Some additive and multiplicative problems in number theory

by

S. L. G. CHOI (Vancouver, B. C.), P. ERDÖS and E. SZEMERÉDI (Budapest)

Introduction. In this paper we consider various additive and multiplicative problems concerning sets of integers. The major aim of our investigation is in exhibiting the relationship between the number of elements in a given set of positive integers not exceeding n and the number of integers that can always be chosen (with or without the restriction that these should lie in the given set) so that their sums (or products), taken two at a time, should all lie in the given set. We shall only once consider the analogous question relating to sums formed with a variable number of summands.

Notation. The letters c_1, c_2, \ldots denote positive absolute constants, unless otherwise indicated. A sum or product in this paper will mean, unless otherwise indicated, one formed with distinct integers. A sequence will always mean a strictly increasing sequence of positive integers.

1. Let A denote a set of n + t integers not exceeding 2n. It is clear that if t = 1 then in general one cannot choose three integers from 1, 2, ..., 2nwhose sums, taken two at a time, all appear in A; for instance we may let A consist of 2 and all the odd integers not exceeding 2n. It turns out, however (as Theorems 1-4 below show), that corresponding to t = 2, $c_1, c_2 \log n, c_3 n^{1/2}$ respectively, we can always choose three, four, five, or six integers respectively so that in each case all sums, taken two at a time, will appear in the given sequence A; further, these results are essentially best possible. Theorems 5 and 6 below give us some idea of the rate of growth of the smallest integer t_k ($k \ge 3$) such that for any sequence of $n + t_k$ integers not exceeding 2n, we can always choose k integers all whose sums, taken two at a time, appear in the sequence.

THEOREM 1. Suppose $n \ge 4$ and let A denote a sequence of n+2 positive integers not exceeding 2n. Then there are integers b_1, b_2, b_3 such that $b_i + b_j$ $(1 \le i < j \le 3)$ are all in A.

Proof. We assume the theorem false and proceed to deduce a contradiction. Accordingly, suppose there exists $n \ge 4$ and a sequence A of n+2 integers not exceeding 2n such that one can never choose b_1, b_2, b_3 with b_i+b_j $(1 \le i < j \le 3)$ in A.

Let 2m+1 be the smallest odd integer ≥ 3 in A. Then $3 \leq 2m+1 < 2n$. Since the sum of m+1 and m is 2m+1, for each integer $j = m+2, \ldots, 2n - (m+1)$, at most one of the sums m+j, m+1+j belongs to A. In other words, no two consecutive integers from $2m+2, \ldots, 2n$ can belong to A. In view of the choice of 2m+1, there are at most m+1 integers (i.e. consisting of 1 and the even integers) from $1, 2, \ldots, 2m$ belong to A, which implies that at least n-m of the integers $2m+2, \ldots, 2n$ belong to A. As we have already shown that no two consecutive integers from $2m+2, \ldots, 2n$ can belong to A, the last sentence implies that there are precisely n-m integers from $2m+2, \ldots, 2n$ belong to A, the last sentence implies that there are precisely n-m integers from $2m+2, \ldots, 2n$ belong to A. Consequently all the even integers from $1, 2, \ldots$. 2n belong to A and these include the numbers 4, 6, 8 since $n \geq 4$. But then the number $b_1 = 1$, $b_2 = 3$, $b_3 = 5$ have all sums $b_i + b_j$ $(1 \leq i < j \leq 3)$ belonging to A. This gives the desired contradiction.

We remark that $n \ge 4$ in the above theorem is best possible since we cannot choose b_1, b_2, b_3 all whose sums $b_i + b_j$ $(1 \le i < j \le 3)$ appear in 1, 2, 3, 4, 6.

The proofs of Theorems 2-4 below depend on the following lemma (cf. [3], Lemma $p(\delta, l)$) and its corollary.

LEMMA A. Suppose B denotes a sequence of positive integers not exceeding 2n

$$y_1 < \ldots < y_t,$$

then, provided $t \ge 2^k n^{1-2^{-k}}$, there exist positive integer x_0 and distinct positive integers x_1, \ldots, x_k such that B contains the subset:

