote the number of even integers in A. Then we can assume, in view of the corollary to Lemma A, that

$$
c_{3} n^{1 / 2} \leqslant t \leqslant 10^{-2} n
$$

and that there are at least $\frac{1}{2} t \geqslant 12 n^{1 / 2}$ even integers of A falling into the interval [$40 t, 2 n-40 t$]. Thus, if c_{3} is sufficiently large, there exists a subinterval $\left[n_{1}, 2 n_{1}\right]$ containing at least $3 n_{1}^{1 / 2}$ even integers of A. Since the sum of any two integers in $\left[n_{1}, 2 n_{1}\right]$ lies between $2 n_{1}$ and $4 n_{1}$, there exist even integers $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}$ of A such that

$$
z_{1}+z_{2}=z_{3}+z_{4}=z_{5}+z_{6}
$$

and

$$
n_{1} \leqslant z_{5}<z_{3}<z_{1}<z_{2}<z_{4}<z_{6} \leqslant 2 n_{1} .
$$

We determine integers $b_{1}, b_{2}, b_{3}, b_{4}$ such that

$$
\begin{aligned}
& b_{1}+b_{2}=z_{1}, \\
& b_{3}+b_{4}=z_{2}, \\
& b_{1}+b_{3}=z_{3}, \\
& b_{1}+b_{4}=z_{5}
\end{aligned}
$$

and thus also

$$
\begin{aligned}
& b_{2}+b_{4}=z_{4} \\
& b_{2}+b_{3}=z_{6}
\end{aligned}
$$

It is clear that $b_{1}<b_{4}<b_{3}<b_{2}$ and that they are all odd or all even. Solving for $b_{1}, b_{2}, b_{3}, b_{4}$ gives

$$
\begin{aligned}
& b_{1} \neq \frac{1}{2}\left(z_{5}-z_{3}\right) \\
& b_{2}=\frac{1}{2}\left(2 z_{1}-z_{5}+z_{2}-z_{3}\right), \\
& b_{3}=\frac{1}{2}\left(z_{2}+z_{3}-z_{5}\right), \\
& b_{4}=\frac{1}{2}\left(z_{2}-z_{3}+z_{5}\right) .
\end{aligned}
$$

Since clearly $b_{1}>0$ we have $b_{2}>0, b_{3}>0, b_{4}>0$ as well.
If b_{1}, \ldots, b_{4} are all odd (even) then we determine even (odd) integers b_{5}, b_{6} in $\left[\frac{1}{2} z_{5}-20 t, \frac{1}{2} z_{5}+20 t\right]$ such that

$$
b_{5}+b_{6}=z_{5}
$$

and such that $b_{i}+b_{5}(i=1,2,3,4)$ and $b_{i}+b_{6}(i=1,2,3,4)$ are all in A. This is possible since for each $i=1,2,3,4$ there exist at most t even
(odd) integers a in $\left[\frac{1}{2} z_{5}-20 t, \frac{1}{2} z_{5} \div 20 t\right]$ such that $b_{i}+a$ does not belong to A; but there are initially $10 t$ possible choices for b_{5}, b_{6} such that $b_{5}+b_{6}$ $=z_{5}$.

To prove the last part of the theorem we let A consist of all the odd integers $\leqslant 2 n$ and $c_{3}^{\prime} n^{1 / 2}$ even integers $\equiv 2(4)$ so that the sums taken two at a time of these even integers are distinct. Suppose in fact there exist b_{1}, \ldots, b_{6} such that $b_{i}+b_{j}(1 \leqslant i<j \leqslant 6)$ are all in A. We shall deduce a contradiction. Clearly at most two of the integers b_{i} can be even for otherwise we have a sum $\equiv 0(4)$. Thus there are four odd b_{i}, say b_{1}, b_{2}, b_{3}, b_{4}. The sums $b_{1}+b_{2}, b_{3}+b_{4}, b_{1}+b_{3}, b_{2}+b_{4}$ are in A. But then

$$
\left(b_{1}+b_{2}\right)+\left(b_{3}+b_{4}\right)=\left(b_{1} \div b_{3}\right)+\left(b_{2}+b_{4}\right)
$$

violating our choice of the even numbers in A.
We summarize the results contained in Theorems $1-4$ as follows. We first recall the definition of t_{k} in the opening paragraph of this section. For large n, Theorems $1-4$ reveal that the order of magnitude of $t_{k}(k$ $=3,4,5,6)$ is known. More precisely

$$
\begin{gathered}
t_{3}=2, \quad 2<t_{4} \leqslant c_{1} \\
c_{2}^{\prime} \log n \leqslant t_{5} \leqslant c_{2} \log n, \quad c_{3}^{\prime} n^{1 / 2} \leqslant t_{6} \leqslant c_{3} n^{1 / 2}
\end{gathered}
$$

where $c_{1}, c_{2}, c_{2}^{\prime}, c_{3}, c_{3}^{\prime}, c_{4}, c_{4}^{\prime}$ are positive absolute constants. It might be of interest to determine these constants precisely. For $k \geqslant 7$, the order of magnitude of t_{k} is not known, but Theorems 5 and 6 below give some indication of the possible rate of growth of t_{k}. We mention that a slightly more precise form of Theorem 5 below is possible; but as there is no indication that Theorem $\overline{5}$ is anywhere near the best possible we shall not aim at precision here.

THEOREM 5. Let k be a positive integer and $n \geqslant n_{0}(k)$, and suppose A is a sequence of $n+t$ positive integers not exceeding $2 n$, where $t \geqslant 2^{k} n^{1-2^{-k}}$. Then there exist integers b_{0}, \ldots, b_{k} all whose sums $b_{i}+b_{j}(0 \leqslant i<j \leqslant k)$ are in A.

Proof. Since there are at least $2^{k} n^{1-2^{-k}}$ even integers in A, the theorem follows from the corollary of Lemma A.

Corollary. If A is a sequence of $n+t$ positive integers not exceeding $2 n$, where $t \geqslant \delta n$, and $n \geqslant n_{0}(\delta)$, then we can find integers b_{1}, \ldots, b_{k} where $k \ll \log \log n$, with the implied constant depending on δ, such that all sums $b_{i}+b_{j}(1 \leqslant i<j \leqslant k)$ are in A.

Proof. By Theorem 5 we can always choose b_{1}, \ldots, b_{k} if

$$
n^{-2^{-k}} 2^{k} \leqslant \delta
$$

which is valid if $k \ll \log \log n$.

Before stating our next theorem, we prove a result concerning the frequency of occurrence of sequences with few distinct sums (taken two at a time).

Lempa B. Suppose α_{1} is given. Then there exist $k_{1}=k_{1}\left(\alpha_{1}\right)$ and α_{2} depending only on a_{1}, such that, if $k \geqslant k_{1}$ and $n \geqslant n_{1}\left(k, a_{1}\right)$, the number of choices of sequences A

$$
a_{1}<\ldots<a_{k} \leqslant n
$$

each with $\leqslant \alpha_{1} k$ distinct sums (taken two at a time), does not exceed $n^{\alpha_{2}}$.
We deduce the lemma from the following theorem of Freiman (see [2], p. 134) reworded to suit our present purposes.

Theorem A. Suppose the sequence A

$$
a_{1}<\ldots<a_{k}
$$

is such that there are at most ck distinct sums $a_{i}+a_{j}(1 \leqslant i<j \leqslant k)$, then there exist k^{*}, c^{*} depending only on c, and an integer $m \leqslant c-1$, such that, if $k \geqslant k^{*}$, there are arithmetic progressions $B_{0}, B_{1}, \ldots, B_{m}$ each of length at most $c^{*} k$ such that A is contained in the set S_{m}, where the sets $S_{i}(i=0,1$, \ldots, m) are defined inductively by

$$
\begin{align*}
& S_{0}=B_{0} \\
& S_{i}=\bigcup_{b_{i} \in B_{i}}\left(S_{i-1} \div b_{i}\right), i \geqslant 1 . \tag{2}
\end{align*}
$$