(1) $\{x_0\} + \{0, x_1\} + \ldots + \{0, x_k\}.$

Proof. The proof is by induction on k. Clearly the theorem is true for k = 1 or 2. Let now $k \ge 2$ and assume theorem holds for k. We proceed to prove that the theorem holds also for k+1. Accordingly let B denote a sequence (1) of integers not exceeding 2n, where $t \ge 2^{k+1} n^{1-2^{-(k+1)}}$. Since there are $\frac{1}{2}(t-1)t$ differences $y_i - y_j$ $(1 \le j < i \le t)$ there exists some integer m such that there are $t_1 > \{t(t-1)\}/(8n) > t^2/(16n)$ distinct pairs $y_i^* < y_i^{**}$ $(i = 1, \ldots, t_1)$ such that

$$y_i^{**} - y_i^* = m$$
 $(i = 1, 2, ..., t_1).$

It is clear that y_i^* $(i = 1, ..., t_1)$ are distinct and

$$t_1 \ge 2^{2k+2} n^{2-2^{-k}} (16n)^{-1} \ge 2^k n^{1-2^{-k}}.$$

But then by the induction hypothesis there exists a subset of form

$$\{x_0\} + \ldots + \{0, x_k\}$$

in the set $\{y_i^*; i = 1, ..., t_1\}$. Since for each $y_i^*, y_i^* + m = y_i^{**}$ is also in *B* we conclude, by taking $x_{k+1} = m$, that the set

$$\{x_0\} + \{0, x_1\} + \ldots + \{0, x_{k+1}\}$$

is also a subset of B.

As a consequence of Lemma A, we prove the following

COROLLARY. Suppose $n \ge n_0(k)$ and let A denote a sequence of t even integers not exceeding 2n, where $t \ge 2^k n^{1-2^{-k}}$. Then there exist integers b_0, \ldots \ldots, b_k such that all $b_i + b_j$ $(0 \le i < j \le k)$ appear in A.

Proof. By the lemma, A possesses a subset of type

$$\{x_0\} + \{0, x_1\} + \ldots + \{0, x_k\}.$$

We take $b_0 = \frac{1}{2}x_0$, $b_1 = \frac{1}{2}x_0 + x_1$, ..., $b_k = \frac{1}{2}x_0 + x_k$. Since x_0 is an even integer, b_0, b_1, \ldots, b_k are integers whose sums $b_i + b_j$ $(0 \le i < j \le k)$ are all in A.

THEOREM 2. There exists a positive integer c_1 such that if $n \ge n_0(c_1)$ and A denotes a sequence of $n + c_1$ positive integers not exceeding 2n, then there are b_1, b_2, b_3, b_4 so that all sums $b_i + b_j$ $(1 \le i < j \le 4)$ are in A.

Proof. Let c_1 be a sufficiently large integer. Let t denote the number of even integers in A. Then

$$c_1 \leqslant t \leqslant 10^{-2} n,$$

the latter inequality holding in view of the corollary to Lemma A, if n is chosen large enough. By the same corollary, provided c_1 is chosen large enough, we may assert that there exists an even integer 2m in [20t, 2n - -20t]. Let b_1 and b_2 be even integers defined by

$$b_1+b_2=2m,$$

 $b_2-b_1=egin{cases} 2 & ext{if } m ext{ is odd,} \\ 4 & ext{if } m ext{ is even.} \end{cases}$

If a is any integer in [m-10t, m+10t] then certainly

$$0 < a + b_1 \leq 2n,$$

$$0 < a + b_2 \leq 2n.$$

Now there are 5t pairs of odd integers x, y in [m-10t, m+10t] such that x+y = 2m. For each i = 1, 2, there are at most t odd integers a in [m - 10t, m+10t] such that $b_i + a$ is not an integer in A. Thus there exist at least 3t pairs of odd integers x, y in [m-10t, m+10t] with x+y = 2m and such that $b_1+x, b_2+x, b_1+y, b_2+y$ are all in A. Let b_3, b_4 be one such pair.

Then b_1, b_2, b_3, b_4 are integers such that all the sums $b_i + b_j$ $(1 \le i < j \le 4)$ are in A.

THEOREM 3. There exists an absolute constant $c_2 > 0$ such that if $n \ge n_0(c_2)$ and A is a sequence of n+m positive integers not exceeding 2n, where $m \ge c_2 \log n$, then there are integers b_1, b_2, b_3, b_4, b_5 such that $b_i + b_j$ $(1 \le i < j \le 5)$ are all in A. Further, the result no longer holds if c_2 is replaced by c'_2 , where c'_2 is sufficiently small.