Proof of Lemma B. We apply Theorem A with $e=a_{1}$. Then we have $k_{1}=k^{*}$ such that if $k \geqslant k_{1}$, the sequence A is contained in S_{m}, with S_{m} defined by (2). The number of choices for $B_{i}(i=0, \ldots, m)$ is at most n^{2}. Thus the total number of choices for S_{m} is $\leqslant n^{2 \alpha_{1}}$. Now the number of choices of A corresponding to each choice of S_{m} is $\leqslant\left(e^{*} k\right)^{a_{1} k}$. Therefore, the total number of choices of A is

$$
\leqslant n^{2 a_{1}}\left(e^{*} k\right)^{a_{1} k} \leqslant n^{a_{2}},
$$

where α_{2} depends only on α_{1} if we choose $n \geqslant n_{1}\left(k, a_{1}\right)$.
Theorem 6. Suppose $0<\varepsilon<1$ is given. Then there exist $k_{0}(\varepsilon)$ and $n_{0}\left(k_{0}\right)$ such that if $n \geqslant n_{0}$, there exists a sequence A of $n+t$ positive integers consisting of all the odd integers $\leqslant 2 n$ and t positive even integers $\leqslant 2 n$, where $t=\left[n^{1-\varepsilon}\right]$, such that there are at most $k_{0}(\varepsilon)-1$ integers

$$
b_{1}, \ldots, b_{k_{0}(t)-1}
$$

all whose sums $b_{i}+b_{j}\left(1 \leqslant i<j \leqslant k_{0}(\varepsilon)-1\right)$ are in A.
Proof. Let $\alpha=[2 / \varepsilon]+1$. We apply Lemma B with $a_{1}=a^{2}$. Let $k_{0}=2 \alpha_{2} \alpha k_{1}$, where k_{1} and α_{2} are the numbers in Lemma B corresponding to $a_{1}=\alpha^{2}$. Finally let $n_{0}=n_{0}\left(k_{0}, \alpha_{1}\right)$ be the choice of n_{1} in Lemma B
corresponding to $k=k_{0}$. We shall establish the theorem with these choices of k_{0} and n_{0}. Accordingly let $n \geqslant n_{0}$ and we proceed to establish the existence of a sequence A with the desired property.

We determine first the number of choices of sequences B

$$
b_{1}<\ldots<b_{k_{0}} \leqslant n
$$

so that the number of distinct even sums $b_{i}+b_{j}$ is $\leqslant \alpha k_{0}$. We let $B^{*}, B^{* *}$ denote the subsequences of B consisting of respectively the odd and even integers of B. Further we denote by $T\left(B^{*}\right), T\left(B^{* *}\right)$ the number of distinct sums (taken two at a time) formed from the integers of B^{*} and $B^{* *}$ respectively. We have

$$
\begin{aligned}
T\left(B^{*}\right) & <\alpha k_{0} \\
T\left(B^{* *}\right) & <\alpha k_{0}
\end{aligned}
$$

We consider two cases according as both $B^{*}, B^{* *}$ have each $\geqslant a^{-1} k_{0}>k_{1}$ integers or otherwise. Take the first case and let M_{1} denote the number of choices of B in this case. Then

$$
T\left(B^{*}\right)<\alpha^{2}\left|B^{*}\right|=\alpha_{1}\left|B^{*}\right|
$$

and similarly

$$
T\left(B^{* *}\right)<\alpha_{1}\left|B^{* *}\right|
$$

Since $\left|B^{*}\right|>k_{1}$ and $\left|B^{* *}\right|>k_{1}$ we may apply Lemma B to B^{*} and $B^{* *}$ to conclude that

$$
M_{1} \leqslant n^{2 a_{2}}
$$

We next consider the second case. Let M_{2} denote the number of choices of B in this case. One of the sets $B^{*}, B^{* *}$ has $\leqslant \alpha^{-1} k_{0}$ integers and thus the number of choices for this set is $\leqslant n^{k_{0} / a}$. The number of choices for the other set is $\leqslant n^{\alpha_{2}}$, by an application of Lemma B. Thus

$$
M_{2} \leqslant 2 n^{k_{0} a^{-1}+a_{2}}
$$

Thus the number of choices of B each with $\leqslant \alpha k_{0}$ distinct even sums is