Proof. Let t denote the number of even integers in A. Then, provided n is sufficiently large, we may assume

$$c_2 \log n \leqslant t \leqslant 10^{-2} n,$$

the right-hand side inequality holding since otherwise an application of the corollary to Lemma A (with k = 4) gives the theorem. In view of the corollary again, provided $c_2 > 0$ is sufficiently large, and $n \ge n_0(c_2)$, there are at least $2\log_2 e \log n$ even integers from our sequence A falling into the interval [40t, 2n-40t]. Therefore there exists a subinterval $[n_1, 2n_1]$ containing three even integers $a_1^* < a_2^* < a_3^*$ from A. Let the integers $b_1 < b_2 < b_3$ be determined by

We thus obtain

 $egin{aligned} b_1 &= rac{1}{2}(a_1^*+a_2^*-a_3^*)\,, \ b_2 &= rac{1}{2}(a_1^*-a_2^*+a_3^*)\,, \ b_3 &= rac{1}{2}(a_3^*-a_1^*+a_2^*)\,. \end{aligned}$

It is clear that b_1 , b_2 , b_3 are either all odd or all even. Suppose they are all odd (the case when b_1 , b_2 , b_3 are all even can be treated similarly). There are 10t pairs of even integers $b_4 < b_5$ in $[(a_1^*/2) - 20t, (a_1^*/2) + 20t]$ such that $b_4 + b_5 = a_1^*$. We note that for any a in $[(a_1^*/2) - 20t, (a_1^*/2) + 20t]$, $a + b_i \leq 2n$ (i = 1, 2, 3). We choose a pair $b_4 < b_5$ such that $b_4 + b_1$, $b_4 + b_2$, $b_4 + b_3$, $b_5 + b_1$, $b_5 + b_2$, $b_5 + b_3$, are all in A. This is possible since for each i = 1, 2, 3 there are at most t even integers a in $[(a_1^*/2) - 20t, (a_1^*/2) - 20t, (a_1^*/2) - 20t, (a_1^*/2) - 20t, (a_1^*/2) - 20t]$, $(a_1^*/2) + 20t$] such that $b_i + a$ is not in A. This proves the main part of the theorem.

Finally, if A consists of all the odd integers and the integers 2, 2², 2³, ..., in [1, 2n] then one cannot choose b_1, \ldots, b_5 such that $b_i + b_j$ (1 $\leq i < j \leq 5$) are all in A. This completes the proof of Theorem 3.

THEOREM 4. There exists $c_3 > 0$ such that if $n \ge n_0(c_3)$, and A is a sequence of n+m positive integers not exceeding 2n, where $m \ge c_3 n^{1/2}$, then one can find six integers b_1, \ldots, b_6 whose sums $b_i + b_j$ $(1 \le i < j \le 6)$ are

all in A. Further, the results becomes false if c_3 is replaced by a sufficiently small constant c'_3 .

Proof. Let t denote the number of even integers in A. Then we can assume, in view of the corollary to Lemma A, that

$$c_3 n^{1/2} \leqslant t \leqslant 10^{-2} n,$$

and that there are at least $\frac{1}{2}t \ge 12n^{1/2}$ even integers of A falling into the interval [40t, 2n - 40t]. Thus, if c_3 is sufficiently large, there exists a sub-interval $[n_1, 2n_1]$ containing at least $3n_1^{1/2}$ even integers of A. Since the sum of any two integers in $[n_1, 2n_1]$ lies between $2n_1$ and $4n_1$, there exist even integers $z_1, z_2, z_3, z_4, z_5, z_6$ of A such that

$$z_1 + z_2 = z_3 + z_4 = z_5 + z_6$$

and

 $n_1 \!\leqslant\! z_5 \!<\! z_3 \!<\! z_1 \!<\! z_2 \!<\! z_4 \!<\! z_6 \!\leqslant\! 2n_1.$

We determine integers b_1, b_2, b_3, b_4 such that

$$b_1 + b_2 = z_1,$$

 $b_3 + b_4 = z_2,$
 $b_1 + b_3 = z_3,$
 $b_1 + b_4 = z_5$

and thus also

\$

$$b_2 + b_4 = z_4,$$

 $b_2 + b_3 = z_6.$

It is clear that $b_1 < b_4 < b_3 < b_2$ and that they are all odd or all even. Solving for b_1, b_2, b_3, b_4 gives

$$b_{1} = \frac{1}{2}(z_{5}-z_{3}),$$

$$b_{2} = \frac{1}{2}(2z_{1}-z_{5}+z_{2}-z_{3}),$$

$$b_{3} = \frac{1}{2}(z_{2}+z_{3}-z_{5}),$$

$$b_{4} = \frac{1}{2}(z_{2}-z_{3}+z_{5}).$$

Since clearly $b_1 > 0$ we have $b_2 > 0$, $b_3 > 0$, $b_4 > 0$ as well.

If b_1, \ldots, b_4 are all odd (even) then we determine even (odd) integers b_5, b_6 in $[\frac{1}{2}z_5-20t, \frac{1}{2}z_5+20t]$ such that

$$b_5 + b_6 = z_5$$

and such that $b_i + b_5$ (i = 1, 2, 3, 4) and $b_i + b_6$ (i = 1, 2, 3, 4) are all in A. This is possible since for each i = 1, 2, 3, 4 there exist at most t even

(odd) integers a in $[\frac{1}{2}z_5-20t, \frac{1}{2}z_5+20t]$ such that b_i+a does not belong to A; but there are initially 10t possible choices for b_5 , b_6 such that $b_5+b_6 = z_5$.

To prove the last part of the theorem we let A consist of all the odd integers $\leq 2n$ and $c'_{3}n^{1/2}$ even integers $\equiv 2(4)$ so that the sums taken two at a time of these even integers are distinct. Suppose in fact there exist b_1, \ldots, b_6 such that $b_i + b_j$ $(1 \leq i < j \leq 6)$ are all in A. We shall deduce a contradiction. Clearly at most two of the integers b_i can be even for otherwise we have a sum $\equiv 0$ (4). Thus there are four odd b_i , say b_1, b_2 , b_3, b_4 . The sums $b_1 + b_2, b_3 + b_4, b_1 + b_3, b_2 + b_4$ are in A. But then

$$(b_1+b_2)+(b_3+b_4)=(b_1+b_3)+(b_2+b_4),$$

violating our choice of the even numbers in A.

We summarize the results contained in Theorems 1-4 as follows. We first recall the definition of t_k in the opening paragraph of this section. For large *n*, Theorems 1-4 reveal that the order of magnitude of t_k (k = 3, 4, 5, 6) is known. More precisely

$$t_3=2\,, \quad 2 < t_4 \leqslant c_1\,, \ c_2^{\prime} {
m log}\, n \leqslant t_5 \leqslant c_2 {
m log}\, n\,, \quad c_3^{\prime} n^{1/2} \leqslant t_6 \leqslant c_3 n^{1/2}\,,$$

where $c_1, c_2, c'_2, c_3, c'_3, c_4, c'_4$ are positive absolute constants. It might be of interest to determine these constants precisely. For $k \ge 7$, the order of magnitude of t_k is not known, but Theorems 5 and 6 below give some indication of the possible rate of growth of t_k . We mention that a slightly more precise form of Theorem 5 below is possible; but as there is no indication that Theorem 5 is anywhere near the best possible we shall not aim at precision here.

THEOREM 5. Let k be a positive integer and $n \ge n_0(k)$, and suppose A is a sequence of n+t positive integers not exceeding 2n, where $t \ge 2^k n^{1-2^{-k}}$. Then there exist integers b_0, \ldots, b_k all whose sums $b_i + b_j$ $(0 \le i < j \le k)$ are in A.

Proof. Since there are at least $2^k n^{1-2^{-k}}$ even integers in A, the theorem follows from the corollary of Lemma A.

COROLLARY. If A is a sequence of n+t positive integers not exceeding 2n, where $t \ge \delta n$, and $n \ge n_0(\delta)$, then we can find integers b_1, \ldots, b_k where $k \le \log \log n$, with the implied constant depending on δ , such that all sums $b_i + b_j$ $(1 \le i < j \le k)$ are in A.

Proof. By Theorem 5 we can always choose b_1, \ldots, b_k if

$$n^{-2^{-k}}2^k \leqslant \delta$$

which is valid if $k \ll \log \log n$.

Before stating our next theorem, we prove a result concerning the frequency of occurrence of sequences with few distinct sums (taken two at a time).

LEMMA B. Suppose a_1 is given. Then there exist $k_1 = k_1(a_1)$ and a_2 depending only on a_1 , such that, if $k \ge k_1$ and $n \ge n_1(k, a_1)$, the number of choices of sequences A

$$a_1 < \ldots < a_k \leqslant n$$

each with $\leq a_1 k$ distinct sums (taken two at a time), does not exceed n^{a_2} .

We deduce the lemma from the following theorem of Freiman (see [2], p. 134) reworded to suit our present purposes.