$$
M_{1}+M_{2} \leqslant n^{2 \alpha_{2}}+2 n^{k_{0^{\alpha}}-1}+a_{2} \leqslant n^{\frac{3}{2} a^{-1} k_{0}},
$$

since $k_{0}=2 \alpha_{2} \alpha k_{1}$.
Each such sequence B determines at least $k_{0}-3$ even sums, so corresponding to a given B, there exist $\leqslant\binom{ n-k_{0}-3}{t-k_{0}-3}$ choices of A containing these sums. Let N_{1} denote the number of choices of A corresponding to these B. Then

$$
\begin{equation*}
N_{1} \leqslant\binom{ n-k_{0}+3}{t-k_{0}+3} n^{\frac{3}{2} a^{-1} k_{k_{0}}} \tag{3}
\end{equation*}
$$

We now consider sequences B having each at least αk_{0} distinct even sums. Each such sequence determines at least αk_{0} distinct even sums and thus the number of choices of A containing these even sums is at most $\binom{n-\left[a k_{0}\right]}{t-\left[a k_{0}\right]}$. As there are $\leqslant\binom{ n}{k_{0}}$ choices for such B, the number N_{2} of choices of A corresponding to all such B satisfies

$$
\begin{equation*}
N_{2} \leqslant\binom{ n-\left[\alpha k_{0}\right]}{t-\left[\alpha k_{0}\right]}\binom{n}{k_{0}} . \tag{4}
\end{equation*}
$$

Since the total number of possible choices of A is $\binom{n}{t}$ we have our theorem if we can prove

$$
\binom{n}{t}>N_{1}+N_{2} .
$$

We shall estabilish this by showing that

$$
N_{1}<\frac{1}{2}\binom{n}{t}, \quad N_{2}<\frac{1}{2}\binom{n}{t} .
$$

We have

$$
\binom{n}{t} /\binom{n-k_{0}+3}{t-k_{0}+3} \geqslant n^{e k_{0}+O(1)} \geqslant 2 n^{\frac{3}{2} a^{-1} k_{0}}
$$

on recalling $a=[2 / \varepsilon]+1$ and $t=\left[n^{1-\varepsilon}\right]$. The above inequality implies $N_{1}<\frac{1}{2}\binom{n}{t}$ in view of (3).

Next

$$
\binom{n}{t}\binom{n-\left[\alpha k_{0}\right]}{t-\left[a k_{0}\right]} \geqslant n^{e a k_{0}+O(1)} \geqslant 2\binom{n}{k_{0}}
$$

on using $a=[2 / \varepsilon]+1$ and $t=\left[n^{1-\varepsilon}\right]$. We have $N_{2}<\frac{1}{2}\binom{n}{t}$ in view of (4). This completes the proof of Theorem 6.
2. In this section we consider the question of estimating the number of integers that can be chosen from a given sequence so that all sums, taken two at a time, should appear in the sequence. We shall prove three theorems (Theorem 7, 8, and 9) of which the last depends on the following theorem which has just been established by Szemerédi.

Theorem B. For any given integer $k \geqslant 2$ let $r_{k}(n)$ denote the largest number of integers that can be chosen from $1,2, \ldots, n$ with no k terms in arithmetic progression. Then $n^{-1} r_{k}(n) \rightarrow 0$ as $n \rightarrow \infty$.

We further remark that Theorem 7 would also follow from Szemerédi's result though we give a proof which uses only a theorem of Varnavides.

Theorem 7. For any given $\varepsilon>0$ and any integer $k>1$, there exists $n_{0}(\varepsilon, k)$ so that if $n \geqslant n_{0}$ and A is a sequence of t integers not excedding n, where $t \geqslant\left(\frac{2}{3}+\varepsilon\right) n$, then we can find k integers