THEOREM A. Suppose the sequence A

$$a_1 < \ldots < a_k$$

is such that there are at most ck distinct sums $a_i + a_j$ $(1 \le i < j \le k)$, then there exist k^* , c^* depending only on c, and an integer $m \le c-1$, such that, if $k \ge k^*$, there are arithmetic progressions B_0, B_1, \ldots, B_m each of length at most c^*k such that A is contained in the set S_m , where the sets S_i $(i = 0, 1, \ldots, m)$ are defined inductively by

(2)
$$S_0 = B_0,$$
$$S_i = \bigcup_{b_i \in B_i} (S_{i-1} + b_i), \ i \ge 1.$$

Proof of Lemma B. We apply Theorem A with $c = a_1$. Then we have $k_1 = k^*$ such that if $k \ge k_1$, the sequence A is contained in S_m , with S_m defined by (2). The number of choices for B_i (i = 0, ..., m) is at most n^2 . Thus the total number of choices for S_m is $\le n^{2a_1}$. Now the number of choices of A corresponding to each choice of S_m is $\le (c^*k)^{a_1k}$. Therefore, the total number of choices of A is

$$\leqslant n^{2\alpha_1} (c^* k)^{a_1 k} \leqslant n^{a_2},$$

where a_2 depends only on a_1 if we choose $n \ge n_1(k, a_1)$.

THEOREM 6. Suppose $0 < \varepsilon < 1$ is given. Then there exist $k_0(\varepsilon)$ and $n_0(k_0)$ such that if $n \ge n_0$, there exists a sequence A of n+t positive integers consisting of all the odd integers $\le 2n$ and t positive even integers $\le 2n$, where $t = [n^{1-\varepsilon}]$, such that there are at most $k_0(\varepsilon) - 1$ integers

$$b_1,\ldots,b_{k_0(\epsilon)-1}$$

all whose sums $b_i + b_j$ $(1 \le i < j \le k_0(\varepsilon) - 1)$ are in A.

Proof. Let $a = \lfloor 2/\varepsilon \rfloor + 1$. We apply Lemma B with $a_1 = a^2$. Let $k_0 = 2a_2ak_1$, where k_1 and a_2 are the numbers in Lemma B corresponding to $a_1 = a^2$. Finally let $n_0 = n_0(k_0, a_1)$ be the choice of n_1 in Lemma B

corresponding to $k = k_0$. We shall establish the theorem with these choices of k_0 and n_0 . Accordingly let $n \ge n_0$ and we proceed to establish the existence of a sequence A with the desired property.

We determine first the number of choices of sequences B

$$b_1 < \ldots < b_{k_0} \leqslant n$$

so that the number of distinct even sums $b_i + b_j$ is $\leq ak_0$. We let B^* , B^{**} denote the subsequences of B consisting of respectively the odd and even integers of B. Further we denote by $T(B^*)$, $T(B^{**})$ the number of distinct sums (taken two at a time) formed from the integers of B^* and B^{**} respectively. We have

$$T(B^*) < ak_0,$$

 $T(B^{**}) < ak_0.$

We consider two cases according as both B^* , B^{**} have each $\ge a^{-1}k_0 > k_1$ integers or otherwise. Take the first case and let M_1 denote the number of choices of B in this case. Then

$$T(B^*) < a^2 |B^*| = a_1 |B^*|$$

and similarly

$$T(B^{**}) < a_1 |B^{**}|.$$

Since $|B^*| > k_1$ and $|B^{**}| > k_1$ we may apply Lemma B to B^* and B^{**} to conclude that

 $M_1 \leqslant n^{2a_2}$.

We next consider the second case. Let M_2 denote the number of choices of B in this case. One of the sets B^* , B^{**} has $\leq a^{-1}k_0$ integers and thus the number of choices for this set is $\leq n^{k_0/a}$. The number of choices for the other set is $\leq n^{a_2}$, by an application of Lemma B. Thus

 $M_2 \leqslant 2n^{k_0 a^{-1} + a_2}.$

Thus the number of choices of B each with $\leq ak_0$ distinct even sums is

$$M_1 + M_2 \leqslant n^{2a_2} + 2n^{k_0 a^{-1} + a_2} \leqslant n^{\frac{3}{2}a^{-1}k_0},$$

since $k_0 = 2a_2ak_1$.

Each such sequence B determines at least k_0-3 even sums, so corresponding to a given B, there exist $\leq \binom{n-k_0-3}{t-k_0-3}$ choices of A containing these sums. Let N_1 denote the number of choices of A corresponding to these B. Then

(3)
$$N_1 \leqslant \binom{n-k_0+3}{t-k_0+3} n^{\frac{3}{2}a-1k_0}.$$

Additive and multiplicative problems in number theory

We now consider sequences B having each at least ak_0 distinct even sums. Each such sequence determines at least ak_0 distinct even sums and thus the number of choices of A containing these even sums is at most $\binom{n-[ak_0]}{t-[ak_0]}$. As there are $\leq \binom{n}{k_0}$ choices for such B, the number N_2 of choices of A corresponding to all such B satisfies

(4)
$$N_2 \leqslant \binom{n - [ak_0]}{t - [ak_0]} \binom{n}{k_0}.$$

Since the total number of possible choices of A is $\binom{n}{t}$ we have our theorem if we can prove

$$\binom{n}{t} > N_1 + N_2.$$

We shall estabilish this by showing that

$$N_1 < rac{1}{2} inom{n}{t}, \quad N_2 < rac{1}{2} inom{n}{t}.$$

We have

$$\binom{n}{t} / \binom{n-k_0+3}{t-k_0+3} \ge n^{\epsilon k_0+O(1)} \ge 2n^{\frac{3}{2}\alpha^{-1}k_0}$$

on recalling $a = \lfloor 2/\varepsilon \rfloor + 1$ and $t = \lfloor n^{1-\varepsilon} \rfloor$. The above inequality implies $N_1 < \frac{1}{2} \binom{n}{t}$ in view of (3).

Next

$$\binom{n}{t}\binom{n-\lceil ak_0\rceil}{t-\lceil ak_0\rceil} \geqslant n^{\varepsilon ak_0+O(1)} \geqslant 2\binom{n}{k_0}$$

on using $\alpha = [2/\varepsilon] + 1$ and $t = [n^{1-\varepsilon}]$. We have $N_2 < \frac{1}{2} {n \choose t}$ in view of (4). This completes the proof of Theorem 6.

2. In this section we consider the question of estimating the number of integers that can be chosen from a given sequence so that all sums, taken two at a time, should appear in the sequence. We shall prove three theorems (Theorem 7, 8, and 9) of which the last depends on the following theorem which has just been established by Szemerédi.

THEOREM B. For any given integer $k \ge 2$ let $r_k(n)$ denote the largest number of integers that can be chosen from 1, 2, ..., n with no k terms in arithmetic progression. Then $n^{-1}r_k(n) \rightarrow 0$ as $n \rightarrow \infty$.

We further remark that Theorem 7 would also follow from Szemerédi's result though we give a proof which uses only a theorem of Varnavides.

THEOREM 7. For any given $\varepsilon > 0$ and any integer k > 1, there exists $n_0(\varepsilon, k)$ so that if $n \ge n_0$ and A is a sequence of t integers not excedding n, where $t \ge (\frac{2}{3} + \varepsilon)n$, then we can find k integers

$$a_1, a_2, \ldots, a_k$$

in A whose sums $a_i + a_j$ $(1 \leq i < j \leq k)$ are all in A.

Proof. Since $t \ge (\frac{2}{3} + \varepsilon)n$ there exist *s* integers, where $s \ge \varepsilon_1 n$, in the sequence *A*, say a_1, \ldots, a_s such that $2a_1, 2a_2, \ldots, 2a_s$ are also in *A*. By a theorem of Varnavides (see [4]) there are $c_{\varepsilon_1}n^2$ triples $a_{r_1}, a_{r_2}, a_{r_3}$ which form an arithmetic progression. Thus there is an integer, say a_{i_1} , for which there are $\ge \varepsilon_2 n$ integers a_{i_i} 's so that

$$\frac{1}{2}(a_{i_1} + a_{i_j}) = a_{i_l};$$

but then $a_{i_1} + a_{i_j} = 2a_{i_l}$ is also in A. Now repeat the same argument with these $\varepsilon_2 n \ a_{i_j}$'s, and so on. In this way one can find integers $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ in A such that $a_{i_n} + a_{i_n}$ $(1 \le u \le v < k)$ are all in A.

The following theorem is a refinement of Theorem 7.

THEOREM 8. Suppose k is given. Then there exists $\varepsilon_k > 0$ such that if $n \ge n_0(\varepsilon_k, k)$ and A is a sequence of t integers not exceeding n, where $t \ge (\frac{2}{3} - \varepsilon_k)n$, then one can find k integers in A

$$a_1, a_2, ..., a_k$$

whose sums $a_i + a_j$ $(1 \leqslant i < j \leqslant k)$ are all in A.