$$
a_{1}, a_{2}, \ldots, a_{k}
$$

in A whose sums $a_{i}+a_{j}(1 \leqslant i<j \leqslant k)$ are all in A.
Proof. Since $t \geqslant\left(\frac{2}{3}+\varepsilon\right) n$ there exist s integers, where $s \geqslant \varepsilon_{1} n$, in the sequence A, say a_{1}, \ldots, a_{s} such that $2 a_{1}, 2 a_{2}, \ldots, 2 a_{s}$ are also in A. By a theorem of Varnavides (see [4]) there are $\varepsilon_{\varepsilon_{1}} n^{2}$ triples $a_{r_{1}}, a_{r_{2}}, a_{r_{3}}$ which form an arithmetic progression. Thus there is an integer, say $a_{i_{1}}$, for which there are $\geqslant \varepsilon_{2} n$ integers $a_{i_{j}}$'s so that

$$
\frac{1}{2}\left(a_{i_{1}}+a_{i_{j}}\right)=a_{i_{l}}
$$

but then $a_{i_{1}}+a_{i_{j}}=2 a_{i_{l}}$ is also in A. Now repeat the same argument with these $\varepsilon_{2} n a_{i_{j}}$'s, and so on. In this way one can find integers $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ in A such that $a_{i_{u}}+a_{i_{v}}(1 \leqslant u \leqslant v<k)$ are all in A.

The following theorem is a refinement of Theorem 7.
Theorem 8. Suppose k is given. Then there exists $\varepsilon_{k}>0$ such that if $n \geqslant n_{0}\left(\varepsilon_{k}, k\right)$ and A is a sequence of t integers not exceeding n, where $t \geqslant\left(\frac{2}{3}-\varepsilon_{k}\right) n$, then one can find k indegers in A

$$
a_{1}, a_{2}, \ldots, a_{k}
$$

whose sums $a_{i}+a_{j}(1 \leqslant i<j \leqslant k)$ are all in A.
Proof. Let $\varepsilon_{k}>0$ be a sufficiently small number. In view of Theorem 7, we may assume there are at most $\varepsilon_{k} n$ integers a in A such that $2 a$ is also in A. Thus there exists a subset B of A with at least $\left(\frac{2}{3}-2 \varepsilon_{k}\right) n$ integers and with the property that whenever a belongs to B then $2 a$ does not belong to B. This property is crucial in our proof and we refer to it as property P.

For $j=1, \ldots, k$, let

$$
\begin{gathered}
I_{j}=\left(n 2^{-j}, n 2^{-j+2}\right], \quad I_{j}^{*}=\left(n 2^{-j-1}, n 2^{-j}\right] \\
B_{j}=B \cap I_{j}, \quad B_{j}^{*}=B \cap I_{j}^{*}
\end{gathered}
$$

As property P implies that .

$$
\left|B_{j}\right|+\left|B_{j}^{*}\right| \leqslant 2^{-j} n \quad(j=1,2, \ldots, k)
$$

and as

$$
|B|>\left(\frac{2}{3}-2 \varepsilon_{k}\right) n,
$$

we conclude that

$$
\begin{equation*}
\left|B_{j}\right|+\left|B_{j}^{*}\right| \geqslant\left(2^{-j}-2 \varepsilon_{k}\right) n \tag{5}
\end{equation*}
$$

Further, by repeated application of property \mathbf{P} and using (5), we may assert that for each $j=k, k-1, \ldots, 1$, and $i=0,1, \ldots, k-j, B_{j}$ contains all but at most $2(i+1) \varepsilon_{k} n$ integers of type $4^{i} x$ (where x is odd) in I_{j}. By now choosing ε_{k} small enough, we can find an integer b_{1} of type x_{1} in B_{k}, an integer b_{2} of type $4 x_{2}$ in B_{k-1}, \ldots, and an integer b_{k} of type $4^{k-1} x_{k}$ in B_{1}, where x_{1}, \ldots, x_{k} are all odd, such that $b_{i}+b_{j}(1 \leqslant i<j \leqslant k)$ are all in B and thus in A. This completes the proof.