Proof. Let $\varepsilon_k > 0$ be a sufficiently small number. In view of Theorem 7, we may assume there are at most $\varepsilon_k n$ integers a in A such that 2a is also in A. Thus there exists a subset B of A with at least $(\frac{2}{3} - 2\varepsilon_k)n$ integers and with the property that whenever a belongs to B then 2a does not belong to B. This property is crucial in our proof and we refer to it as property P.

For j = 1, ..., k, let

$$I_{j} = (n2^{-j}, n2^{-j+2}], \quad I_{j}^{*} = (n2^{-j-1}, n2^{-j}],$$
$$B_{j} = B \cap I_{j}, \quad B_{j}^{*} = B \cap I_{j}^{*}.$$

As property P implies that.

$$|B_j| + |B_j^*| \leq 2^{-j}n \quad (j = 1, 2, ..., k)$$

and as

(5)

$$|B|>(\tfrac{2}{3}-2\varepsilon_k)n,$$

we conclude that

 $|B_j|+|B_j^*|\geqslant (2^{-j}\!-\!2arepsilon_k)n$.

Further, by repeated application of property P and using (5), we may assert that for each $j = k, k-1, \ldots, 1$, and $i = 0, 1, \ldots, k-j, B_i$ contains all but at most $2(i+1)\varepsilon_k n$ integers of type $4^i x$ (where x is odd) in I_i . By now choosing ε_k small enough, we can find an integer b_1 of type x_1 in B_k , an integer b_2 of type $4x_2$ in B_{k-1}, \ldots , and an integer b_k of type $4^{k-1}x_k$ in B_1 , where x_1, \ldots, x_k are all odd, such that $b_i + b_j$ $(1 \le i < j \le k)$ are all in B and thus in A. This completes the proof.

THEOREM 9. For any integer $r \ge 2$, and any integer k, there exist $\delta_r > 0$ and $n_0(\delta_r, k)$ such that if $n \ge n_0(\delta_r, k)$ and A is a sequence of t positive integers not exceeding n, where $t \ge (1 - \delta_r)n$, then there exists a subsequence

 $a_1 < \ldots < a_n$

such that all sums of the form

$$\sum_{j=1}^k arepsilon_j a_j \quad (arepsilon_j = 0\,,\,1\,;\,1 \!\leqslant\! \sum_{j=1}^k arepsilon_j \!\leqslant\! r)$$

are in A.

Proof. We choose $\delta_r = 1/(2r^2)$ and suppose $n \ge n_0(\delta_r, k)$. Then there exist $s \ge n/(2r^2)$ and a subsequence of A

 $a_1 < \ldots < a_n$

in $[(r-1)r^{-2}n, r^{-1}n]$ such that $2a_i, 3a_i, \ldots, ra_i$ $(j = 1, 2, \ldots, s)$ are all in A. By Theorem B, we can find an arithmetic progression

 $a, a+b, \ldots, a+r!(k-1)^2b$

within a_1, \ldots, a_s . Now we take

$$b_1 = a$$
, $b_2 = a + r! b$, ..., $b_k = a + r! (k-1)b$.

Clearly $\sum_{i=1}^{k} \varepsilon_i b_i$, subject to $1 \leq \sum_{i=1}^{k} \varepsilon_i \leq r$, are all in A. This completes

the proof of the theorem.

3. In this section we consider some aspects of the multiplicative analogue of the additive problems in §1 and 2. Theorems 10–12 below represent the type of results that can be established by probabilistic arguments.

THEOREM 10. Suppose c_4 is any positive integer and $n \ge n_0(c_4)$. Then there exists a sequence A of k positive integers not exceeding n, where $k \ge n(1 - e^{-c_4 \log n/\log \log n})$ such that for any s, where s is an integer or the reciprocal of one, there exist at most $t \leqslant e^{c_5 \log n / \log \log n}$ integers

$$b_1 < \ldots < b_t$$

where c_5 depends only on c_4 , such that all products $s^{-1}b_ib_i$ $(1 \le i < j \le t)$ are in A.

Proof. Let $t = [e^{c_5 \log n/\log \log n}] + 1$, where c_5 is a sufficiently larg constant depending on c_4 . Let $k = n - [nm^{-1}]$, where $m = e^{c_4 \log n/\log \log n}$ Suppose B is a sequence of t integers

$$(6) b_1 < \ldots < b_t.$$

We first estimate the number of sequences A

$$a_1 < \ldots < a_k \leqslant n$$

which contain all products $b_i b_j s^{-1}$ $(1 \le i < j \le t)$ for a given s, where s is an integer or the reciprocal of one.

Since $d(l) < 2^{(1+\epsilon)\log l/\log \log l}$ for $l \ge l_1(\epsilon)$, where d(l) denotes the divisor function, the number of distinct products $b_i b_i$ determined by (6) is

$$\geq 2^{-1}t(t-1)2^{-(1+\epsilon)\log n/\log\log n} + O_{\epsilon}(1) \geq t^{3/2},$$

if c_5 is chosen large enough. Thus, if A contains all $s^{-1}b_ib_j$ for a fixed s, at least $h = [t^{3/2}]$ of its integers are fixed by B and thus the number of choices of A is at most

$$\binom{n-h}{k-h}$$
.

Hence, on allowing s to vary, the number of possible choices of A corresponding to a given B is at most

$$n^2 \binom{n-h}{k-h}$$
.

The number of choices of B is $\binom{n}{t}$. Since the number of choices of A (without restriction) is $\binom{n}{k}$, the theorem would follow if we can prove

(7)
$$\binom{n}{k} \ge \binom{n}{t} n^2 \binom{n-h}{k-h}.$$

We have

$$\binom{n}{k}/\binom{n-h}{k-h} = \frac{n\dots(n-h+1)}{k\dots(k-h+1)}.$$

For each i = 0, ..., h-1,

$$(n-i)(k-i)^{-1} \ge (n-h)(n-2nm^{-1})^{-1} \ge 1+m^{-1}.$$

Therefore,

$$\binom{n}{k}/\binom{n-h}{k-h} \geqslant (1+m^{-1})^h \geqslant e^{h/(2m)} \geqslant e^{t^{4/3}}$$

since $h = [t^{3/2}]$ and $m = e^{c_4 \log n / \log \log n} \leq t^{c_4/c_5}$. But $\binom{n}{t} n^2 \leq n^2 n^t \leq e^{t^{4/3}}$. Thus we have (7) as required. The following lemma, whose proof is somewhat involved (see [4]) enables us to strengthen Theorem 10.

LEMMA C. Suppose k is any positive integer, and $t \ge (\log_2 n)^k$, where $\log_2 n$ denotes the logarithmic function to the base 2. Then for any sequence

$$a_1 < \ldots < a_t \leqslant n$$

of t positive integers, there are at least ck^2t distinct products a_ia_j $(1 \le i < j \le t)$ where c is a positive absolute constant.

Using the above lemma we obtain the following

THEOREM 11. Suppose 0 < a < 1, and $n \ge n_0(a)$. Then there exists a sequence of k positive integers not exceeding n, where $k \ge an$, such that for any s, where s is an integer or the reciprocal of one, there exist at most $t = \lceil e^{c_6(\log n)^{1/2} \log \log n} \rceil = \lceil (\log n)^{c_6(\log n)^{1/2}} \rceil$ integers

$$b_1 < \ldots < b_i$$

where c_6 depends only on a, such that all products $s^{-1}b_ib_j$ $(1 \le i < j \le t)$ are in A.

Proof. Arguing as in proof of Theorem 10 and using Lemma C instead of $d(l) < 2^{(1+\epsilon)\log l/\log \log l}$, we need only prove that

$$\binom{n}{[an]}/\binom{n-[c_7(\log n)t]}{[an]-[c_7(\log n)t]} \ge n^2\binom{n}{t}.$$

We note that the left hand side is $\geq e^{(\log a^{-1})c_8(\log n)t}$ which is greater than $n^2\binom{n}{t}$, if c_6 and hence also c_8 is large enough in terms of a.

It seems quite plausible that the following conjecture is true:

Suppose $a_1 < \ldots < a_t \leq n$, $t \geq (\log_2 n)^k$. Then there are $(1+c)^k t$ distinct products $a_i a_j$ $(1 \leq i < j \leq t)$, where c is some positive absolute constant.

The above conjecture, if true, would imply the following

THEOREM 12. Suppose 0 < a < 1 and $n \ge n_0(a)$. Then there exists a sequence A of k positive integers not exceeding n, where $k \ge an$, such that for any s, where s is an integer or the reciprocal of one, there exist at most $t = [e^{c_0(\log \log n)^2}]$ integers

$$b_1 < \ldots < b_t,$$

where c_{9} depends only on a, such that $b_{i}b_{j}s^{-1}$ $(1 \leq i < j \leq t)$ are all in A.

The proof, which we omit, is an adaptation of the probabilistic argument used in the proof of Theorem 10. The theorems in this paragraph can undoubtedly be sharpened considerably. We hope to return to these questions at another occasion.

4 — Acta Arithmetica XXVII.