Theorem 9. For any integer $r \geqslant 2$, and any integer k, there exist $\delta_{r}>0$ and $n_{0}\left(\delta_{r}, k\right)$ such that if $n \geqslant n_{0}\left(\delta_{r}, k\right)$ and A is a sequence of t positive integers not exceeding n, where $t \geqslant\left(1-\delta_{r}\right) n$, then there exists a subsequence

$$
a_{1}<\ldots<a_{k}
$$

such that all sums of the form

$$
\sum_{j=1}^{k} \varepsilon_{j} a_{j} \quad\left(\varepsilon_{j}=0,1 ; 1 \leqslant \sum_{j=1}^{k} \varepsilon_{j} \leqslant r\right)
$$

are in A.
Proof. We choose $\delta_{r}=1 /\left(2 r^{2}\right)$ and suppose $n \geqslant n_{0}\left(\delta_{r}, k\right)$. Then there exist $s \geqslant n /\left(2 r^{2}\right)$ and a subsequence of A

$$
a_{1}<\ldots<a_{s}
$$

in $\left[(r-1) r^{-2} n, r^{-1} n\right]$ such that $2 a_{j}, 3 a_{j}, \ldots, r a_{j}(j=1,2, \ldots, s)$ are all in A. By Theorem B, we can find an arithmetic progression

$$
a, a+b, \ldots, a+v!(k-1)^{2} b
$$

within a_{1}, \ldots, a_{s}. Now we take

$$
b_{1}=a, \quad b_{2}=a+r!b, \quad \ldots, \quad b_{k}=a+r!(k-1) b .
$$

Clearly $\sum_{i=1}^{k} \varepsilon_{i} b_{i}$, subject to $1 \leqslant \sum_{i=1}^{k} \varepsilon_{i} \leqslant r$, are all in A. This completes the proof of the theorem.
3. In this section we consider some aspects of the multiplicative analogue of the additive problems in $\S 1$ and 2 . Theorems $10-12$ below represent the type of results that can be established by probabilistic arguments.

Theorem 10. Suppose c_{4} is any positive integer and $n \geqslant n_{0}\left(c_{4}\right)$. Then there exists a sequence A of k positive integers not exceeding n, where $k \geqslant n\left(1-e^{-c_{q} \log n / \log \log n}\right)$ such that for any s, where s is an integer or the reciprocal of one, there.exist at most $t \leqslant e^{c_{5} \log n \log ^{\prime} \log n}$ integers

$$
b_{1}<\ldots<b_{t}
$$

where c_{5} depends only on c_{4}, such that all products $s^{-1} b_{i} b_{j}(1 \leqslant i<j \leqslant t)$ are in A.

Proof. Let $t=\left[e^{c_{5} \log n \log \log n}\right]+1$, where c_{5} is a sufficiently larg constant depending on c_{4}. Let $k=n-\left[n m^{-1}\right]$, where $m=e^{\varepsilon_{4} \log n / \log \log n}$ Suppose B is a sequence of t integers

$$
\begin{equation*}
b_{1}<\ldots<b_{t} . \tag{6}
\end{equation*}
$$

We first estimate the number of sequences A

$$
a_{1}<\ldots<a_{k} \leqslant n
$$

which contain all products $b_{i} b_{j} s^{-1}(1 \leqslant i<j \leqslant t)$ for a given s, where s is an integer or the reciprocal of one.

Since $d(l)<2^{(1+\varepsilon) \log l / \log \log l}$ for $l \geqslant l_{1}(\varepsilon)$, where $d(l)$ denotes the divisor function, the number of distinct products $b_{i} b_{j}$ determined by (6) is

$$
\geqslant 2^{-1} t(t-1) 2^{-(1+\varepsilon) \log n / \log \log n}+O_{\varepsilon}(1) \geqslant t^{3 / 2},
$$

if c_{5} is chosen large enough. Thus, if A contains all $\delta^{-1} b_{i} b_{j}$ for a fixed s, at least $h=\left[t^{3 / 2}\right]$ of its integers are fixed by B and thus the number of choices of A is at most

$$
\binom{n-h}{k-h} .
$$

Hence, on allowing s to vary, the number of possible choices of A corresponding to a given B is at most

$$
n^{2}\binom{n-h}{k-h}
$$

The number of choices of B is $\binom{n}{t}$. Since the number of choices of \boldsymbol{A} (without restriction) is $\binom{n}{k}$, the theorem would follow if we can prove

$$
\begin{equation*}
\binom{n}{k} \geqslant\binom{ n}{t} n^{2}\binom{n-h}{k-h} . \tag{7}
\end{equation*}
$$

We have

$$
\binom{n}{k} /\binom{n-h}{k-h}=\frac{n \ldots(n-h+1)}{k \ldots(k-h+1)} .
$$

For each $i=0, \ldots, h-1$,

$$
(n-i)(k-i)^{-1} \geqslant(n-h)\left(n-2 n m^{-1}\right)^{-1} \geqslant 1+m^{-1} .
$$

Therefore,

$$
\binom{n}{k} /\binom{n-h}{k-h} \geqslant\left(1+m^{-1}\right)^{h} \geqslant e^{h /(2 m)} \geqslant e^{t / / 3}
$$

since $h=\left[t^{3 / 2}\right]$ and $m=e^{c_{4} \log n j \log \log n} \leqslant t^{c_{4} / c_{5}}$. But $\binom{n}{t} n^{2} \leqslant n^{2} n^{t} \leqslant e^{4 / 3}$. Thus we have (7) as required.

The following lemma, whose proof is somewhat involved (see [4]) enables us to strengthen Theorem 10.

Lemma C. Suppose k is any positive integer, and $t \geqslant\left(\log _{2} n\right)^{k}$, where $\log _{2} n$ denotes the logarithmic function to the base 2. Then for any sequence

$$
a_{1}<\ldots<a_{t} \leqslant n
$$

of t positive integers, there are at least $c k^{2} t$ distinct products $a_{i} a_{j}(1 \leqslant i<j \leqslant t)$ where c is a positive absolute constant.

Using the above lemma, we obtain the following
Theorem 11. Suppose $0<\alpha<1$, and $n \geqslant n_{0}(\alpha)$. Then there exists a sequence of k positive integers not exceeding n, where $k \geqslant a n$, such that for any s, where s is an integer or the reciprocal of one, there exist at most $t=\left[e^{c_{6}(\log n)^{1 / 2} \log \log n}\right]=\left[(\log n)^{c_{6}(\log n)^{1 / 2}}\right]$ integers

$$
b_{1}<\ldots<b_{t}
$$

where c_{6} depends only on α, such that all products $s^{-1} b_{i} b_{j}(1 \leqslant i<j \leqslant t)$ are in A.

Proof. Arguing as in proof of Theorem 10 and using Lemma C instead of $d(l)<2^{(1+\varepsilon) \log l / \log \log l}$, we need only prove that

$$
\binom{n}{[\alpha n]} /\binom{n-\left[c_{7}(\log n) t\right]}{[\alpha n]-\left[c_{7}(\log n) t\right]} \geqslant n^{2}\binom{n}{t} .
$$

We note that the left hand side is $\geqslant e^{\left(\log a^{-1}\right) c_{8}(\log n) t}$ which is greater than $n^{2}\binom{n}{t}$, if c_{6} and hence also c_{8} is large enough in terms of α.

It seems quite plausible that the following conjecture is true:
Suppose $a_{1}<\ldots<a_{t} \leqslant n, t \geqslant\left(\log _{2} n\right)^{k}$. Then there are $(1+c)^{k} t$ distinct products $a_{i} a_{j}(1 \leqslant i<j \leqslant t)$, where c is some positive absolute constant.

The above conjecture, if true, would imply the following
Theorem 12. Suppose $0<\alpha<1$ and $n \geqslant n_{0}(\alpha)$. Then there exists a sequence A of k positive integers not exceeding n, where $k \geqslant \alpha n$, such that for any s, where s is an integer or the reciprocal of one, there exist at most $t=\left[e^{c_{9}(\log \log n)^{2}}\right]$ integers

$$
b_{1}<\ldots<b_{t}
$$

where c_{9} depends only on α, such that $b_{i} b_{j} s^{-1}(1 \leqslant i<j \leqslant t)$ are all in A.
The proof, which we omit, is an adaptation of the probabilistic argument used in the proof of Theorem 10. The theorems in this paragraph can undoubtedly be sharpened considerably. We hope to return to these questions at another occasion.

4 - Acta Arithmetica XXVII.

